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ABSTRACT A continuous globally stable control algorithm is presented to track angular velocity for space-
craft chaotic attitude motion affected by external disturbances using adaptive variable structure controller.
Affected by some external disturbances, the spacecraft attitude dynamics system can generate many types
of chaotic motion. Once it is required that a spacecraft with chaotic attitude motion should track the other
spacecraft chaotic attitude plant to achieve angular velocity synchronization, the design of a robust tracking
controller becomes necessary. The controller design is based on adaptive control theory and variable structure
control theory, and adopts integral sliding surface and a single vector adjusted dynamically. Numerical
simulations are performed to demonstrate the effectiveness and feasibility of the proposed adaptive variable
structure controller.

INDEX TERMS Spacecraft chaotic motion, attitude system, tracking control, adaptive control, variable
structure control.

I. INTRODUCTION
Spacecraft have been widely used in widespread communica-
tions, remote sensing and related scientific research in space.
The attitude control system has great influence on spacecraft
pointing accuracy and stabilization precision. Generally, any
spacecraft in orbit is influenced by several kinds of external
disturbance torques, such as the aerodynamic drag torque,
the gravity gradient torque, the solar radiation pressure and
the magnetic torque caused by the Earth’s magnetic field.
Although the external disturbances are small compared to the
weight of the spacecraft, it often consists of periodic and sec-
ular terms, and the long-time disturbances on spacecraft may
have significant influence on its actual attitude motion [1].
When certain conditions between the moment of inertia and
the external disturbances of the spacecraft are met, it can
lead to chaotic motion in the spacecraft [2]. A robust tracking
controller is needed to track a chaotic attitude plant to achieve
angular velocity synchronization.

The chaos phenomenon has been extensively studied by
many researchers due to its unstable and complex behavior
and wide range of applications in many industrial systems

and different sciences [3], [4]. A few typical chaotic sys-
tems that result from external disturbances on spacecraft are
Newton-Leipnik system [5], Lorenz system [6], Chen sys-
tem [7], Lu system [8], Genesio-Tesi system [9], Rucklidge
system [10], Liu system [11] and Rossler system [12]. The
research on synchronization control in chaotic system has
recently become a subject of great interest, and considerable
efforts have been made to study the control and synchroniza-
tion problems of different chaotic systems, such as adaptive
control [13], sliding mode control [14], linear matrix inequal-
ity techniques [15], fuzzy logic control [16], state observer
control [17], active control [18] and passive control [19].

Many flight experiences during the aerospace history
have witnessed unexpected behaviors in spacecraft atti-
tude motion, which results from the external disturbances
that had not been taken into consideration in spacecraft
design. Numerous theoretical studies have pointed out that
chaotic spacecraft motion exists under the action of different
kinds of external disturbances. Tong and Rimrott [20] have
studied the planar vibration of an asymmetric satellite in
elliptical orbit under the action of gravity gradient torque.
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Meehan and Asokanthan [21], [22] conducted research on the
chaotic motion of a spinning spacecraft which results from
circumferential nutation damper or unbalanced rotor or vibra-
tions in appendages. Salarieh and Alasty [23] investigated the
problem of synchronization between two chaotic gyros using
a modified sliding mode control method. Aghababa [24]
adopted adaptive finite-time controller to achieve the syn-
chronization of two chaotic flywheel governor systems and
verified its robustness. Beletsky et al. [25] have conducted
research on the numerical realization method to analyze the
chaos in spacecraft attitude motion in circular polar orbit only
influenced by the geomagnetic field. However, to the best
of the authors’ knowledge, the approach in the case that a
spacecraft with chaotic attitude motion should track another
spacecraft chaotic attitude plant to achieve angular velocity
synchronization has not been investigated, and the main con-
tribution of this paper is to conduct theoretical research on the
design of adaptive variable structure tracking controller for
spacecraft chaotic motion to meet the requirement of angular
velocity synchronization.

The remainder of this paper is organized as follows.
Section II introduces the spacecraft attitude dynamics equa-
tion and expands it in its component form. Besides, this
section describes several types of chaotic phenomena in
spacecraft attitude motion and describes the purpose of
this work. Section III presents the robust adaptive variable
structure controller based on adaptive control theory and
variable structure control theory. Numerical simulations are
given to illustrate the performance of the proposed technique
in section IV. Finally, some conclusions of this work are
addressed.

II. PROBLEM STATEMENT
The attitude dynamics equation of rigid spacecraft is

Iω̇ + ω × (Iω) = T c + Td (1)

where, ω =
[
ω1 ω2 ω3

]T is the angular velocity of the
spacecraft body reference frame with respect to the earth-
centered inertial reference frame in the spacecraft body
reference frame, I denotes the spacecraft inertia matrix,
T c denotes the control input torque; Td is the external dis-
turbance torque, which can be generally expressed in the
following nonlinear form:

Td = Dω +M (2)

where, D =
[
dij
]
3×3 ∈ R

3×3(i, j = 1, 2, 3), which can be a
constant matrix or matrix varying with angular velocity;
M = [mi]3×1 ∈ R3×1(i = 1, 2, 3), which can be a con-

stant matrix or matrix varying with angular velocity, or even
periodic matrix or long-term matrix.

Consider the three axes of the spacecraft body coor-
dinate system for the inertial principal axes, then I =
diag(I1, I2, I3). In addition, use Levi Civita symbol in three
dimensions to express vector products, denoted as εkij, and the

corresponding definition is given as follows:

εkij =


+1, if (k, i, j) is (1, 2, 3), (2, 3, 1) or (3, 1, 2)
−1, if (k, i, j) is (3, 2, 1), (1, 3, 2) or (2, 1, 3)
0, if i = j or j = k or k = i

(3)

For any two vectors p = [pi]3×1(i = 1, 2, 3) and q =
[qj]3×1(j = 1, 2, 3), we have that

∑
i,j
εkijpiqj = (p×q)k , where

()k represents the k-th component of the vector product.
Substitute Eq.(2) into Eq.(1) and expand it in its component

form, we have

I1ω̇1 − (I2 − I3)ω2ω3 = Tc1 + d11ω1 + d12ω2

+ d13ω3 + m1

I2ω̇2 − (I3 − I1)ω1ω3 = Tc2 + d21ω1 + d22ω2

+ d23ω3 + m2

I3ω̇3 − (I1 − I2)ω1ω2 = Tc3 + d31ω1 + d32ω2

+ d33ω3 + m3

(4)

where, I1, I2 and I3 denote the three components of inertia
matrix;ω1, ω2 andω3 denote the three components of angular
velocity; Tc1,Tc2 and Tc3 denote the three components of
control input torque.
Then, we have

ω̇1 = I−11 (I2 − I3)ω2ω3 + I
−1
1 d11ω1 + I

−1
1 d12ω2

+ I−11 d13ω3 + I
−1
1 Tc1 + I

−1
1 m1

ω̇2 = I−12 (I3 − I1)ω1ω3 + I
−1
2 d21ω1 + I

−1
2 d22ω2

+ I−12 d23ω3 + I
−1
2 Tc2 + I

−1
2 m2

ω̇3 = I−13 (I1 − I2)ω1ω2 + I
−1
3 d31ω1 + I

−1
3 d32ω2

+ I−13 d33ω3 + I
−1
3 Tc3 + I

−1
3 m3

(5)

Define the relative inertia ratios as a1 = I−11 (I2 − I3),
a2 = I−12 (I3 − I1) and a3 = I−13 (I1 − I2), and

[ui]3×1 =
[
I−1i Tci

]
3×1

(i = 1, 2, 3) is the angular acceler-

ation generated by the control input torque, and
[
bij
]
3×3 =[

I−1i dij
]
3×3

, [ci]3×1 =
[
I−1i mi

]
3×1

(i, j = 1, 2, 3).

Then, Eq.(5) can be transformed into
ω̇1 = a1ω2ω3 + b11ω1 + b12ω2 + b13ω3 + u1 + c1
ω̇2 = a2ω1ω3 + b21ω1 + b22ω2 + b23ω3 + u2 + c2
ω̇3 = a3ω1ω2 + b31ω1 + b32ω2 + b33ω3 + u3 + c3

(6)

The matrix form of Eq.(6) is

ω̇ = Bω + f (ω)+ u (7)

where,

B =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

,
f (ω) =

 f1(ω)f2(ω)
f3(ω)

+
 c1c2
c3

 = A

ω2ω3
ω1ω3
ω1ω2

+ C,
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A = diag(a1, a2, a3),C =
[
c1 c2 c3

]T
,

u =
[
u1 u2 u3

]T
For uncontrolled spacecraft attitude system, namely,

the control input torque satisfies u = 0, different external
disturbance torque may lead to different kinds of chaos in
spacecraft attitude motion, such as Newton-Leipnik system,
Lorenz system, Chen system, Lu system, Genesio-Tesi sys-
tem, Rucklidge system, Liu system and Rossler system and so
on. The analysis of these chaotic systems, their characteristics
and chaotic attractors, and corresponding necessary condition
for spacecraft properties can be seen in Table 1.

The divergence of ω̇ is

∇ · ω̇ =
∂ω̇1

∂ω1
+
∂ω̇2

∂ω2
+
∂ω̇3

∂ω3
(8)

For one of the above eight typical chaotic systems, when
certain conditions between the moment of inertia of space-
craft and corresponding external disturbance torques are
met, we can calculate ∇ · ω̇ < 0, which indicates
that the spacecraft attitude dynamics system is a dissipa-
tive system and its solution is bounded with increasing
time.

The desired reference angular velocity is defined in the
following chaotic attitude equation

ˆ̇ω = B̂ω̂ + g(ω̂) (9)

where,

B̂ =

 b̂11 b̂12 b̂13
b̂21 b̂22 b̂23
b̂31 b̂32 b̂33

, g(ω̂) =

 g1(ω̂)g2(ω̂)
g3(ω̂)

+
 ĉ1ĉ2
ĉ3


= Â

 ω̂2ω̂3
ω̂1ω̂3
ω̂1ω̂2

+ Ĉ,
Â = diag(â1, â2, â3), Ĉ =

[
ĉ1 ĉ2 ĉ3

]T
The tracking error is defined as e = ω − ω̂, with its com-
ponents as ei(i = 1, 2, 3), and we can get the error system
as

ė = ω̇ − ˙̂ω =
[
ė1 ė2 ė3

]T
= [λ1(e1, e2, e3)+ u1 λ2(e1, e2, e3)+ u2

λ3(e1, e2, e3)+ u3]T (10)

Assumption 1: There exists a constant l > 0 such that
λi(e1, e2, e3) ≤ lmin

i
|ei| (i = 1, 2, 3).

This assumption will be used in the stability analysis, and
it is easy to check such an assumption in practice.

The tracking problem is solved if lim
t→∞

e = 0, which is
equivalent to the stabilization of e, and the equation that
governs the spacecraft’s motion is given by

ė = Bω − B̂ω̂ + f (ω)− g(ω̂)+ u (11)

The control objective of this paper is to design an adaptive
variable structure controller u(t) for the plant (7), whose
tracking error dynamics is given by Eq.(11), such that, for
all physically realizable initial conditions, the following is
achieved: lim

t→∞
e = 0.

III. ADAPTIVE VARIABLE STRUCTURE
TRACKING CONTROLLER
The controller design is based on the following sliding sur-
face:

si = ei +
∫ t

0
rei(τ )dτ (i = 1, 2, 3; r > 0) (12)

When the system reaches the sliding surface and moves on it,
the following conditions should be satisfied:

si = ei +
∫ t

0
rei(τ )dτ = 0 (13)

ṡi = ėi + rei = 0 (14)

From Eq.(14), we have

ėi = −rei (15)

Therefore, Eq.(15) is asymptotically stable, namely,
lim
t→∞

ei(t) = 0(i = 1, 2, 3).
In this case, the controller is proposed in the form

ui = −σki |ei| sgn(si) (i = 1, 2, 3, σ > 0) (16)

It can be seen that the term on right-hand side contains a
variable ki that will be adjusted dynamically to guarantee
asymptotic disturbance rejection. If k(0) > 0 is given,
k(t) > 0 can be ensured for all time, which will be discussed
in the following part.

Choose the Lyapunov candidate function as

V =
1
2

3∑
i=1

s2i +
1
2ς

3∑
i=1

σ (ki − k∗)2 (17)

where, k∗ > (l + r)/σ . Taking the first derivative of V along
the motion of the error system yields

V̇ =
3∑
i=1

siṡi +
σ

ς

3∑
i=1

(ki − k∗)k̇i

=

3∑
i=1

si(ėi + rei)+
σ

ς

3∑
i=1

(ki − k∗)k̇i

=

3∑
i=1

si(λi + ui + rei)+
σ

ς

3∑
i=1

(ki − k∗)k̇i

≤ l
3∑
i=1

|si| |ei| + r
3∑
i=1

siei +
σ

ς

3∑
i=1

(ki − k∗)k̇i

−

3∑
i=1

si(σki |ei| sgn(si))
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TABLE 1. Chaotic system characteristics and chaotic attractor.
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TABLE 1. (Continued.)Chaotic system characteristics and chaotic attractor.

= l
3∑
i=1

|si| |ei| + r
3∑
i=1

siei +
σ

ς

3∑
i=1

(ki − k∗)k̇i

− σ

3∑
i=1

ki |ei| |si|

= l
3∑
i=1

|si| |ei| + r
3∑
i=1

siei −
σ

ς

3∑
i=1

k∗k̇i

+
σ

ς

3∑
i=1

ki(k̇i − ς |ei| |si|) (18)

The adjustment law for ki(t) is now chosen as

k̇i = ς |ei| |si| (19)

This yields

V̇ ≤ l
3∑
i=1

|si| |ei| + r
3∑
i=1

siei − σk∗
3∑
i=1

|ei| |si|

≤ l
3∑
i=1

|si| |ei| + r
3∑
i=1

|si| |ei| − σk∗
3∑
i=1

|ei| |si|

= (l + r − σk∗)
3∑
i=1

|si| |ei| < 0 (20)

According to Lyapunov stability theory, the tracking error
system is asymptotically stable.

IV. NUMERICAL SIMULATIONS
To validate the effectiveness and feasibility of the proposed
adaptive variable structure tracking controller in this paper,
we take the Newton-Leipnik system for example, which is
shown below.

Choose the moment of inertia and external disturbance
torque acting on the spacecraft as

I1 = I2 = I3 = 1kg · m2,

Td =

 I1(−aω1 + ω2 + 10ω2ω3)
I2(−ω1 − 0.4ω2 + 5ω1ω3)

I3(bω3 − 5ω1ω2)


Then, the target system is

˙̂ω=

−a 1 0
−1 −0.4 0
0 0 b

 ω̂1
ω̂2
ω̂3

+
 10ω̂2ω̂3

5ω̂1ω̂3
−5ω̂1ω̂2

 (21)

The tracking system is

ω̇ =

−a 1 0
−1 −0.4 0
0 0 b

ω1
ω2
ω3

+
 10ω2ω3

5ω1ω3
−5ω1ω2

+ u
(22)

Combining Eqs.(21) and (22), the error system can be
obtained as

ė =

−a 1 0
−1 −0.4 0
0 0 b

 e1e2
e3


+

 10ω2ω3 − 10ω̂2ω̂3
5ω1ω3 − 5ω̂1ω̂3
5ω̂1ω̂2 − 5ω1ω2

+ u (23)

The sliding mode surface is chosen as si = ei +∫ t
0 rei(τ )dτ (i = 1, 2, 3; r > 0), the adjustment law for ki(t)
is 

k̇1 = ς |e1| |s1|

k̇2 = ς |e2| |s2|

k̇3 = ς |e3| |s3|

(24)

The adaptive variable structure tracking controller is
u1 = −σk1 |e1| sgn(s1)
u2 = −σk2 |e2| sgn(s2)
u3 = −σk3 |e3| sgn(s3)

(25)

VOLUME 6, 2018 3855



C. Liu et al.: Robust Adaptive Variable Structure Tracking Control

FIGURE 1. Response of the error e1.

FIGURE 2. Response of the error e2.

FIGURE 3. Response of the error e3.

The corresponding known parameters are chosen as
a = 0.4, b = 0.175, r = 4, σ = 0.052, ς = 5. The
initial states are k0 =

[
0.4 0.2 0.2

]T , ω0 = [ 0.3 0.1 0.1 ]T ,

FIGURE 4. Response of the control input torque.

FIGURE 5. Response of k(t).

and ω̂0 = [ 0.7 0.25 0.25 ]T . The unit of angular velocity
is rad/s. The simulation step is chosen as 0.001s, and the
corresponding simulation time is chosen as 300s.

The response of the closed-loop system can be seen in
Figs.1-5, from which we can see that the control objective
is achieved despite the presence of the external disturbances.
The error e will converge to zero as time increases, and
the control input torque will also converge to zero, which
indicates that the tracking system will achieve synchroniza-
tion with the target system. Generally, the variable structure
control method has control chattering problem, but it isn’t
obvious due to the small tracking errors in the stable phase.
It is also seen in Fig.5 that ki(t) increases during the transient
phase, but then converges to a constant value when the error
system is stable.

V. CONCLUSIONS
For the tracking control problem of spacecraft chaotic attitude
motion affected by external disturbances, this paper presents
a continuous globally stable tracking control algorithmwhich
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is based on adaptive control theory and variable structure
control theory. In the proposed controller, the integral sliding
surface is adopted, and a single vector is adjusted dynamically
in such a fashion that the angular velocity error will tend to
zero asymptotically. The stability proof is conducted via a
Lyapunov analysis of the spacecraft error dynamics. Numer-
ical simulations also illustrate the tracking performance of
spacecraft chaotic motion using the adaptive variable struc-
ture controller proposed in this paper.
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