
Received November 13, 2017, accepted December 27, 2017, date of publication January 3, 2018,
date of current version February 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2789281

Cost Effective Network Flow Measurement for
Software Defined Networks: A Distributed
Controller Scenario
HAMID TAHAEI1 , ROSLI BIN SALLEH1, MOHD FAIZAL AB RAZAK1,2, KWANGMAN KO3, AND
NOR BADRUL ANUAR1
1Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia
2Faculty of Computer Systems & Software Engineering, University Malaysia Pahang, Pahang 26600, Malaysia
3Department of Computer Engineering, Sangji University, Wonju 220-702, South Korea

Corresponding authors: Hamid Tahaei (hamid.tahaei@siswa.mu.edu.my) and Nor Badrul Anuar (badrul@um.edu.my)

This work was supported in part by the collaboration between Universiti Malaya and Institute for Information & Communication
Technology Promotion Grant through the Korea Government under Grant MSIP 2017-0-01705 and in part by the Basic Science Research
Program through the National Research Foundation of Korea, Ministry of Science, ICT, and Future Planning, under Grant 2017030223.

ABSTRACT Software-defined networking (SDN) has emerged as an evolutionary paradigm in datacenter
networks by separating data from control plane and centralizing network decision making. Traffic flow
measurement in SDN is relatively lightweight in comparison to the traditional methods. It enables flow
measurement system to overcome the issues of traditional measurement systems, such as cost and accuracy
by employing a centralized controller. Nevertheless, a full physically centralized controller introduces nega-
tive impacts on the network as well as the measurement system (i.e., introducing extra overhead or accuracy
issues). However, few efforts have been devoted to measurement techniques in SDN distributed controller
architecture, where every controller pulls its corresponding flow statistics, and these statistics are required to
expose by only one single expression as if they are collected by one controller.Moreover, the imposed costs of
flow measurement in distributed controller architecture are still an issue that remains unsolved. In this paper,
we attempt to fill in this gap and present a novel and a practical solution for a cost-effective measurement
system in SDN distributed controller deployment. We also propose a synchronization mechanism for
aggregating traffic statistics in the multiple controller model. We evaluate our method through extensive
emulations in a datacenter topology and present our findings to demonstrate the impact ofmultiple controllers
on overhead and accuracy.

INDEX TERMS Software defined networking, network traffic monitoring, network flowmeasurement, flow
statistical collection.

I. INTRODUCTION
Flow measurement system is an essential requirement for
network applications. Many applications in a Datacenter
Network (DCN) such as, anomaly detection, network plan-
ning, billing, load-balancing, traffic engineering and secu-
rity require an accurate and timely-basis flow measurement
system for monitoring and recording the flows of network
traffic [1]. Traditional flow measurement systems, such
as NetFlow [2] and sFlow [3], apply packet sampling
approaches to collect information about packets in the net-
work and analyze this information to infer flow level statisti-
cal measurement. They have either a low accuracy or a high
deployment cost and consume more resources [4]. An exam-
ple of the later is the deployment of NetFlow, which requires

setting up of collectors and analyzers. Moreover, enabling
NetFlow in the routers may degrade the packet forwarding
performance [5]. Furthermore, NetFlow and similar tools
such as Sflow, Jflow, IPFIX, and PRTG are hardware-based
feature that need to be configured to be set for each individual
interface on the physical device (switch/router). In reducing
the limitation in the traditional flowmanagement systems, the
most recent measurement methods alleviate the accuracy and
cost issues by applying the emerging technology known as
Software Defined Networking (SDN).

In SDN, a central controller collects flow statistics
by either directly requesting from switches (pull-based
approach) or passively receiving them from switches
(push-based approach) upon the expiration of their

5182
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-9878-9171


H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

corresponding flows. The statistics reach the central con-
troller to be used by on-demand applications (i.e., routing
and load balancing) in the network. Thus, eliminating the
sophisticated process of sampling approach for flow level
measurement used in traditional methods results in more
accurate and near real-time flow measurement by actively
collecting flow’s information from switches. However, both
of the aforementioned approaches in SDN lead to a massive
cost of the controller’s channel bandwidth and processing
delay for a single SDN controller [6]. The situation becomes
worse in in-band SDN network deployment when monitoring
and routing traffic shares bandwidth along the same link.
Resulting in a delay of flow statistics to be reached at
the central controller as normal network traffic disturbs the
measurement traffic and the flow statistics. In addition, like
any other centralized system, a fully physically centralized
controller is inadequate and introduces issues of scalability,
reliability and performance bottleneck [7]. To overcome these
obstacles above, industry and academia proposed multiple
SDN controller designs by which the central controller can
be physically distributed but logically centralized [8].

Several published papers have explored various techniques
to cope with the limitations of the flow measurement system
(i.e., the tradeoff between accuracy and overhead) in fully
physically centralized SDN controller, however, proposing
a cost-effective with accuracy design which can be imple-
mented in multiple SDN controller yet remained intact. For
example, in the single SDN controller, OpenTM [9] utilizes
pull-based strategy to collect a single flow statistic in every
request. It reported highly accurate flow statistical measure-
ment, however, applying per-flow query strategy introduces
communication overhead if the number of flows in the net-
work is large. Payless [10] proposed an adaptive pull-based
method to overcome the overhead on OpenTM, However,
an extra communication overhead and message interactions
cannot be neglected if the traffic spike is high for every flow.
In contrast, FlowSense [11] applies a push-based approach
to infer link utilization based on passive capturing of flow
arrival and expiration messages which incur zero overhead.
However, the link utilization can only be calculated at the
discrete points of time upon the expiration of the flow.
Thus, this is unable to fulfill the dynamic requirement, and
moreover, accuracy of the results is untrusted (uninsured).
CeMon [12] proposed a pull-based approach combining the
single flow request and aggregating all flow statistics in a
single flow request which can be implemented in multiple
SDN controller. However, it applies a greedy optimization
algorithm to select the target switches to pull which causes
degradation of accuracy. Moreover, due to the complexity of
the algorithm, it is unreliable for a large scale of networks
with a large number of flows. Furthermore, the overhead
generated by the synchronization of multiple controllers was
unrevealed.

To address the absence of traffic measurement system
in the distributed SDN controller design and overcome
the primary challenge of the flow measurement system

(i.e., minimizing overhead), this paper proposes an accurate
and cost-effective strategy for near real-time flow measure-
ment system in DCN. By ‘‘cost effective’’, the paper implies
multi-objective overheads in terms of traffic volume gen-
erated for measurement purpose, message interaction and
controller overhead as well as the CPU utilization. The main
contribution of this paper is three folds. First, we reveal a sig-
nificant strike on the cost of flowmeasurement byminimizing
various overheads in a single controller design. Second, we
propose a generic framework for flow measurement in data-
center which applies in both single and multiple-controller
and show the effectiveness of the proposed method under
different measurement scenarios. Lastly, we formulate a cost-
effective multi-objective controller design in in-band network
deployment and manifest the performance evaluation of the
proposed multi-objective controller design and the state-of-
the-art approaches through emulation.

The proposed architecture utilizes local controllers to pull
flow statistic and forwards statistics to an upper layer appli-
cation to aggregate all the counters and shaping a universal
flowmeasurement in the network. We designed a coordinator
level on top of all the controllers connecting to the switches.
We apply group feature introduced by OpenFlow 1.3 which
wildcards all the demanded flows in a single group then
utilize aggregated pulling request to collect statistics. The
proposed design is implemented as a standard northbound
interface which can utilize both fixed and adaptive pulling
systems. This work is an extend of our previous attempted
in [13] where we proposed an active measurement method
in a single SDN controller scenario with out-of-band deploy-
ment. To the best of our knowledge, this is the first attempt on
SDN that proposes traffic measurement for distributed con-
troller in in-band network deployment which uses emulation
as an experiment.

The rest of this paper is organized as follows. Sec-
tions 2 presents related work in SDN traffic measurement
and discloses the challenges. It also reviews related works
on multi-controller Environment. Section 3 presents a brief
background of native measurement approaches in SDN and
outlines the system design. The section is further followed by
elaborating the problem formulation. Section 4 explains the
proposed optimal solution followed by a heuristic case study
to analyze the proposed system behavior. Section 5 explains
a multi-objective optimization for multi-controller scenario
in in-band network deployment. In section 6, the proposed
architecture is evaluated under extensive experiments with
different controller number. Finally, we conclude the paper
in Section 7.

II. RELATED WORK
Traditionally, flow-based network measurement tools have
been introduced in traditional IP networks. NetFlow [2] from
Cisco is the premier and the most prevalent, uses a central
collector to analyze the sampled or complete traffic statistic.
It supports various technologies such as Multi-cast IPSEC
andMPLS. Later by releasing version 9, it became a universal

VOLUME 6, 2018 5183



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

standard by IP Flow Information Export (IPFIX) IETF work-
ing group. Using this standard, Cisco NetFlow collector can
be used by non-Cisco devices. InMon introduced sFlow [3]
which uses time-based packet sampling for capturing flow-
based IP traffic. Similar to NetFlow and sFlow, Jflow [14]
proposed by Juniper Networks, also exploits statistical sam-
pling to analyze flows and monitor detail information about
flows. However, as mentioned earlier in the introduction;
these tools are all hardware-based features which require to
be enabled in each individual device and interface. In addi-
tion, all of these monitoring tools mentioned above are com-
mercialized and incur licensing. Furthermore, none of these
tools can be applied in either distributed or single SDN con-
troller and require investment and cost for deployment in the
network.

A. NETWORK MEASUREMENT IN SDN
SDN Network measurement has been a subject of recent
academic topics. Several efforts in single controller have been
observed that proposed different methods in single SDN con-
troller design with various QoS requirements to overwhelm
challenges associated with accuracy and overheads. These
methods are broadly decomposed into two main categories
(i.e., active and passive).

In the active measurement approach, a probe packet is
continuously sent over network paths as a request to collect
flow statistics. Such methods offer different level of gran-
ularity, resulting in the highly accurate flow measurement.
As such; imposing significant measurement overhead that
may disturb the critical traffic flows. The situation becomes
worse in in-band network deployment due to using same
links’ bandwidth in routing traffic and the generated traffic
by monitoring purpose. The active measurement demands
careful planning to cope with the requirements of a central-
ized control architecture in SDN. Deploying active measure-
ment considerably increases the data acquisition and results
in the centralized control mechanism of the SDN hitting
saturation [15]. Even applying fast analytical models and sta-
tistical models (e.g. Machine learning techniques and Monte
Carlo) at the end-to-end QoS measurement, the controller
may face challenges relating to bottlenecks in communica-
tions, control and optimization [16]. OpenTM [9], a traffic
matrix estimation system is proposed to get flow statistics
using simple logic for querying flow table counters with dif-
ferent querying strategies. Such a mechanism gathers active
flow statistics on a one-by-one which is considered to be
costly in terms of introducing communication overhead in
the network. Chowdhury et al. [10] proposed an adaptive sta-
tistical collection algorithm, which emphasis on the tradeoff
between accuracy and network overhead. This approach has a
low overhead and achieves a higher accuracy of statistical col-
lection by capturing traffic spikes. The work in [13], presents
an active approach for elastic and fixed pulling switches
and highlighted the tradeoff between accuracy and overhead.
However, it is proposed for single controller with out-of-
band deployment. In a similar vein, CeMon [12] proposed a

low-cost monitoring system which adaptively pulls switches
for statistical collection and optimizes the pulling cost for all
active flows. However, the proposed method may result in
loss of accuracy in different topology as the greedy switch
selection algorithm is highly reliant on the behavior of flows
in the network. Also, it is scenario dependent which is suitable
for networks with a small rate of new flow arrival. Moreover,
CeMon implemented its proposed method for distributed
controller model without taking the factor of overhead for
synchronization of multiple controller.

In contrast, in passive measurement; real-time traffic is
captured and analyzed at the predefined points of the network.
In this approach, the network is manually captured and its
traffic is directed to an analyzer or agent for further process-
ing. Since there is no probe packet in passive measurement;
therefore, it does not cause any overhead. Suchmethod allows
for the processing of local traffic states, and global behavior
of the network traffic flows passing a specific network point.
Passive measurement methods are considered non-intrusive
and it does not generate extra traffic in the SDN, but these
methods need packet-sampling and statistical methods to
conclude the state of the network traffic. Two key limitations
of these techniques are (1) Inaccurate measurement; because
small flows being missed or multiple monitoring nodes sam-
ples the similar packet [17], and (2) the necessity for a
complicated analytical mechanism to process network traffic
at the high speed in DCNs. For example, Flowsense [11]
presented a push-based technique which with no overhead
while measuring the network link utilization. However, this
method gets the link utilization at discrete points in time with
a lengthy delay; which results in losing the accuracy of the
flow statistics.

B. DISTRIBUTED CONTROLLER
Deploying distributed controller in SDN has been proposed
to address the issues of scalability and reliability that a single
controller suffers from [8]. However, the concept of dis-
tributed control plane in SDN implies the multiplicity of the
physical entity of the control plane where it addresses some
obstacles such as limited scalability, reliability and being a
single point of failure.

Till now, several deployment models have been proposed
for distributed control plane with having various objectives
and requirements. For example, to address the aforemen-
tioned challenges, a model has been proposed which is
referred to as physically distributed but logically centralized.
To meet the requirement of centralized view of the network,
controllers such as Onix [18], Hyperflow [19], ONOS [20],
and OpenDayLight [21] share information among each other
to have a consistent view of the network. However, to provide
a full visibility (global view of the network), controllers
have to constantly synchronize their state with each other.
This synchronization may cause network overhead as the
network state frequently change and controller should con-
stantly be synchronized. It has been fully understood that an
inconsistent control state of the network can negatively affect

5184 VOLUME 6, 2018



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

many application’s performance as well as the reliability of
control plane [8]. To address this issue, a fully distributed
model was introduced where the control plane is both physi-
cally and logically distributed. Kandoo [22] proposed amodel
based on fully distributed deployment known as hierarchical
deployment model where employs two levels of controllers
such that a root controller takes a full visibility of the network
and controls all the local controllers in the second level.
All the low-level controllers (local controllers) orchestrate
their own domain and synchronize their domain states with
the root controller. Cluster deployment is another model
which employs multiple controllers with the same role. How-
ever, according to OpenFlow [23], at most one controller in
master state can control a switch. Hence, the backup con-
troller may take the control of switch(s) (become the master
controller) on the failure of a master controller. Although,
very minor efforts have been done on network measure-
ment methods for distributed controller model, no published
attempt has gone on striking the problem of minimizing
different costs (overheads on communication, messaging and
controller) of active measurement in the real setting of dis-
tributed SDN control plane.

III. SYSTEM DESIGN
Our aim is to estimate the traffic volume of a set of arbitrary
flows in datacenter environments. In this section, we first
provide a general background of OpenFlow and then explain
our proposed design with further formulating our research
problem.

A. BACKGROUND
In OpenFlow, the monitoring task is accomplished by a con-
troller, which is connected to the switches via a secure chan-
nel interface called southbound interface. The secure channel
is established over a TCP connection between the controller
and the switch. The controller accumulates the real-time flow
statistics from the corresponding switches, and combines the
raw data to deliver interfaces for upper-layer applications.
When a switch receives the first packet of a new flow in the
network, it first checks its flow table to find a match for the
flow. Then the flow is forwarded based on the correspond-
ing flow entry in the flow table. In the case of table miss
(when there is no match for flow); the switch forwards the
first packet header to the OpenFlow controller by a packet-
In message. The controller processes the packet header and
makes further actions such as setting up the routing paths. The
controller then instructs the corresponding switches along the
path by a packet_out message.

According to OpenFlow specification 1.0 [24], a naive
approach to obtain a specific flow statistic in the network
is to query it from the switch using OpenFlow single stat-
request (SSR). In this way, fine-grained per-flow information
about a predefined individual active flow is requested with
the ‘‘ofp_flow_stats_request’’ request type. The predefined
active flow is queried based on the exact match of several
fields such as input port, source/destination address, and

so on. Thus, for measuring byte count of each active flow,
the controller sends one request message to the switches
and receives one reply message in response (two mes-
sages for each flow). Another approach is known as pulling
all (PA), queries all the active flows from the switch(s).
In this way, per-flow statistics of all the active flows in a
switch are collected (aggregated) in a single file and sent
to the controller regardless of any match. Later in the spec-
ification1.5.0, OpenFlow, introduces ‘‘Flow Entry Statistics
Trigger’’ (FEST) which is a mechanism that automatically
sends Flow entry thresholds statistics to the controller base
on various statistics thresholds (a list of statistic field thresh-
olds). However, FEST, is unsuitable for timely-basis flow
measurement as it reports flow statistics based on the prede-
fined thresholds regardless of measurement intervals

B. IN-BAND AND OUT-OF-BAND NETWORK DEPLOYMENT
The deployment of SDN in network falls into two cate-
gories: (1) out-of-band and (2) in-band deployment. In out-
of-band, signaling requires a dedicated network between the
controllers and switches, which incurs an additional cost in
terms of hardware infrastructure. However, this deployment
provides much better response time and does not suffer from
potential congestions [25]. Therefore, the overhead costs for
this deployment depend on the number of flow which is
pulled from the switch regardless of controller placement.

In in-band deployment, transmission of control message
and data message take place in a shared network band-
width [26]. This incurs no additional cost for inter-controller
communication [25]. The measurement and data traffic
shares bandwidth, proactively fetching counters with high
frequency notably impact the efficiency of data transmission.
Also, it is relatively complex to compute the communication
cost compare with the out-of-band deployment. Therefore,
the hops from the pulling switch to the controller should be
taken into account. Though, costs for message interaction and
controller overhead remain the same for both out-of-band and
in-band deployment.

C. ARCHITECTURE
The architecture of the propose design consists of two stages
as follows: (1) a local controller design which describes the
entire schema in a layout like steps and (2) a core design
which focuses on the design of the local controllers.

1) DESIGN OF LAYOUTS
Fig. 1 depicts the schema of the proposed system layout.
In general, it consists of three layers: OpenFlow network
Layer, OpenFlow controller level and a coordinator level on
top of all the controllers connecting to the switches.

OpenFlow network level consists of all the Low-level net-
work entities such as hardware and software devices con-
nected to the upper layer via the northbound interface.

The controller level is the heart of our design where statis-
tics of flows are collected by their associated local controller
in each time interval (1 second in our design). Each controller

VOLUME 6, 2018 5185



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

FIGURE 1. Schema of system layout.

which is associated with a flow (tracking and instructing
flow) is set by the top layer to request the flow statistics and
responsible to collect, aggregate, and forwarding them to the
upper layer (i.e., coordinator).

The coordinator level is responsible to set controller(s)
to request flow statistics (Request Patch) in an arbitrarily
fashion (fixed or adaptive pulling) using ‘‘Pulling scheduler’’
and receive statistics from different controllers by ‘‘UDP
Socket Listener’’ and accumulates them to shape a traffic
matrix (TM) of demanded flows. This layer provides an East-
west interface to interconnect controllers and bridging all
the gathered statistics to accumulate the demanded task. The
East-west interface is often so-called east-west bridge where
it is responsible to implement efficient communication, syn-
chronization and negotiation function among multiple con-
trollers [8].

2) LOCAL CONTROLLER DESIGN
Fig. 2 shows the architecture of a local controller. There are
four steps to accomplish the measurement task after a local
controller receives flow statistic request from the coordinator
using ‘‘Request Dispatcher’’ module.
Flow Tracker: The first step is tracking all the flows (cur-

rent/new flows in the controller domain) with a specific char-
acteristic (user demands) which is required to bemonetarized.
Group Maker: The second step is grouping all the flows

which were specified earlier in the first step. This module
utilizes ‘‘group table’’ feature in OpenFlow specification 1.3.
It then instructs the switch(s) to modify the associated TCAM
output group entry by sending a packet_out message to
switch(s).
Query Maker: In the third step, switches are pulled with

the exact match of the created group in the previous step.
Collector:All the statistical counters in each time intervals

are aggregated by this module and sent to the top layer
(coordinator). The process of sending aggregated stats is
performed by a simple UDP datagram socket.

FIGURE 2. Local controller.

We implemented the proposed design as a northbound
application on top of the controllers. The coordinator can
access multiple local controllers by a simple application call.
The proposed design can be implemented in various single
andmultiple controller scenario such as clustered, distributed,
and hierarchical. Furthermore, it is able to accomplish almost
all aspects of a monitoring system (such as flow utilization,
measuring available bandwidth, packet loss, link and packet
delay, and so on).

D. PROBLEM DEFINISTION
As mentioned earlier, there are three approaches for col-
lecting traffic stats such as (1) single stat-request (SSR),
(2) wildcarding all fields to collect all flows (pulling all), and
(3) ‘‘Flow Entry Statistics Trigger’’ (FEST).

SSR generates two messages to collect statistics of a flow
in each interval, four messages for two flows and so forth. The
main drawback of this approach is the imposed overhead for
generating a huge number of request and reply message in the
network which also utilizes CPU cycle of network devices as
well as SDN controller.

PA collects all the active flows statics in a switch by only
two messages: request and reply messages. This significantly
reduce the number of message interaction and communica-
tion cost as well as repeated reply headers for a high number
of flows. However, excessively applying the second approach
causes flow statistics overlapping which imposes extra mes-
sage interaction overhead and communication cost as well as
an overhead in the controller. Another drawback of PA is the
lack of control on flows query as it pulls all the active flows
in the network regardless of the actual need.

In the latest approach (FEST), OpenFlow enabled switch
automatically sends flows’ statistics to the controller when
one of the pre-defined threshold(s) is triggered. The drawback
of this approach is that many active flows are lost when
the defined threshold is not triggered if they are below the
threshold. In addition, setting the least value of threshold
(i.e. one bytes) can be a bottleneck for the CPU utilization

5186 VOLUME 6, 2018



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

of the device, resulting in reporting the stats with delay.
However, FEST only reports statistics upon a flow is trig-
gered by a threshold which is inappropriate for timely basis
flow measurement where statistics are collected base on time
intervals.

1) COMMUNICATIN COST
According to the OpenFlow specification 1.3 [23], the min-
imum length of flow stat-request message lrq in wire is
122 bytes [12]. However, this length is highly associated
with the flow specification match. For example, the length
of a single flow statistic request (SSR) which is specified
by a normal 6 tuple fields (i.e., Ethernet type, IP protocol,
IPv4 src, IPv4 dest, UDP src port, and udp dst port) is
162 bytes including 66 bytes for packet header (Ethernet +
IP + TCP headers) and 96 bytes for packet payload (flow
match and instructions). The request length for PA approach
is the minimum 122 bytes as there is not specification for
matching flows.

We captured the reply message byWireshark and observed
that Reply message header length lrp for SSR and PA is
82 bytes and 162 bytes respectively. The length for each
single flow entry lsp stat for both of the mentioned approach
above is 144 bytes. However, the reply message may split
into multipart messages as the maximum size of a TPC
packet is 64bytes in a medium. The length of UDP mes-
sage1 [27] containing aggregated statistic sent by every local
controller to the coordinator is 60 bytes which is donated
by ludp. Therefore, the total communication cost Costcom(f )
of SSR and PA for pulling a set of arbitrary flows f for
each individual controller in out-of-band deployment is a
linear function of f as in equation 1, 2 respectively. As such,
equation 3 and 4 describe the linear formulation formulate
of communication cost Costcom(f ) of SSR and PA in in-band
deployment.

a: OUT-OF-BAND

Costcom(f ) ∼=
∑

fi

(
lrqi + lrpi + lsfi +

(
ludp × vkc

))
,

∀fi ∈ f (0 < i < m), f ⊆ F, vkc ∈ v, v ⊆ V

(1)

Costcom(f ) ∼=

(
lrq + lrp +

∑
fz∈F

lsfz

)
v+ (ludp × vkc),

∀fz ∈ F(0 ≤ z ≤ |F |), vkc ∈ v, v ⊆ V (2)

b: IN-BAND

Costcom(f ) ∼=
∑

fi

(
lrqi + lrpi + lsfi +

(
ludp × vkc

))
× hαβ ,

∀fi ∈ f (0 < i < m), f ⊆ F, vkc ∈ v, v ⊆ V

(3)

1A UDP packet may contain empty datagram (no data). However, the
minimum length in the wire over Ethernet is 60 bytes. The minimum ele-
ments that contribute in the length of an UDP packet is, Ethernet header,
IPv4_header, and UDP_header which equals 14 + 20 + 8 = 42 bytes.
However, as per by Linux host driver extra bytes is padded to the packet
to full fill the requirement of minimum length of packet in the Ethernet.

TABLE 1. Notation of problem formulation.

Costcom(f ) ∼=

(
lrq + lrp +

∑
fz∈F

lsfz

)
× v+ (ludp × vkc)× hαβ ,

∀fz ∈ F(0 ≤ z ≤ |F |), vkc ∈ v, v ⊆ V (4)

Where in the network graph G = (V, E), V =

{v1, v2, . . . , vn} is the set of switches and E represent the
set of links between switches, with set V, donated as a set
of switches, and f = {F : fi ∈ F, 0 < i < m} where
F = {f1, f2, . . . , fm} is the total current flows (universe) in
the network and C = {c1.c2, . . . , ck} a set of controllers
Table 1 listed notations of the problem formulation.

2) MESSAGE INTERACTION COST
As the number of flows increase in the network, pulling their
statistic becomes more frequent. In other words, the more
flows in the network is, the more message is interacted
between the controller and switch(s). This makes pull-
based approach inefficient for continuous measurement with
high-granularity due to consuming too great portion of
switch-controller bandwidth as well as switch CPU [28].
Furthermore, Sünnen [29] showed that when the read-stats
messages are sent too often, the switch’s CPU utilization
and the number of Spending messages increases. Thereby,
given the network graph G with set of flow f and a set of
controllers C , the total number of message interaction for
each individual controller in SSR and FA can be found in a
linear function of Costmessage(f ) in equation 5 and 6 respec-
tively. Where nrq, nrp and nudp are ‘‘ofp_flow_stats_request’’,
‘‘ofp_flow_stats_reply’’, and ‘‘udp for coordinator’’ mes-
sages respectively.

Costmessage(f ) ∼=
∑

fi

(
nrqi + nrpi + nudpi

)
,

∀fi ∈ f (0 < i < m), f ⊆ F (5)

Costmessage(f ) ∼=
∑

vj

(
nrq + nrp + nudp

)
,

vj ∈ v, v ⊆ V (6)

VOLUME 6, 2018 5187



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

TABLE 2. MIPS assembly instruction language taken by CPU. Adopted
from [30].

Subject to:

p = {m|m : N }, p =

{
1, Costcom(f ) ≤ 6550 bytes
m× 2, Costcom(f ) > 6550 bytes

Where the condition stated in equation 3-7 defines a reply
message is split into two parts (two messages) if the length is
greater than 6550bytes. This is the default packet size in the
network cannot be greater than 64Kb for efficient transfer of
data in the network.

3) CONTROLLER COST
The controller’s overhead implies the utilization of con-
troller’s CPU which is also referred to as the computation
overhead [31]. It can be defined by the number of instructions
imposed by execution, calculation and comparison of raw
data to process byte-count (calculating byte count of each
flow and subtracting it from previous count). The perfor-
mance and throughput of CPU is measured from different
perspectives such as Cycles Per Instruction (CPI), Million
Instruction Per Second (MIPS), and Transaction Per Sec-
ond (TPS). Thereby, the CPU instruction rate is calculated
by dividing the observed CPU cycle speed by the observed
CPI [17]. However, determining the exact number of instruc-
tion applied by CPU requires obtaining job’s information
(calculation of statistic reply) comprised of multiple tasks
each of which consists of multiple threads, which is out
of the scope of this paper. In addition, different CPU gen-
eration (32 or 64bit CPU registers) results different per-
formances in various CPU instructions such as Instruc-
tion Fetch (IF), Instruction Decoder (ID), Execution (EXE),
Memory/IO(MEM), Write-Back (WB) each of which con-
sists of various instructions which increases the clock cycle
time [32]. Therefore, analyzing and calculating CPU per-
formance by the number of instructions in practice is not a
rational way.

A simple criterion to observe the imposed overhead is to
presume a constant value θ and λ indicating the number of
instruction taken by CPU for fragmentation of the stat-reply
files (data transfer) and reading stat-entry (arithmetic, data
transfer, logical, conditional, and jump) respectively. For sim-
plicity, we assume θ (reading stat-file and put into memory)
and λ (subtracting the current flow count from the previous
one and put into memory) take 2 and 6. Table 2 shows the

FIGURE 3. The select group [33].

MIPS assembly instruction language taken by CPU [30].
Therefore, the controller overhead Costcontroller (f ) in SSR,
and PA, analyzing n specific flows from set f in each inter-
val is formulated as a linear functioned of m in equation
7 and 8 respectively.

Costcontroller (f ) ∼=
∑

fi
(3θ + λi),

∀fi ∈ f (0 < i < m), f ⊆ F (7)

Costcontroller (f ) ∼=
∑

vj

(
3θj + λi

)
, vj ∈ v, v ⊆ V (8)

IV. OPTIMAL SOLUTION
The optimal solution is found through wildcarding the
demanding flow set f and subtracting them from the uni-
verse flow F . Therefore, the reply message contains only
demanding flows in each interval. Thus, reducing all the
aforementioned problem above by generating two messages
each time interval (i.e., one request message and one reply
message). However, according to OpenFlow, flows are wild-
carded either by all fields (PA) or ‘‘some cases bitmasked’’
(such as IP-scr, IP-desc and input-port) [23].

We adopt ‘‘group table’’ that is introduced by [23] for
traffic Engineering, load balancing and fast failover purposes.
A group can either have a single or a list of action/bucket.
In general, there are four types of group such as ‘‘All’’,
‘‘SELECT’’, ‘‘INDIRECT’’, and ‘‘FAST-FAILOVER’’, each
of which has specific features (interested readers are referred
to [23] for more information). We implement ‘‘SELECT’’
type in which each packet entering the group is sent to a single
bucket associated with its action. Thus, for this group in a
switch we define all potential output actions related to a flow.
In such a case, all the incoming flows or current flows are
grouped without any intervention to the forwarding decision
and central policy enforcement. Therefore, the action of a
flow entry is set to the action or a list of actions for that
group. We then request the group rather than pulling a single
(SSR) or all flows (PA). Fig. 3 shows the SELECT group [33]
type in OpenFlow 1.3. The pseudo code to construct group
and mapping flows to the group is shown in Fig. 4.

An integrating group table with aggregating demand-
ing active flows in the network provides the feasibility to

5188 VOLUME 6, 2018



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

FIGURE 4. The pseudo code to construct group and mapping flows to the
group.

wildcard a set of specific flows for the purpose of fine-
grained measurement. In this case, the optimal number of
flows in every interval is captured. By implementing our
solution, the length of request lrq and reply message lrp are
122 bytes and 218 bytes respectively. However, similar to PA
the reply message may split into a multipart reply message
if the length exceeds 64Kb in the medium. The optimal
solution for communication cost, message interaction, and
the controller overhead (for each controller) in the network G
with an arbitrary set of flows f can be formulated in equation
(9,10,11) in out-of-band network deployment respectively.

OptimaCostCom(f ) ∼= lrq + lrp +
∑

fi
lsfi +

(
ludp × vkc

)
,

∀fi ∈ f (0 < i < m), f ⊆ F,

vck ∈ v, v ⊆ V (9)

OptimaCostmessage(f ) ∼= nrq + nrp + nudp (10)

OptimaCostcontroller (f ) ∼= 3θ +
∑

fi
λi

∀fi ∈ f (0 < i < m), f ⊆ F

(11)

A. CASE STUDY: SYNTHETIC TOPOLOGY
After describing the problem and a set of equations, this
section presents an analysis case study on a single centralized
controller to examine the feasibility of the proposed design
in out-of-band deployment. The case study comparatively
investigates the relationship between cost factors and flows
number by which the proposed solution is applied on the
synthetic topology and the result is compared. The objective
of this case study is to measure the utilization of all flows
passing through the link pi. The topology used in this case
study is the pod 1 (consists 4 switches, two edges and two
aggregation switches) of 4-pod fat-tree which is a common
topology used in datacenters (shown in Fig. 5). Maximum
universe flow F=2000, initial number of arbitrary flows pass-
ing through the path pi is f = 10, and initial flow number in
the node v is 100 with the increase ration of 66,40,28, and
20% in the next 4iterations. The controller C1 pulls the switch

FIGURE 5. Synthetic topology: Composed of 1 pod consists of 2 edges
and 2 aggregation switches with single controller.

TABLE 3. Case study experimental details.

which is directly attached to it. To observe the effectiveness
of the proposed solution in single controller, the proposed
method is compared versus two native OpenFlow methods
(SSR and PA) and CeMon [12]. The flows are generated in
a uniformly random fashion using D-ITG [34]. We conduct
our experiment in mininet version 2.2.1 [35] with open-
Vswitch (OVS) version 2.5.2 [36] to emulate the behavior of
an SDN switch. We implemented a prototype of our design
as a module in the Floodlight version 1.2 controller [37].
Floodlight version 1.2 supports OpenFlow protocol up to
specification 1.4 though it is feasible to extend its features to
OpenFlow 1.5 through experimenter. The experiment is con-
ducted on a server with Intel(R) Xeon(R) E3-1270 processor
3.50Ghz and 16GB RAM. Table 3 shows the details of the
case study experiment.

B. RESULT
Fig. 6 shows the results of various costs after applying differ-
ent approaches with different flow number. In section reports
the achieved result from our case study.

1) COMMUNICATION COST
Fig. 6(a) shows the whole costs of communications for all the
methods mentioned in section 4.1. The results obtained from
our proposed optimal solution indicates a notable reduction of
the communication cost. In particular, the proposed solution
reported 82% improvement over SSR. The proposed method
also saves up to 161% reduction on both PA, and CeMon
methods. Basically, pulling all approach can highly alleviate
communication cost, however, this cost is highly associated
with the total number of flows in the switch which is ten

VOLUME 6, 2018 5189



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

FIGURE 6. Various costs after applying different approaches with
different flow number. (a) Communication cost. (b) Controller cost
(c) Message interaction cost.

times bigger than the actual demanded flows. As it can be
seen, the sharp rise in PA and CeMon has a direct corre-
lation to the total number of flows in the switch in every
interval. This behavior is arisen for all the methods which
apply full or partially ‘‘pulling all’’ strategy in their body.
CeMon applies both PA and SSR approach at the same time
in which it pulls all flows statistic in the previous intervals
(already covered flows) and utilizes a single request for new
the flows in the current interval. However, this strategy is
highly scenario dependent which is suitable for networks with
small rates of new flow arrival or multiple switch selection for
pulling.

2) CONTROLLER COST
Fig. 6(b) shows the controller overhead of the proposed
method versus the benchmarking methods. The proposed
method archives the least controller overhead as it processes
only statistics which are associated with the demanding flows
(those flows which contribute to the utilization of pi). While,
CeMon and PA reported the highest overhead with an explicit
increased to the number of flows. This is because these
two methods send all the current flows in the switch to be
processed in the controller. SSR is distinctively superior to
CeMon and PA as a result of sending less number of flows
to be processed. This reduction in flows number is due to
pulling less flow statistics. Thus, the less flow statistics to
pull, the less overhead to be generated. It is observed that the
proposed solution significantly saves the overhead by 63%
over SSR as a result of reporting the precise flow statistic as
demanded.

3) MESSAGING COST
Fig. 6(c) depicts the number of message interaction between
the controller and switch. Results obtained from messaging
cost reports that the proposed method and CeMon archives
the optimal result which is found in the PA approach for
message interaction cost. The cost for PA, CeMon and the
proposed method remains a constant number and proportion-
ally increases to the number of controller. As there is only one
controller in this case study, therefore, for every intervals PA
and the proposed method generates three messages (request,
reply and synchronized message). CeMon also achieves the
optimal number of message interaction as a result of applying
‘‘pulling all approach’’. However, similar to communication
cost, the result is highly depended on the scenario and envi-
ronmental factors such as the number of selected switches to
pull or new flows arrival.

Once the solution is presented and evaluated against other
approaches and proved to be optimal in a real testbed, a dis-
tributed controller problem is defined in the next section
then an evolutionary heuristic is presented to evaluate the
effectiveness of it.

V. COST EFFECTIVE MULTI-OBJECTIVE
CONTROLLER (CEMOC)
Applying multiple controller may result in several
unexpected performance degradations such as accuracy and
overhead. Each switch can be attached to only one mas-
ter controller, hereupon assignment2 of multi-controllers
extremely effect on overhead and accuracy. In addition, dif-
ferent deployment of such a scenario highly impacts several
factors in the network such as node-to-controller latencies,
network availability and performance metrics [38]. There-
fore, the controller (place of controller) fetching flow statistic
plays a vital role in the accuracy of real-time monitoring as

2 The assignment and re-assignment of controllers can be referred to as
switch selection where the switch(s) may be attached to different controllers
in different places.

5190 VOLUME 6, 2018



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

well as cost, especially in the in-band deployment. In addition
to controller assignment, different placement of the coordina-
tor can cause extra cost as well as receiving unsynchronized
stats which lead to inaccuracy of the results.

The following described the problem formulations
for controller assignment and coordinator placement.
Lastly, the proposed multi-controller solution is described
based on the optimization of costs and the accuracy of
results.

A. PROBLEM DEFINITION
As it was mentioned earlier, the monitoring and routing traf-
fic shares bandwidth along the same path. Therefore, this
deployment requires careful planning and precise placement
of controllers in the network. Thus, the number of network
elements (switches, routers, and cables) can highly effect
on the communication costs as well as the accuracy of the
result (real-time statistic). Although, certain networking fac-
tors such as propagation delay can negatively mutate statisti-
cal accuracy. Let donate hαβ as the number of hops (nodes)
from switch vα to controller cβ and hβk as the number of
hops from the controller c to the coordinator k . Let w is the
cost of communication for pulling flows from a switch. Let
donate d as the cost for each controller to be assigned on
the switch β and q is the cost of communication from the
controllers to the coordinator respectively. Given the propa-
gation delay µαβ for each source-destination pair v(α, β), the
equations (15-19) describe the integer linear programing of
the problem formulation in in-band deployment.

The objective function given by (15) describes the problem
formulation of cost which is consists of selecting the most
appropriate switch(s) to be pulled (the switch that coversmost
flows) by w, and the best controller(s) to be assigned given
by dck on the switch(s) for pulling in terms of minimum com-
munication, propagation delay and controller overhead (cost).
It also presents the communication between coordinator and
all the controllers. Equation (16) refers to the constraint for
selecting switch in which at least one switch is selected.
Equation (17) explains the constraint for the controller to be
assigned on only one switch. Equation (18) forces selecting
all the source-destination pairs v(α, β) with the least propa-
gation delay. The binary variable used in the formulation are
explained as follows:

A binary variable xβ represents whether to pull flow from
switch β or not, 1 if it is pulled.
A binary decision variable yckβ represents whether a con-

troller ck is assigned on the node β or not, 1 if it is assigned.

wi = lrq + lrp +
∑

fi
lsfi, fi ∈ f , f ⊆ F(0 < i < m)

(12)

dck = min
∑

ck∈C

∑
β∈V

wiβ ,

∀ck ∈ C(0 < i < m), ∀β ∈ V (13)

cocck = min
∑

ck∈C

(
3θ +

∑
fi
λi

)
, ∀fi ∈ f (0 < i < m),

f ⊆ F, ∀ck ∈ C (14)

FIGURE 7. The pseudo code of steps involving the selection of switch(s).

FIGURE 8. The steps involving the selection of controllers.

min
∑

β∈v

∑
i∈f

wβixβ

+

∑
β∈v

dckβyckβ +
∑

α∈|V |
qα,

xβi, yα, zα ∈ {0, 1},∀ck ∈ C,∀α, β ∈ V (15)

Subject to:∑
β∈|V |

∑
i∈f
wβixβ > 1, ∀β ∈ V,q ∈ {0, 1} (16)∑

β∈|V |
yckβ < 1, ∀β ∈ V,y ∈ {0, 1} (17)∑

hαβ∈|V |
µαβ < min{v(α, β)}, ∀α, β ∈ V (18)

The minimization problem defined above is a weighted set
cover problem which is proven to be NP-hard and requires
heuristics to approximate the performance. Note that, propa-
gation delay is computed for a link between two switches as
it is determined by LLDP send/receive times minus the delay
between both switches and the controller. However, this delay
does not cause a significant effect in datacenters as it is on the
order of microseconds.

B. SOLUTION
The easiest way to solve the problem of weighted set cover is
to apply the brute force search algorithm known as exhaustive
search in which it enumerates all possible candidates for the

VOLUME 6, 2018 5191



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

FIGURE 9. The flow process of The CeMOC.

solution and checks the correctness of the solution. Although,
the brute search algorithm is simple and always find the solu-
tion, its time complexity isO(2m+n) which is exponential to
the number of flows and switches m and n respectively which
is not scalable for datacenters nor ISPs. Hence, for large scale
networks, approximation technique is required.

To solve the problem above, we apply an Eager-greedy
algorithm which is an approximation technique adopted
from [39]. This algorithm implements a priority queue to
alleviate the time complexity to O(m log n). We modified
the algorithm to select the most cost-effective switch(s) that
cover all demanding flows based on their given weight (wi).
Fig. 7 shows the steps involving the selection of switch(s)
in pseudo code. In each iteration, it calculates the minimum
associated weight (shortest path) for all demanding flows in
step 4. It then identifies the sets with the largest number of
uncovered items in step 6 and put it in the output as a group
in step 7. If the algorithm finds more than one sub-covered set
(step 5), it selects the subset with the least propagation delay
in step 6.

We also propose an algorithm that assigned a controller to a
switch for the pulling purpose. Note that, only one controller
can be assigned to a switch in a master mode. Fig. 8 illustrates
the steps involving the selection of controllers in pseudo
code. The main loop iterates for O(n) time where n = |A|
which is the number of pulling set(s). It then calculates the

nearest controller with the least CPU load to the pulling set
(switch(s)) in step 3 with the time complexity ofO(m2) where
m = |C| which is the number of controllers. In the case of
finding more than 1 controller for a set, it selects the nearest
one to the coordinator place. Fig. 9 illustrates the entire
flow process of the CEMoC. As it is sketched in the Fig. 9,
algorithm 2 and 3 run only once upon a measurement request
to the coordinator. Then coordinator signals the selected con-
trollers and pulling set(switches) to be pulled. The life line of
controller(s) continues for the number of iteration. Therefore,
every controller sends stat request and receives the stat reply
until the signaling of user for termination of the process.

VI. EVALUATION
We evaluated the performance of CEMoC with extensive
network emulations from various perspectives in different
scenarios. In this section, we present experimental setup,
result, and analysis of the evaluation.

A. EVALUATION SETUP
To emulate the network topology and flow generation,
we used a single Amazon EC2 m4.4.xlarge instance with
operation system Ubuntu 16.04 Server. We used Mininet ver-
sion 2.2.1 by which it uses a Linux container to emulate hosts
and OpenvSwitch (OVS), which allows the entire network
to be emulated in a single computer. We implemented Open

5192 VOLUME 6, 2018



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

FIGURE 10. Total communication cost with different number of controllers. (a) Communication cost in 4 controllers. (b) Communication cost in 3
controllers. (c) Communication cost in 2 controllers. (d) Communication cost in 1 controller.

vSwitch version 2.5.5 for emulating routers/switches behav-
ior. All the links in our implementation are set to 30Mbps
due to the limited capacity in a single machine. We imple-
ment 4 prototypes of CEMoC as a module of the Floodlight
controller and placed them in a first host attached to each pod.
We also place the coordinator as a desktop application in the
first host of first pod. We set all the connection as in-band
network deployment. The topology used in our evaluation is
4-port fat tree replicated from [40]. We generate flows by
D-ITG [34] traffic generator which has been proven to per-
form reliable and scalable than other traffic generator.
Benchmark and Workloads: The objective of this evalua-

tion was to measure all the UDP flows traffic with a spe-
cific destination port number (i.e. 3660) in the datacenter
network. Every host in the network starts randomly sending
UPD traffic with the dest port number above. To ensure the
correctness of results and the pattern (behavior) of outcome,
we iterated the evaluation 10 times with 6 different flow
number. We repeat all of iterations for different controller
number. Two different traffic scenarios Constant and Variable
Bit Rate (CBR and VBR) are used to evaluate different traffic
workload and shape to show the effectiveness of CEMoC on
costs and accuracy over a realistic workload pattern. VBR
follows the traffic pattern introduced in [31] (shape and scale)
for all the generated flows in the network.
CBR: In this model, all the hosts generate UDP flows in

the constant increased rate and sizes. All hosts generate a
new flow every second and send it over all other hosts. In the
first cycle, each host sends two UPD flows (with dest port

3660 and a random src port number) to all other hosts. The
number of flows is increased to twice in the next cycle and so
forth to the last iteration. Thus, there are 480 and 2880 flows
in the first and last iteration respectively.
VBR: Applying D-ITG Pareto distribution for the inter-

departure of times of the packet. We used ϕ = 1.75 as
the shape parameter for all the flows and a random scale
parameter γ from the range 0.5ms to 1ms.
Performance Evaluation: In order to evaluate the effective-

ness of CEMoC, we performed the evaluation and analyzed
the given result with different number of controllers (from
1 to 4). We then show the result of CEMoC in various
performance metrics, such as communication overhead, mes-
sage interaction, controller overhead, and the accuracy of the
result. Moreover, we evaluated the measurement error caused
by different network delays. Table 4 shows the specification
used in experiments.

B. EVALUATION RESULT AND ANALYSIS
In order to fully understand different costs caused by pulling
the switches, we iterated the mininet emulation scenario for
10 times with a wide range of flow numbers. We conducted
our emulations to show the performance of CeMOC against
SSR, PA and MCPS proposed in CeMon [12] in multiple
controller scenario with different controller number. We also
explain our observation of accuracy and error rates inmultiple
controller scenario. We run the emulation for 4 times with
different controller number and iterated them with different
network delays (such as 0, 5, 10, 25, 100ms).

VOLUME 6, 2018 5193



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

TABLE 4. Specification of experiment.

FIGURE 11. Average growth rate of communication cost in different
number of controllers.

1) COMMUNICATION COST
Fig. 10 shows the communication cost with different number
of controller. Obviously, the CeMOC is constantly supe-
rior to all other methods with different number of flows.
We observed a linear increase in all the methods as the
number of flows grow. CeMOC reported the lowest com-
munication cost by maximum 386Kbps when flow number
is 1440. We observed that the CeMOC saves up to 97, and
138 in comparison with PA, and SSR, respectively. However,
findings from sub-Fig. a, b, c, and d in the Fig. 10 demon-
strated that the increment rate of communication cost varies
with different number of controllers. Fig. 11 explains the
average growth ratio of communication cost for each method
over CeMOC where SSR, and PA show a constant growth
rate whereas, CeMon demonstrates the least increment rate
with 68% in single controller and biggest change when there
are 4 controllers in the network. This is because CeMon
selects both core and edge switches, consequently, it applies
pulling all approach and single flow request respectively. In
addition, the number of paths from the controller to switches
is increased as more switches are attached indirectly through
in-band data paths. Thus, more switches to pull, results in

FIGURE 12. Message interaction in 4 controllers.

more flow statistics to communicate. It also indicates that
there is a slight but steady growth of SSR, and PA over
CeMoC when the number of controller increases. However,
CeMon shows that it decreases communication cost by the
decrease of controller number.

2) MESSAGE INTERACTION
Fig. 12 shows message interaction with 4 controllers, where
CeMOC and PA achieved the most efficient number of mes-
sage interaction in all of the iterations. However, PA sacrifices
other costs (such as communication and controller overhead)
at the expense of low message interaction. This is because
PA aggregates the whole flow stats in the switch in only one
message. The efficient number of message interaction is a
constant number which can be found in the methods, which
apply pulling all flows. This strategy saves excessive send-
ing and receiving messages from controllers and switches.
CeMon stands in the third place as it can reduce almost
half of the iterations using pulling all from core switches.
However, we observe that the reply messages are split into
two messages when the number of flows is more than 453 in
core switches. SSR demonstrates the highest number of inter-
actions as a result of pulling switches for every individual
flow. Totally, CeMOC could achieve a reduction in message
interaction up to 175%, and 195% over CeMon, and SSR
respectively. Table 5 shows the result of message interaction
with different number of controllers. It is observed that all
the methods achieve a slight decrease when the number of
controllers is reduced.

3) CONTROLLER OVERHEAD
Fig. 13 explains the total overhead of 4 controllers with
different flow numbers. It is observed that the overhead of
all the methods is linearly increased at the expense of flow
growth. Thus, the more flows are counted, the more overhead
is impressed. Unlike PA and CeMon which reports all the
flows’ stats for calculation, CeMOC reports only required
statistic which contributes to the utilization of UDP flows.
As a result, there are averages of 126% of reduction in con-
troller overhead by CeMOC over PA. However, SSR reports

5194 VOLUME 6, 2018



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

TABLE 5. Message interaction cost with different number of controller.

FIGURE 13. Controller overhead in 4 controller scenario.

stats in the same way as CeMOC. The difference between
SSR over CeMOC is the generation of files and reading them
with regard to the flow number as every flow is placed in one
file. Nevertheless, there is only one file to read as CeMOC
aggregates all the required stats in only one file. CeMOC
saves up to 65% of controller overhead over SSR. We also
observed that the total controller overhead is reduced by less
than 0.01% on average when the number of controller is
decreased. Table 6 reports controller overhead with different
number of controller.

4) ACCURACY
Unlike statistical estimation model or sampling methods
which is used in traditional networks, the accuracy in our
work mainly corresponds with the time. Basically, due to
network latency and sequential creation of messages in the
controller, synchronizing pulling requests is infeasible for all
the switches in a network. Also, the exact moment of reading
flow counters in the switches is unknown [31]. As a conse-
quence, estimating flow utilization may be limited by a negli-
gible error rate. This problem is also referred to as ‘‘Accuracy
limitation’’ due to lack of synchronization which can be more

TABLE 6. Controller overhead with different number of controller.

sophisticated when dealing with in-band deployment where
statistic request and result traverse through network’s data
plane paths. We conveyed a 360 seconds experiment with the
VBR traffic pattern to highlight the observed error and the
impact of different controller number on accuracy.

Fig. 14 shows the actual measured flow utilization captured
by Wireshark, CeMOC and the relative error with 4 con-
trollers and no extra delay (Ideal case). It can be observed
that the flows’ utilization captured by CeMOC is very closed
to the actual one. In fact, CeMOC reports the maximum
absolute error and standard deviation of 9.49% and 1.98%
respectively. We introduced artificial delays in the network
to understand the impact of different number of controller in
accuracy. Table 7 illustrates the relation between Error ratio
on different controller number and delays. It can be observed
that the error ratio increases at the expense of increasing
delay in different controller number. Thus, the more delay is
introduced, the bigger error ratio is exposed. However, from
table 7 it is concluded that number of controller has a direct
relationship with the error ratio by which the error ratio for
all the delays are decreased when the number of controller is
increased and vice versa.

In order to construct a full traffic matrix (collecting all
flows’ stats from all controllers) all controllers send the
counted flow bytes (stats) and aggregate them into a UDP
file and then send them to the coordinator. Recall that all the
transmissions in out-of-band deployment take place through
the data plan network links. Table 8 shows the maximum
transferring delay of final UDP packet from each controller
to the coordinator. Therefore, in the worst case a packet in a
fat-tree topology may go through 5 switches and links each
of which may impose different delay to the packet until it
reaches the destination (coordinator). Therefore, in the worst
case, CeMOC is able to record flows’ utilization without
overlapping in the next intervals. However, we proactively

VOLUME 6, 2018 5195



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

FIGURE 14. Actual measured flow utilization captured by Wireshark, CeMOC and the relative error.

TABLE 7. The relation between error ratio on different controller number
and delays.

TABLE 8. Maximum transferring delay of final UDP packet from each
controller to the coordinator.

installed the corresponding flow entry to the switches to trans-
fer the UPD packet from the controllers to the coordinator.
We set a static flow entry (from controllers to coordinator) in
every switch in the network to eliminate the aforementioned
delay above.

VII. CONCLUSION AND FUTURE WORK
This paper introduced CeMOC, a cost-efficient flow mea-
surement system in distributed (multiple) controller deploy-
ment for datacenter networks. We designed a two-layered
architecture by which the SDN controller(s) pull the switches

to collect flow statistics in the first layer, and transfer
aggregated flow stats to a coordinator in the second layer.
We adopted group table feature of OpenFlow 1.3 with active
measurement to pull a set of desired flow stat in one reply.
A case studywith a synthetic topologywas conducted to show
the feasibility and reliability of the proposed design in out-of-
band network deployment. CeMOCwas prototyped as a stan-
dard SDN northbound RESTful API in floodlight controller
which is able to perform almost all aspects of monitoring
system. We introduced a selection algorithm to optimally
select a set of switches for pulling purpose. We conducted an
extensive experiment in in-band network deployment whose
findings indicated that CeMOC can capture near real-time
traffic with a significant reduction in communication cost,
message interaction, and controller overhead. We also ana-
lyzed the result of our experiment for the accuracy of CeMOC
measurement task with different controller’s number and
delays. Finding indicates that the controller number signifi-
cantly effects on the communication cost and accuracy, more
controllers less costs with more accurate result. We applied
mathematical evaluation on controller cost using CPU mips
calculation, However, we believe empirical evaluation needs
to be taken into account to measure an accurate controller
cost for memory footprint in each controller. Furthermore,
the paper’s formulation was mainly proposed for the topolo-
gies with multiple stages of switches (such as fat-tree). How-
ever, it is generalizable for other datacenter types where the
topology applied is Clos like topology. We will study more
network topology types and apply our proposed design on
other types of network to observe the effectiveness of our
design and its performance.

REFERENCES
[1] C.-W. Chang, G. Huang, B. Lin, and C.-N. Chuah, ‘‘LEISURE: Load-

balanced network-wide traffic measurement and monitor placement,’’
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 1059–1070,
Apr. 2015.

[2] B. Claise, Cisco Systems NetFlow Services Export Version 9, document
RFC 3954, Internet Engineering Task Force, 2004.

[3] P. Phaal and M. Lavine. (2004). sFlow Version 5, InMon Corp. [Online].
Available: http://sflow.org/sflow_version_5.txt

5196 VOLUME 6, 2018



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

[4] M. Yu, L. Jose, and R. Miao, ‘‘Software defined traffic measurement with
OpenSketch,’’ in presented as the 10th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2013, pp. 29–42.

[5] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thiran, ‘‘Refor-
mulating the monitor placement problem: Optimal network-wide sam-
pling,’’ in Proc. ACM CoNEXT Conf., Mar. 2006, pp. 1725–1731.

[6] H. Xu, Z. Yu, C. Qian, X.-Y. Li, and L. Huang, ‘‘Minimizing flow statistics
collection cost usingwildcard-based requests in SDNs,’’ IEEE/ACMTrans.
Netw., vol. 25, no. 6, pp. 3587–3601, Dec. 2017.

[7] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
‘‘Towards an elastic distributed SDN controller,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 7–12, Oct. 2013.

[8] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, ‘‘Control plane of software defined
networks: A survey,’’ Comput. Commun., vol. 67, pp. 1–10, Aug. 2015.

[9] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, ‘‘OpenTM: Traffic matrix
estimator for OpenFlow networks,’’ inProc. Int. Conf. Passive Active Netw.
Meas., 2010, pp. 201–210.

[10] S. R. Chowdhury, Md. F. Bari, R. Ahmed, and R. Boutaba, ‘‘PayLess:
A low cost networkmonitoring framework for software defined networks,’’
in Proc. IEEE Netw. Operat. Manage. Symp. (NOMS), May 2014, pp. 1–9.

[11] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha,
‘‘Flowsense: Monitoring network utilization with zero measurement cost,’’
in Proc. Int. Conf. Passive Active Netw. Meas., 2013, pp. 31–41.

[12] Z. Su, T. Wang, Y. Xia, and M. Hamdi, ‘‘CeMon: A cost-effective flow
monitoring system in software defined networks,’’ Comput. Netw., vol. 92,
pp. 101–115, Dec. 2015.

[13] H. Tahaei, R. Salleh, S. Khan, R. Izard, K.-K. R. Choo, and N. B. Anuar,
‘‘A multi-objective software defined network traffic measurement,’’ Mea-
surement, vol. 95, pp. 317–327, Jan. 2017.

[14] A. C. Myers, ‘‘JFlow: Practical mostly-static information flow control,’’ in
Proc. 26th ACM SIGPLAN-SIGACT Symp. Principles Programm. Lang.,
1999, pp. 228–241.

[15] V. Mohan, Y. J. Reddy, and K. Kalpana, ‘‘Active and passive network
measurements: A survey,’’ Int. J. Comput. Sci. Inf. Technol., vol. 2, no. 4,
pp. 1372–1385, 2011.

[16] S. Sezer et al., ‘‘Are we ready for SDN? Implementation challenges
for software-defined networks,’’ IEEE Commun. Mag., vol. 51, no. 7,
pp. 36–43, Jul. 2013.

[17] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
‘‘CPI2: CPU performance isolation for shared compute clusters,’’ in Proc.
8th ACM Eur. Conf. Comput. Syst., 2013, pp. 379–391.

[18] T. Koponen et al., ‘‘Onix: A distributed control platform for large-scale
production networks,’’ in Proc. OSDI, Vancouver, BC, Canada, 2010,
pp. 1–6.

[19] A. Tootoonchian and Y. Ganjali, ‘‘HyperFlow: A distributed control plane
for OpenFlow,’’ presented at the Internet Netw. Manage. Conf. Res. Enter-
prise Netw., San Jose, CA, USA, 2010.

[20] P. Berde et al., ‘‘ONOS: Towards an open, distributed SDNOS,’’ presented
at the 3rd Workshop Hot Topics Softw. Defined Netw., Chicago, IL, USA,
2014.

[21] J. Medved, R. Varga, A. Tkacik, and K. Gray, ‘‘OpenDaylight: Towards
a model-driven SDN controller architecture,’’ in Proc. IEEE Int. Symp.
World Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.

[22] S. H. Yeganeh and Y. Ganjali, ‘‘Kandoo: A framework for efficient and
scalable offloading of control applications,’’ presented at the 1st Workshop
Hot Topics Softw. Defined Netw., Helsinki, Finland, 2012.

[23] B. Pfaff, B. Lantz, and B. Heller, ‘‘OpenFlow switch specification,
version 1.3.0,’’ Open Netw. Found., Tech. Rep., 2012.

[24] B. Pfaff, B. Lantz, and B. Heller, ‘‘OpenFlow switch specification,
version 1.1.0,’’ Open Netw. Found., Tech. Rep., 2011.

[25] R. Ahmed and R. Boutaba, ‘‘Design considerations for managing wide
area software defined networks,’’ IEEE Commun. Mag., vol. 52, no. 7,
pp. 116–123, Jul. 2014.

[26] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, ‘‘Fast
failure recovery for in-band OpenFlow networks,’’ in Proc. 9th Int. Conf.
Design Reliable Commun. Netw. (DRCN), 2013, pp. 52–59.

[27] S. Zander, G. Armitage, and P. Branch, ‘‘A survey of covert channels and
countermeasures in computer network protocols,’’ IEEE Commun. Surveys
Tuts., vol. 9, no. 3, pp. 44–57, 3rd Quart., 2007.

[28] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis, and
S. Banerjee, ‘‘DevoFlow: Cost-effective flow management for high per-
formance enterprise networks,’’ presented at the 9th ACM SIGCOMM
Workshop Hot Topics Netw., Monterey, CA, USA, 2010.

[29] D. Sünnen, ‘‘Performance evaluation of openFlow switches,’’
Ph.D dissertation, Dept. Inf. Technol. Elect. Eng., Swiss Federal
Inst. Technol. Zürich, Switzerland, 2011.

[30] D. A. Patterson and J. L. Hennessy, Computer Organization and Design
MIPS Edition: The Hardware/Software Interface, 5th ed. New York, NY,
USA: Elsevier, 2014, p. 800.

[31] P. Megyesi, A. Botta, G. Aceto, A. Pescapé, and S. Molnár, ‘‘Challenges
and solution for measuring available bandwidth in software defined net-
works,’’ Comput. Commun., vol. 99, pp. 48–61, Feb. 2017.

[32] K. Yi and Y. H. Ding, ‘‘32-bit RISC CPU based on MIPS instruction fetch
module design,’’ in Proc. Int. Joint Conf. Artif. Intell., 2009, pp. 754–760.

[33] R. Izard. (2016). Fast-Failover OpenFlow Groups. [Online]. Available:
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/How+to+
Work+with+Fast-Failover+OpenFlow+Groups

[34] A. Botta, A. Dainotti, and A. Pescapè, ‘‘A tool for the generation of realistic
network workload for emerging networking scenarios,’’ Comput. Netw.,
vol. 56, no. 15, pp. 3531–3547, Oct. 2012.

[35] Mininet. (2015). Mininet Version 2.2.1 ed. [Online]. Available:
http://mininet.org/overview/

[36] OpenvSwitch. (Feb. 17, 2017). Open vSwitch Version 2.5.5. [Online].
Available: http://openvswitch.org/releases/NEWS-2.5.2

[37] BigSwitchNetworks. (2016). Floodlight v1.2. [Online]. Available:
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/
24805419/Floodlight+v1.2

[38] M. Karakus and A. Durresi, ‘‘A survey: Control plane scalability issues
and approaches in software-defined networking (SDN),’’ Comput. Netw.,
vol. 112, pp. 279–293, Jan. 2017.

[39] C. L. Lim, A. Moffat, and A. Wirth, ‘‘Lazy and eager approaches for the
set cover problem,’’ presented at the 37th Austral. Comput. Sci. Conf.,
vol. 147, Auckland, New Zealand, 2014.

[40] M. Al-Fares, A. Loukissas, and A. Vahdat, ‘‘A scalable, commodity data
center network architecture,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

HAMID TAHAEI received the M.Sc. degree in
computer science from the University of Tech-
nology Malaysia, Johor, Malaysia, in 2013. He is
currently pursuing the Ph.D. degree in the field of
network security from the University of Malaya,
Malaysia. His research interests include software
defined networks, traffic engineering, IoT, and
cloud computing security.

ROSLI BIN SALLEH received the B.S. degree in
computer science from the University of Malaya,
Malaysia, in 1994, and the M.Sc. and Ph.D.
degrees from the University of Salford, U.K.,
in 1997 and 2001, respectively. Since 2001, he has
been a Lecturer with the Department of Computer
System and Technology, Faculty of Computer Sci-
ence and Information Technology, University of
Malaya. He was appointed as a Senior Lecturer
in 2007 and an Associate Professor in 2013. His

research interests include SDN, mobile IPv6 handover and security, botnet,
and wireless sensor networks. His awards and honors include the Frew
Fellowship from the Australian Academy of Science, the I. I. Rabi Prize
(APS), the European Frequency and Time Forum Award, the Carl Zeiss
Research Award, the William F. Meggers Award, and the Adolph Lomb
Medal (OSA).

VOLUME 6, 2018 5197



H. Tahaei et al.: Cost-Effective Network Flow Measurement for Software-Defined Networks

MOHD FAIZAL AB RAZAK received themaster’s
degree in computer science (networking) from
University Malaysia Pahang, Malaysia. He is cur-
rently pursuing the Ph.D. degree from the Uni-
versity of Malaya, Malaysia. His area of research
includes mobile computing and mobile security.

KWANGMAN KO received the B.Sc. degree from
Wonkwang University in 1991, and the M.Sc.
and Ph.D. degrees in computer engineering from
Dongguk University, South Korea, in 1993 and
1998, respectively. He is currently a Professor
with the Department of Computer Engineering,
School of Computer and Information Engineer-
ing, Sangji University, South Korea. His research
interests include the re-targetable tool suite
for embedded systems, virtual machines, and
architecture description language.

NOR BADRUL ANUAR received the master’s
degree in computer science from the University
of Malaya, Malaysia, in 2003, and the Ph.D.
degree in information security from the Centre for
Security, Communications and Network Research,
Plymouth University, U.K., in 2012. He is cur-
rently an Associate Professor with the Faculty of
Computer Science and Information Technology,
University of Malaya, Kuala Lumpur. He has pub-
lished a number of conference and journal papers

locally and internationally. His research interests include information secu-
rity (i.e., intrusion detection systems), data sciences, artificial intelligence,
and library information systems.

5198 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	NETWORK MEASUREMENT IN SDN
	DISTRIBUTED CONTROLLER

	SYSTEM DESIGN
	BACKGROUND
	IN-BAND AND OUT-OF-BAND NETWORK DEPLOYMENT
	ARCHITECTURE
	DESIGN OF LAYOUTS
	LOCAL CONTROLLER DESIGN

	PROBLEM DEFINISTION
	COMMUNICATIN COST
	MESSAGE INTERACTION COST
	CONTROLLER COST


	OPTIMAL SOLUTION
	CASE STUDY: SYNTHETIC TOPOLOGY
	RESULT
	COMMUNICATION COST
	CONTROLLER COST
	MESSAGING COST


	COST EFFECTIVE MULTI-OBJECTIVE CONTROLLER (CEMOC)
	PROBLEM DEFINITION
	SOLUTION

	EVALUATION
	EVALUATION SETUP
	EVALUATION RESULT AND ANALYSIS
	COMMUNICATION COST
	MESSAGE INTERACTION
	CONTROLLER OVERHEAD
	ACCURACY


	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	HAMID TAHAEI
	ROSLI BIN SALLEH
	MOHD FAIZAL AB RAZAK
	KWANGMAN KO
	NOR BADRUL ANUAR


