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ABSTRACT The continuous growth of interconnected objects in the Internet of Things (IoT) raises a
challenge to the wireless communication technology. Cognitive radio could make full use of the dynamic
spectrum access and spectrum diversity over wide spectrum to alleviate the spectrum scarcity problem and
satisfy the enormous connectivity demands in IoT, which has garnered significant attention over the last
few years. This paper addresses the spectrum allocation problem with respect to both spectrum utilization
and network throughput in the cognitive-radio-based IoT. On the one side, each link in a transmission
path intends to improve the transmission performance on the assigned spectrum channel to maximize the
end-to-end throughput. On the other side, these links share the same spectrum channel to concurrently
transmit as much as possible to achieve the maximum spectrum utilization. In order to solve the problem,
we propose a concurrent transmission model in the network which reveals the constraints of mutual
interference and resource competition in links concurrent transmissions. Based on this model, we formulate
the spectrum allocation plan for links as the chromosome (solution) in genetic algorithms. Then, we apply
the nondominated sorting genetic algorithm-II to solve the multiobjective spectrum allocation problem.
Simulation results validate that the proposed strategy can search the optimal solutions efficiently and satisfy
the requirements of spectrum allocation in various cases.

INDEX TERMS Internet of Things, cognitive radio, spectrum allocation, multi-objective optimization.

I. INTRODUCTION
Internet of Things (IoT) is a worldwide network of inter-
connected objects uniquely addressable, based on standard
communication protocols, and allows people and things to
be connected any-time, anyplace, with anything and anyone,
ideally using any path/ network and any service [1]. In the
network, all these objects will have to exchange informa-
tion, most of the time by making use of wireless commu-
nications [2]. Therefore, the proliferation of objects in the
IoT naturally results in the increasing demands for spec-
trum resources, which will likely exacerbate the problem
of spectrum scarcity in wireless communications. Tradition-
ally, the spectrum licenses have been allocated for specific
radio services, operating in specified frequency bands. Recent
studies have shown that such static strategy of spectrum
allocations causes inefficient and unbalanced utilization of

the spectrum. Cognitive radio [3], a promising technology to
improve spectrum utilization, has aroused significant atten-
tion over the last few years. Cognitive radio allows unlicensed
users, also called Secondary Users (SUs), to access licensed
spectrum bands as long as they do not cause intolerable inter-
ference to PrimaryUsers (PUs). The attractive technology can
make full use of the dynamic spectrum access and spectrum
diversity over wide spectrum. Therefore, applying cognitive
radio technology into the IoT could alleviate the spectrum
scarcity problem and achieve higher spectral efficiency and
network performance, which will contribute to a great boom
in the IoT.

The cognitive-radio-based IoT is desired that IoT objects
should have cognitive facility to make smart decisions about
the spectrum and perform intelligent operation by analyzing
network conditions [4], [5]. In this paper, we consider the
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spectrum allocation for the cognitive-radio-based IoT. In such
network, there exist some multi-hop data flows in concurrent
transmissions, which match the information exchanges of the
IoT objects. Each flow crosses a routing path constituted
by some consecutive links, which are active communication
pairs formed by objects. Each of these links is assigned a
spectrum channel elaborately to support flow transmission.
On the one hand, to pursue the ‘‘always connected’’ paradigm
in the IoT [2], the objective of optimizing spectrum allocation
should should be concentrated on maximizing the multi-
hop flow rates. On the other hand, to play the advantages
of cognitive radio, an excellent spectrum allocation strategy
should achieve efficient utilization on the assigned spectrum
channels. Therefore, considering multi-objective optimiza-
tion problem (MOP) in the procedure of spectrum allocation
is significant and indispensable.

In this paper, we focus on the spectrum allocation strat-
egy with respect to maximizing both network throughput
and spectrum utilization in the cognitive-radio-based IoT.
This problem is challenging due to the following reasons.
Spectrum allocation in such multi-hop cognitive radio
network scenarios should take more influential factors into
consideration than that in the single-hop scenario. An effec-
tive end-to-end throughput should be allowable for all links
composing the routing path of the flow. Thatmeans the capac-
ity varying of any link can potentially affect the throughput
of the whole path. Moreover, link transmission is influenced
by not only the interference on the assigned channel, but
also the resource competition in the network. Multi-objective
spectrum allocation strategy accompanies the high computa-
tional complexity and thus the efficient algorithm should be
explored to achieve optimal results in all cases.

In this paper, we consider the link as the elementary unit
in spectrum allocation and multi-hop flow transmission. The
link transmits on an assigned spectrum channel. Co-channel
interference constraints are proposed based on a realistic
interference model, and the link capacity is educed according
to the Shannon model [6]. Then we explore the resource com-
petition in the link transmissions. There exist that multiple
concurrent flows share the same link or multiple links share
the same SU node. The victim links are unable to give full
play to the performance to transmit the flow. We formulate
the resource competition problem and propose a fair resource
sharing policy. Based on the model, each link can evaluate the
transmission performance upper bound when transmitting the
flow. By jointly considering transmission performances of all
links in the routing path, the maximum allowable end-to-end
throughput should be achieved.

We concentrate the optimal spectrum allocation strategy
for all links on duty of flow transmissions in the cognitive-
radio-based IoT. The strategy aims at two objectives, maxi-
mizing the aggregate end-to-end throughput in the network
and maximizing spectrum utilization (measured by average
number of links on each assigned spectrum channel). In the
procedure of the spectrum allocation, each link on duty of the
flow transmission can share a spectrum channel with other

links or monopolize a new channel. Therefore, the search
space of the spectrum allocation solution gets an exponential
growth as the network size (number of links) increasing. The
problem is classified as an NP-hard problem in the view
of computational complexity. Thus, the heuristic algorithm
with low complexity should be explored to seek the optimal
solutions for the problem.

We apply the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [7] to solve the multi-objective spectrum alloca-
tion problem. NSGA-II algorithm is considered as manifest-
ing the high performance in MOP, which is a Pareto-based
algorithm and searches the whole feature space effectively.
Fast non-dominated sorting approach characterizes low com-
putational complexity while maintaining the good perfor-
mance. NSGA-II adopts the elitist-preserving strategy, which
contributes to excellent chromosomes (solutions) increasing
rapidly in the population. So the algorithm is suitable to
deal with the spectrum allocation problem. We formulate a
spectrum allocation plan as a solution in the genic algorithm.
A large population is adopted to accelerate the convergence to
Pareto front. The simulation results validate that the strategy
has a good balance between convergence rate and population
diversity, which provides optimal spectrum allocation plans
efficiently in various cases.

The rest of the paper is organized as follows. The next
section summarizes the previous work on related topics.
Section III defines the interference model and resource com-
petition model in link transmissions. The multi-objective
spectrum allocation in the cognitive radio network is pre-
sented in section IV. Simulations and analysis are shown in
section V. Finally, section VI concludes the paper.

II. RELATED WORKS
In cognitive-radio-based systems and networks, maximizing
a single performance metric is generally accompanied by the
ignorance to the degradations of other performance metrics.
Thus, in recent years, some researchers begin to employ
MOPs in their researches to achieve balanced network per-
formances.

Bedeer et al. [8] investigated the optimal link adaptation
problem of OFDM-based cognitive radio systems and formu-
lated this problem with two conflicting objectives, maximiz-
ing the system throughput and minimizing its transmit power.
The proposed approach optimizes bit and power allocations
per SU subcarrier under the constraints of the predefined
interference thresholds for PUs and the spectrum sensing
errors. In [9], an approach based on the concept of cat swarm
optimization was proposed to optimize the parameter adapta-
tion of an OFDM based cognitive radio engine. The spectral
interference between primary and cognitive users is taken into
consideration. A fuzzy logic based strategy is shown in order
to find out a compromised solution on the Pareto front.

Power control is an important optimization objective and
SomeMOPs in cognitive radio networks refer to it. The power
control approach for SUs can be represented by three objec-
tives: first, minimizing the transmit power; second, keeping
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the SINR as close as possible to the target SINR; third,
limiting the interference power at the primary receiver to
some predefined constraint [10]. Naeem et al. [11] applied
the cross-entropy optimization (CEO) to the problem of joint
multiple relay assignment and source/relay power alloca-
tion in green cooperative cognitive radio (GCCR) networks.
Monte-Carlo-based CEO algorithm is used to optimize two
conflicting objectives: maximizing the total rate and the min-
imizing the greenhouse gas emissions in GCCR networks.
Bedeer et al. [12] investigate multi-objective optimization
for bit and power allocation problem in the OFDM system.
An evolutionary algorithm is adopted to solve the convex
problem. Moreover, the constraint on the average bit error
rate (BER) is replaced by a BER per subcarrier constraint.
According to the situation, an equivalent convex optimization
method is proposed to deal with the problem and global
optimality of the Pareto solutions is achieved. An Adap-
tive Multi-objective Optimization Scheme (AMOS) was pro-
posed in [13]. The objective functions used in AMOS are
comprehensive by incorporating throughput, delay, bit error
rate, spectral efficiency, power, and interference. The weights
and priorities of objective functions are adapted automati-
cally according to the environment conditions and system
capabilities.

Spectrum sensing directly affects the performance of the
cognitive radio network. Some studies have focused on the
joint optimization of spectrum sensing and other perfor-
mance metrics. Balieiro et al. [14] investigated an adap-
tive sensing period optimization, which aims at minimizing
the incurred sensing overhead and maximizing the spectrum
opportunities. In [15], SUs form the clusters to make coop-
erative spectrum sensing. The objectives of the clustering
optimization include total energy consumption minimization,
total throughput maximization, and inter-cluster energy and
throughput fairness. The NSGA-II is used to solve the opti-
mization problem. Kulkarni and Banerjee [16] investigate the
optimal allocations of limited time and energy for tasks of
sensing and transmission tomaximize average SU throughput
and sum-throughput of SU network respectively.

Some performance metric optimization problems can be
decomposed into MOPs. Mili and Musavian [17] introduced
a novel performancemetric called interference efficiency (IE)
which shows the number of bits transmitted per unit of inter-
ference energy imposed on the PU receivers. The IE optimiza-
tion problem is solved through a MOP that jointly maximizes
the ergodic sum rate of multiple SUs and minimizes the inter-
ference power imposed on the Pus. In order to increase the
energy efficiency in cognitive radio networks, the paper [18]
provides a MOP that jointly maximizes the ergodic capacity
and minimizes the average transmission power.

The spectrum allocation with multi-objective optimiza-
tion is of great importance and has attracted many
researchers [19]–[23]. Martĺłnez-Vargas et al. [19] formu-
lated the spectrum assignment problem for an underlay spec-
trum sharing network as an MOP to maximize throughput
and spectral efficiency. They defined some cases and solved

them using a proposed algorithm based on NSGA-II to search
for the Pareto optimal solutions. The spectrum allocation was
considered in the view of economics theory [21], [22]. The
spectrum selection optimization is introduced with multi-
objective portfolio function based on return and risk values
of transmissions in primary and secondary frequency bands.
In [23], the forced termination probability is considered
as one objective function along with three network utility
functions namely Max-Sum-Reward, Max-Min-Reward and
Max-Proportional-Fair. The spectrum allocation process is
formulated as a MOP consisting of the functions mentioned
above and solved by using multi-objective differential evo-
lution algorithm. In this paper, we introduce multi-objective
spectrum allocation in the multi-hop cognitive-radio-based
IoT. We focus on jointly optimizing the sum of end-to-end
throughputs and the spectrum utilization which was not fully
researched in existing works.

FIGURE 1. System model.

III. SYSTEM MODEL
In the cognitive-radio-based IoT, there exist some multi-hop
concurrent data flows. The routing paths of these flows are
composed of some successive object links. The links do
not possess any of their own licensed channel and access
the available spectrum channels offered by PUs to support
their transmissions. We model the network formulated by a
quadruplet G = (V ,L,M ,F). V is the set of nodes in the
network. To express more appropriately and accurately, here-
after the term node is used as a synonym of the term object.
L is the set of links which are feasible communication pairs
on duty of transmissions. For a link (i, j) ∈ L, i is the sending
side (node) and j is the receiving side (node). Each link needs
to be assigned to a spectrum channel for the transmission.
M is the set of spectrum channels that are currently assigned
to the links in L. F is the set of multi-hop concurrent data
flows in the network. For detailed descriptions, an instance of
the model is shown in Fig. 1. The network is composed of 9
nodes (V = {1, 2, 3, 4, 5, 6, 7, 8, 9}) and 9 links (L = {(1, 2),
(2, 3),(3, 4),(8, 6), (6, 2), (2, 9), (5, 3), (3, 6), (6, 7)}). The set
of spectrum channel includes 4 assigned channels (M = m1,
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m2, m3, m4). There are 3 concurrent flows (F = {f1, f2, f3})
in the network. Each flow crosses a sequence of links which
constitute a routing path. For example, the routing path of f1
consists of links (1, 2), (2, 3) and (3, 4). Respectively, these
links are assigned to spectrum channels m1, m2 and m3 so
that they can achieve efficient transmission performances to
support the stable end-to-end throughput.

A. TRANSMISSION IN THE COGNITIVE-RADIO-BASED IoT
In the cognitive-radio-based IoT, links have an effective strat-
egy of spectrum selection to support their flow transmis-
sions. Different links can choose various spectrum channels.
But spectrum sharing among some links is promoted in the
network, because raising spectral efficiency is the original
intention of cognitive radio technology. Moreover, in a multi-
hop cognitive radio network, there exit some links share the
same spectrum channel while maintaining their desired trans-
mission performances. Therefore, we need to investigate the
constrained conditions of concurrent transmissions in multi-
hop cognitive radio networks G.

In concurrent transmissions, the performance of a link
not only depends on its own setup but also the influence
factors from other links sharing the same channel. Signal-to-
interference-plus-noise ratio (SINR) is used to measure the
quality of communications. In link transmissions, SINR can
be considered as the received power of the intended signal at
the receiver divided by the sum of received powers of unin-
tended signals (interferences) from other links on the same
spectrum channel. For a link (i, j) on spectrum channel m, its
SINR can be calculated as follows:

SINRij(m) =
hijpi

σ 2 +
∑

(a,b)∈I (m),(a,b)6=(i,j)
hajpa

(1)

where pi denotes transmission power of sender i. In this paper,
we assume that the transmission power of all links is at the
fixed level. hij represents the channel gain between sender
i and receiver j, which can be denoted by k/dαij . Here k is
the path loss constant. dij is the distance between i and j. α
is the path loss exponent. σ 2 is the thermal noise that can
be considered as a constant, and sigma notation presents the
aggregate interference at receiver j, which is generated by
the links transmitting concurrently on the current spectrum
channel. Here, I (m) presents the set of links sharing spec-
trum channel m. To guarantee the effective link transmission,
each intended signal should be successfully decoded at the
receiver. For the SINR, there exists a desired value denoted
by β, which indicates the threshold of successful decoding.
So, if link (i, j) intends to access spectrum channel m for its
transmission, the constraint is satisfied as follows:

SINRij(m) ≥ β (2)

If the Equation (2) is satisfied, the link (i, j) can transmit
data flow on the channel m. In accordance with the Shannon
theorem, the capacity of link (i, j) on channelm is represented

as follows:

Cij(m) = W log2(1 + SINRij(m)) (3)

where W is the spectrum bandwidth of channel m. The link
capacity is considered as the upper bound of data rate that the
link can support on the current channel.

B. RESOURCE COMPETITION IN
CONCURRENT TRANSMISSIONS
In the cognitive-radio-based IoT, each link should be assigned
a spectrum channel on which it transmits data flow. Let
x fij(m) = 1 indicate that link (i, j) ∈ L chooses spectrum
channel m ∈ M for transmitting flow f ∈ F . Otherwise,
x fij(m) = 0, Note that each link can choose only one spec-
trum channel for a flow transmission. Thus there exists the
constraint in the spectrum allocation as follows:∑

m∈M

x fij(m) = 1 (4)

We further investigate that the flow transmission is
restricted by the resource competition. In the network,
there exists some links share a node as their common
sender or receiver. Let Li represent the set of all links sharing
node i as follows:

Li = {(i, k)|x
f
ik (m) = 1,m ∈ M , f ∈ F, (i, k) ∈ L}⋃

{(t, i)|x fti(m) = 1,m ∈ M , f ∈ F, (t, i) ∈ L} (5)

We consider that each node in the network is mounted with
only one transceiver, which results in the node severs for only
one link transmitting the data flow at a time. Therefore, each
link only applies a portion of the per unit time for its flow
transmission, which is represented in terms of transmission
opportunity. In this paper, we employ the fair transmission
opportunity assignment strategy. In other words, the trans-
mission opportunity is the average distribution among the
links sharing the same node. Let Ti denote the transmission
opportunity of each link in Li, and Ti = 1/|Li|. Here |Li| is
the cardinality of Li.

We further investigate the maximum data rate that can be
supported by a link. For link (i, j), the efficient link transmis-
sion opportunity Tij is defined as follows:

Tij = min{Ti,Tj} (6)

Tij evaluates the transmission opportunities on both sides of
link (i, j). If the link transmits the data of flow f on spectrum
channel m, the maximum data rate that the link can maintain
is denoted by the following:

Rfij(m) = Tij × Cij(m) (7)

Thus, due to the constraint of the resource competition, link
(i, j) only applies a portion of its link capacity for the flow
transmission. A feasible data rate of flow f on the link must
not exceed Rfij(m).

After determining the maximum data rate on each link,
we investigate the end-to-end throughput of the flow in the
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network. L f is the set of links that compose the routing path
of flow f , and defined by the following:

L f = {(i, j)|x fij(m) = 1,m ∈ M , (i, j) ∈ L} (8)

We consider the effective end-to-end throughput Rf ,
themaximum allowable data rate in the routing path of flow f .
Notice that all links in L f must support the Rf , we have:

Rf = minRfij(m) ∀(i, j) ∈ L
f (9)

The value of Rf depends on the link with the minimum
value of maximum data rate. Therefore, improving transmis-
sion performance of the link contributes to increasing the
end-to-end throughput.

IV. PROBLEM FORMULATION
As mentioned above, a proper spectrum access of a link can
capture higher capacity, which potentially help to maintain
the higher end-to-end throughput. Therefore, harvesting the
optimal flow transmission performance in the whole network
is the important target of the spectrum allocation strategy.
On the other hand, due to the scarcity of spectrum resources,
efficient spectrum utilization is emphasized in the view of
spectrum allocation. In dynamic spectrum access environ-
ment, the efficient spectrum allocation can make best use of
the current spectrum access opportunity, which reduces the
cost of spectrum sensing used to seek the new opportuni-
ties. In the condition of spectrum auction, efficient spectrum
utilization means higher economic benefits. Moreover, it is
feasible that multiple links with the elaborative planning can
share the same spectrum channel to transmit concurrently
in the network. Therefore, the spectrum allocation strategy
intends to take full advantage of each assigned spectrum
channel. Consequently, we focus on the spectrum allocation
strategy with respect to jointly optimizing transmission per-
formance and spectral efficiency in the cognitive-radio-based
IoT. The MOP problem can be written as:

Max
∑
f ∈F

Rf (10)

Max
|L|
|M |

(11)

s.t. SINRij(m) ≥ β(
x fij(m) = 1, (i, j) ∈ L, f ∈ F, m ∈ M

)
∑
m∈M

x fij(m) = 1

( (i, j) ∈ L, f ∈ F, m ∈ M) (12)

Equation (10) indicates maximizing the network through-
put which is the sum of end-to-end throughputs of the con-
current flows and calculated according to Eqs. (3) and (5)-(9).
Equation (11) indicates maximizing the spectrum utilization
in the network, which is measured by the average number of
the links on each assigned spectrum channel. L is the set of
links on duty of flow transmissions, and |L| is the cardinality
of L.M is the set of spectrum channels assigned to links in L

and determined by the result of the spectrum allocation. |M | is
the cardinality of M . Equation (12) indicates the constraint
for the spectrum allocation in the network, which has already
been elaborated in Eqs. (2) and (4).
We further analysis each spectrum allocation plan for the

MOP problem formulated by Eqs. (10)-(12) which can be
translated into a partition of link set L. A feasible spectrum
allocation plan must assign a spectrum channel for every link
in set L to support its transmission. The links assigned the
same channel can be defined as a spectrum sharing set which
is a subset of set L. Due to the constraint of Equation (4),
a link is included in one and only one spectrum sharing set,
which means any two spectrum sharing sets have no common
elements. Consequently, the set of these spectrum sharing is a
partition of set L, which corresponds to a spectrum allocation
plan. In order to get the optimal solutions for the the multi-
objective spectrum allocation problem, all partitions of set
L need to be evaluated. The computational complexity of
the problem is no less than O(2N ), where N is the size of
set L. However, in the situation of massive number of links
in the network, it is still inefficient. Besides, in the cognitive-
radio-based IoT, it is imperative to propose a more efficient
spectrum allocation algorithm in accord with the dynamic
spectrum access environment. Thus, the heuristic algorithm
with low complexity should be considered for the problem.
In the paper, we apply the algorithm NSGA-II [7] to

solve the multi-objective spectrum allocation problem for-
mulated by Eqs. (10)-(12). NSGA-II is an improved version
of NSGA [24] based on Pareto optimal set. Compared to
the non-Pareto-based algorithms, such as the Vector Evalu-
ated Genetic Algorithm (VEGA) [25], the algorithm over-
comes the disadvantages of converging easily to local-best,
and searches the whole feature space effectively. Fast non-
dominated sorting approach is proposed in NSGA-II which
efficiently sorts all solutions in the population and classifies
them into multiple nondominated fronts. The computational
complexity is reduced to O(mN 2) in the proposed approach
in contrast to O(mN 3) in the naive nondominated sorting
approach, where m is the number of objective functions
and N is the population size [7]. NSGA-II algorithm intro-
duces the elitist-preserving strategy that designs a mating
pool by combining the parent and offspring populations, and
then competes to produce the next generation population.
It chooses the excellent individuals in the parent population to
add them into the next generation. The excellent individuals
won’t be abandoned. Subsequently, the excellent individuals
in population will be improved rapidly.
Due to the advantages mentioned above, NSGA-II is suit-

able to tackle with the multi-objective spectrum allocation
problem.An alternative valid spectrum allocation plan at least
satisfies that each link with the duty of the flow transmission
is supposed to be assigned a spectrum channel to maintain
concurrent transmissions of flows in the networks. The plan
is represented by a list with the size equal to the number of
all links in the network. Each element in the list corresponds
to a link, and the value of the element is the serial number of
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FIGURE 2. Composition of the solution in the spectrum allocation.

the channel assigned to the link. We map the list to the chro-
mosome (solution) in the genetic algorithm. The essential
factors in the proposed spectrum allocation approach based
on the NSGA-II algorithm are shown in Fig. 2. The left part
is a solution which is formed by sequentially placing the
spectrum channel assignment for links in the routing paths of
the flows next to each other. For a flow f , Yf is the spectrum
channel vector (Yf (1),Yf (2)Yf (|L f |)) of length |L f |, which
lists the serial number of assigned channel corresponding
to the links comprising the routing path of flow f . In the
solution, if a link serves for two or more flow transmissions,
it can be assigned to the different spectrum channels for
these transmissions respectively. Multiple solutions form a
population which can be considered as the set of spectrum
allocation plans.

F1 and F2 in Fig. 2 are the optimization objectives indi-
cated in Eqs. (10) and (11) respectively, according to which
the solutions in the population can be compared with each
other and nondominated fronts can be ensured with various
ranks through the nondominated sorting. For any two solu-
tions p and q, p dominates q if one of the following conditions
is satisfied:

F1(p) > F1(q) and F2(p) > F2(q)

F1(p) > F1(q) and F2(p) = F2(q)

F1(p) = F1(q) and F2(p) > F2(q) (13)

Where F1(p) and F1(q) are the values of F1 under solutions
p and q respectively, the same as F2(p) and F2(q). In the non-
dominated sorting, nondominated fronts are created accord-
ing to the following steps. (1) For each solution p,compare
with the rest solutions in the population and calculate two
entities. One is the domination count np, the number of solu-
tions which dominate p. The other is Sp, a set of solutions
that p dominates. (2) Put each solution p with np = 0 into
the first nondominated front with rank 1. Meanwhile, visit
each member q in Sp and implement the operation nq =
nq− 1. (3) Repeat the operations in step (2) to create the next
nondominated front until all fronts are identified.

The right part in Fig. 2 is the crowding distance, which is
the efficient approach to make comparison between solutions
belonging to the same nondominated front. The crowding
distance can be achieved as the following steps. (1) Sort
the solutions in the nondominated front according to F1.
(2) Assign an infinite distance value to the boundary solu-
tions. (3) For each of the rest solutions p, its crowding

distance can be calculated by the following equation:

2∑
k=1

Fk (p+ 1)− Fk (p− 1)

Fmax
k − Fmin

k

(14)

Where Fk (p+1) and Fk (p−1) are the values of Fk (k ∈ 1, 2)
under solutions p + 1 and p − 1 respectively. Fmax

k and Fmin
k

are the maximum and minimum values of Fk respectively.

Algorithm 1 Seek the Optimal Solutions
t = 0, set the number of generations tmax
Initialize a random parent population Pt of size N
Sort Pt based on the nondominated sorting and then obtain
the crowding-distance for each solution in Pt
repeat
Perform binary tournament selection over Pt to create
mating pool
Apply the genetic operators to obtain the new offspring
Qt of size N
Rt = Pt ∪ Qt
Sort Rt based on the nondominated sorting and then
obtain the crowding-distance for each solution in Rt
Select the population Pt+1 from Rt based on the Pareto
rank and the crowding-distance of size N
t = t + 1

until t ≥ tmax

Based on the essential factors in Fig. 2, we can apply the
NSGA-II algorithm in the spectrum allocation problem to
seek the optimal solutions, which is given in Algorithm 1.
The algorithm creates a random population Pt of size N .
Each solution in Pt should satisfy the constraints indicated
in Eq. (12). Then, an offspring population Qt of size N
is created by using binary tournament, mutation operators
and recombination. Thereafter, Pt combines Qt to form a
new population Rt of size 2N . Then population Rt is sorted
according to nondomination. In the procedure, each solution
in Rt is added into a certain nondominated front with the
corresponding nondomination rank (1 is the best level, 2 is
the next-best level, and so on). A new population Pt+1 of size
N is generated from Rt . Firstly, the nondominated fronts in Rt
are added into Pt+1 consequently according to their ranks in
ascending order until the size of the current nondominated
front exceeds the size of the remaining slots in Rt . Then,
the solutions in the front are sorted according to crowded-
comparison operator in descending order and the best solu-
tions are selected to fill all remaining slots in Rt . Repeat the
above procedure until reach the upper bound of generations.

V. EXAMPLES AND SIMULATION RESULTS
In this section, we evaluate the simulation results of the pro-
posed spectrum allocation strategy in different scenarios. The
topology of the cognitive-radio-based IoT in the simulation is
depicted in Fig. 3 where 60 nodes are randomly deployed over
a 1000m× 1000m area. Each node is mounted with only one
transceiver. There exist at most 5 data flows simultaneously in
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FIGURE 3. Network topology.

the network. The transmission power of each link is fixed to
13dBm and the thermal background noise σ 2 is −100dBm.
The channel gain is defined as hij = k/(dij)α , where dij
is the distance between two nodes. We adopt the path loss
constant k = 1 and path loss exponent α = 3. For simplicity,
we assume that all available spectrum channels have the
same bandwidth. But the proposed model and algorithm can
be easily extended to the case when the bandwidths vary.
We consider the available spectrum channels to be assigned
to links have a uniform bandwidth 5MHz.

As shown in Fig. 3, the scenario indicates the data trans-
mission between the nodes in different edges of the network.
The data flows with long routing paths cross the whole space
that the network lies in and intersect with each other in the
central region of the network. As a result, co-channel interfer-
ence and resource competition become severer. We evaluate
the performance of the proposed multi-objective spectrum
allocation strategy in this case. The parameters used for the
algorithm are indicated in Table 1. There are 55 links need
to be allocated spectrum channels, which also means that
the length of each solution is 55. We design the population
to contain 100 solutions, and operate the gene evolution for
100 generations. The algorithm is executed for 10 times.
In each experiment, a Pareto front is achieved, which is the
nondominated front with highest rank in the population of the
last generations.

TABLE 1. Parameters used in the simulation.

Figure 4 illustrates the Pareto fronts under varying SINR
thresholds (4dB, 6dB, 8dB and 10dB). The distribution of
the solutions in each Pareto front depicts that the net-
work throughput and the spectrum utilization are conflicting

performance metrics in the spectrum allocation. Under the
low Transmission SINR constraint such as 4dB and 6dB,
more links can be assigned to concurrent transmit on the
same spectrum channel, which causes the serious co-channel
interfere and sharp decline of the link capacity. Consequently,
the whole network throughput is at a low level. As shown
in Figs. 4(a) and 4(b), the experiment results exactly reflect
the fact that some solutions with high spectrum utiliza-
tions are obtained. Thus, there is a widespread distribution
of solutions in the Pareto front. With the SINR thresh-
old growing, link transmissions are more sensitive to the
co-channel interference and spectrum channel sharing by
multiple links becomes more difficult. When SINR threshold
is set to 8dB or 10dB, maximal value of spectrum utilization
drops down and the size of the Pareto fronts become small
relatively, which are shown in Fig. 4(c) and 4(d). We also
notice that in the condition of low spectrum utilizations the
solutions in Fig. 4(c) and 4(d) are better than the counterparts
in Fig. 4(a) and 4(b). One possible reason is that the algorithm
can converge to the Pareto front effectively in a smaller search
space.

In order to further evaluate the performance of the pro-
posed spectrum allocation algorithm, we adopt the improved
Strength Pareto Evolutionary Algorithm (SPEA-II) [26] to
deal with the multi-objective spectrum allocation problem for
comparison. SPEA-II is regarded as an efficient elitist multi-
objective evolutionary algorithm and validated the effective
performance for the multi-objective optimizations in wire-
less networks [27], [28]. In Figs.5(a) and 5(b), the Pareto
fronts obtained by the SPEA-II are shown under SINR
thresholds 8dB and 10dB respectively. Correspondingly,
Fig. 4(c) and 4(d) show the Pareto fronts obtained by the pro-
posed algorithm under the same settings of SINR thresholds.
It can be observed that the proposed algorithm reveals better
performances than the SPEA-II. Under the same conditions,
the Pareto fronts obtained by the proposed algorithm have
more excellent solutions than their counterparts obtained by
SPEA-II. Moreover, the proposed algorithm demonstrates the
superiority in both the searching efficiency and the diversity
of population through adopting larger population. The near-
optimal and near-complete Pareto front of the problem is
obtained at a rapid pace, which has considerably practical
significance for spectrum allocation decision. Generally, con-
verging to the true Pareto front while maintaining the diver-
sity of the population is at the expense of time. Therefore,
spectrum allocation decision needs to be made as soon as
possible. Especially, in the case of dynamic spectrum envi-
ronment or varying transmission tasks, the decision maker
should adjust the spectrum allocation schedule timely to sat-
isfy network transmission requirements. So, the approximate
true Pareto fronts with the fast convergence are adopted.

To harvest the optimal spectrum allocation plans, we can
jointly consider the results of multiple experiments and
select the best solutions from these Pareto fronts to form
an optimal solution aggregate. In Figs. 6(a) and 6(b), opti-
mal solution aggregates are generated from Pareto fronts of
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FIGURE 4. Pareto fronts vs. varying SINR thresholds. (a) SINR threshold β is 4dB. (b) SINR threshold β is 6dB. (c) SINR threshold β is
8dB. (d) SINR threshold β is 10dB.

FIGURE 5. Pareto fronts with varying SINRs obtained by SPEA-II. (a) SINR threshold β is 8dB. (b) SINR threshold β is 10dB.

10 experiments under SINR threshold 6dB and 8dB respec-
tively. Under each certain spectrum utilization, travel cor-
responding solutions in the Pareto fronts and add the one
with the highest network throughput into the optimal solu-
tion aggregate. The optimal solution aggregate is not a

Pareto-optimal set, but it has the best solutions and the
most widespread distribution of solutions in current situation,
which is superior to single Pareto front. The decision maker
can obtain more effective spectrum allocation plan based on
the optimal solution aggregate.
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FIGURE 6. Optimal solution aggregates. (a) SINR threshold β is 6dB. (b) SINR threshold β is 8dB.

FIGURE 7. Optimal solution aggregates with varying number
of concurrent flows.

We further analyze the spectrum allocation with respect to
network throughput and spectrum utilization under varying
number of concurrent flows. In order to achieve the maxi-
mum efficiency, each optimal solution aggregate in Fig. 7
is generated from 10 experiments. Under small number of
concurrent flows, there is not a high Spectrum utilization.
With the growth of flows, spectrum utilization can be raised
effectively. The factor reveals that spectrum sharing is more
feasible among links belonging to different routing paths.
In such a condition, some links are quite far apart, and can
transmit concurrently with low co-channel interference. We
notice that when the spectrum utilization drops below 2 the
network throughput will not have a remarkable improvement.
In such conditions, enough spectrum channels are assigned to
the links, and co-channel interference is reduced effectively.
Thus, resource competition is the primary influential factor
for the transmission performance and continued increase of
spectrum channel is less well to the network throughput.

The fact may help to enhance the spectrum allocation strat-
egy. We can control the diversity of the population, and the
condition of allocating a large number of spectrum channels
to links is considered little in the strategy.

VI. CONCLUSION
In this paper, we investigate the optimal spectrum allocation
with respect to network throughput and spectrum utilization
in cognitive-radio-based IoT. Since links in the network are
elementary units in spectrum allocation and data transmis-
sion, we propose a concurrent transmission model which
reveals the constraints of mutual interference and resource
competition in link concurrent transmissions. Based on this
model, we formulate the spectrum allocation problem as a
MOP and transform the spectrum allocation plan into the
solution in genic algorithms. Then the NSGA-II algorithm
is adopted to explore the optimal solutions to the multi-
objective spectrum allocation problem. Simulation results
corroborate that the proposed approach performs well in har-
vesting the optimal solutions in various cases. We will further
apply the proposed approach into the design of cognitive
radio protocols to achieve a balanced network performance.
In addition, issues such as fairness and quality of service
(QoS) will be further studied in our future work.
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