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ABSTRACT This paper studies the switching laws designed to maintain the stability of delayed switched
nonlinear systems with both stable and unstable modes. The addressed time delays include finite and
infinite delays. First, we consider the finitely delayed nonlinear switched systems and establish some
delay differential inequalities that play an important role in the design of average dwell time (ADT)-based
switching laws. Then, by employing multiple Lyapunov functions and the ADT approach, some delay-
dependent switching laws for globally uniform exponential stability are derived. This approach establishes a
relationship between time delay, ADT constant, and the ratio of total dwell time between stable and unstable
modes. This method can guarantee the stability of finitely delayed switched systems with stable and unstable
modes if the divergence rate and total dwell times of unstable modes can be effectively controlled and
balanced by an ADT-based switching control with stable modes. Furthermore, based on multiple Lyapunov
functions coupled with the Razumikhin technique, we study the infinitely delayed nonlinear switched
systems and present some delay-independent switching laws for uniform stability and globally uniformly
exponential stability. These can be applied to the cases in which the time delay in stable or unstable modes
cannot be exactly observed, and the bound of the time delay may be unknown or infinite. The proposed
results in this paper are more general than several recent works. Finally, some numerical examples and their
computer simulations are given to demonstrate the effectiveness and advantages of the designed switching
laws.

INDEX TERMS Switched systems, stable and unstable modes, average dwell time (ADT), finite/infinite
delay, stability.

I. INTRODUCTION
Switched systems have been well-known for their importance
in practical applications. Typical examples of switched sys-
tems include flight control and management systems [1], [2],
computer disc drives [3], stepper motor drives (where only
a limited number of gear ratios is available) [4], intelligent
vehicle highway systems [5], robotic control systems [6]
and networks [7]. One of the important aspects of studying
switched systems is to consider the stability problem of the
systems. It has been shown that there are three basic problems
in the stability and design of switched systems [8]. First,
find the conditions for stability under arbitrary switching

laws [9]–[11]. Second, identify the limited but useful class
of stabilizing switching laws [12], [13]. Third, construct a
stabilizing switching law [14]–[16]. To date, much work on
those problems has been reported in the literature. In this
paper, we mainly consider the third problem for a class of
switched systems.

However, as we know, a time delay is often encoun-
tered in many real systems such as engineering, biologi-
cal and economical systems. Its existence is frequently a
source of oscillation and instability [17]–[19]. Conversely,
a time delay can also be introduced to solve some important
problems [20], [21]. For example, Tank and Hopfield [20]
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designed a neural circuit with distributed delays, which
solves a general problem of recognizing patterns in a time-
dependent signal. Hence, it is rewarding and important to
consider the effect of time delay on the stability of dynamic
systems. A delayed switched system is a type of dynami-
cally switched system that includes time delays in individual
modes and has wide applications in many fields. These fields
include power systems and power electronics [22], [23],
Nakagami fading systems [24], time-delay systems with
controller or actuator failure [25], and networked control
systems [26]. In recent years, many interesting results on
the stability of delay switched systems have been pre-
sented via different approaches. These approaches include
the multiple Lyapunov (combined with Razumikhin tech-
niques) approach [27], [28], average dwell time or dwell
time techniques [29], [30], the linear matrix inequality
method (LMI) [31], common Lyapunov functions [32],
inequalities techniques [33] and others. Generally, those
results can be classified into two categories: delay-dependent
results [29]–[33] and delay-independent results [27],
[28], [34]. The delay-dependent results are considered to
be less conservative than the delay-independent ones since
they make use of the information on the length of delays,
especially for the case when the time delay is small. The
delay-independent results are not related to the time-delay
information, which is particularly useful for delayed switched
systems subject to unknown, infinite, or inestimable value
time delays. However, it should be noted that, to date,
the switching laws designed to maintain the stability of
delayed switched nonlinear systems have not been adequately
addressed, which remains an interesting research topic.

In addition, onemay observe thatmost recent studies on the
stability of switched systems have focused on the case where
all individual modes are stable and then consider the stability
of switched systems under given or designed switching sig-
nals [10], [12]–[16], [27]–[34]. Note a remarkable fact that
the switching between stable and unstable modes or between
unstable modes may also lead to the stability (even expo-
nential stability) of switched systems. This indicates that
the design of switching laws for the stability of switched
systems (including unstable modes) is theoretically feasible.
In fact, in many applications, it has been shown that switched
systems with stable and unstable modes cannot be avoided.
For example, in supervisory control systems [35], [36],
the multi-controllers are sequentially applied to the plant
and switched until the stabilizing one is found. Before the
appropriate control law is found, there exists a certain time
lag in which several destabilizing control lawsmay be applied
and render the plant unstable. This process is described by
a switched system with unstable modes. Another example,
in asynchronous networked control [37], is when the con-
troller and the plant are connected by an unreliable com-
munication link. The closed-loop system can be described
by two modes. One mode is related to the healthy, stable
link and another one is related to the broken, unstable link.
More applications of switched systems, including unstable

modes, can be found in multi-agent systems with switching
topology, complex dynamical networks and control systems
with intermittent faults [38], [39]. Hence, it is necessary
and important to study the stability and design of switch-
ing laws for switched systems in which stable and unstable
modes co-exist. However, when unstable modes exist in a
switched system, it is possible that the states of the system
will trend towards infinity if the dwell time of unstable
modes is too long. Thus, we have a great theoretical chal-
lenge. In recent years, increasing attention has been paid
to the study of stability and controller design of switched
systems with unstable modes. Some interesting results have
been reported in the literature. In particular, [40] developed
the ADT approach to the stability analysis of switched sys-
tems with stable and unstable modes. It was shown that
the stability of switched linear systems can be guaranteed
if the total activating period of unstable modes is relatively
small compared to that of stable modes. Reference [41]
improved those results and derived some new ones on stabil-
ity based on a common Lyapunov function. Reference [42]
proposed a new approach to the stabilization problem of
switched nonlinear systems with some unstable modes. The
developed approach relied on the trade-off between the
gains of functions in continuous modes and dropped the
required constant ratio condition from [40]. Reference [43]
studied the exponential stability and asynchronous stabiliza-
tion of switched nonlinear systems with stable and unsta-
ble modes via TĺCS fuzzy model by minimum dwell time
and piecewise Lyapunov-like functions methods. For other
related, interesting results, see references [44]–[48]. How-
ever, it should be noted that, although those results are
very useful for switched systems with unstable modes,
they cannot be applied to delayed switched systems. As a
class of infinite dimensional systems, delayed switched sys-
tems with unstable modes have more complicated structures
that lead to complex dynamics. In recent years, switch-
ing control for the stability of switched systems with time
delays has been extensively studied. For example, [28], [32],
and [52]–[54] addressed switched systems with constant
delays, and [25], [31], and [33] treated the time-varying
delays. However, most of these studies are based on the
assumption that time delays are constants or time-varying
and differentiable. Moreover, they mainly considered the
switched systems that only included stable modes. More
recently, [49] studied the switched time-varying delay sys-
tems with unstable modes and some ADT-based exponential
stability results. They fully considered the effects of mixed
modes derived by employing an LK functional and an esti-
mation of the quadrature. However, the approach developed
in [49] is only valid for special linear switched delayed sys-
tems. Moreover, the assumptions on differentiability and an
exact bound of the time-varying delay are imposed. Hence,
more methods and tools should be explored and developed
on this topic.

With the above motivations, the purpose of this paper is
to consider a class of nonlinear delayed switched systems
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with stable and unstable modes and finite and infinite time
delays. In this paper, the assumption on the differentiability
of the time-varying delays, such as those in [25], [31], [33],
and [49], is completely removed. Inspired by the idea that the
stability of switched linear systems can be guaranteed if the
total activating period of unstable modes is relatively small
compared to that of stable modes [40], first, we developed
the idea of finitely delayed switched systems with stable
and unstable modes. To this end, some delayed differential
inequalities are presented, which play an important role in the
design of ADT-based switching laws. Then, based on multi-
ple Lyapunov functions and the ADT approach, we present
some delay-dependent switched laws. Although a time-delay
effect exists, we do not impose a strict restriction on the dwell
time for individual stable and unstable modes. However,
the ratio of the total dwell time between them is needed.
Then, based on multiple Lyapunov functions coupled with
the Razumikhin technique, some delay-independent switched
laws for infinitely delayed switched systems are presented,
which are also applicable for finite delays or unknown
delays. The remainder of this paper is organized as follows.
In Section II, we shall introduce some preliminary knowl-
edge. In Section III, some switched laws for finitely delayed
switched systems are presented. In Section IV, we present
some switched laws for infinitely delayed switched systems.
Some numerical examples showing the effectiveness and
advantages of the proposed approach are given in Section V.
Finally, we shall make concluding remarks in Section VI.
Notations: LetR denote the set of real numbers,R+ the set

of positive real numbers, Z+ the set of positive integers and
Rn the n-dimensional real space equipped with the Euclidean
norm |• |. The notationAT andA−1 mean the transpose ofA
and the inverse of a square matrix. A > 0 or A < 0 denotes
that the matrixA is a symmetric and positive definite or neg-
ative definite matrix. IfA,B are symmetric matrices,A > B
means that A − B is positive definite matrix. The notation ?
always denotes the symmetric block in one symmetric matrix.
[•]∗ denotes the integer function. For any interval J ⊆ R, set
S ⊆ Rk (1 ≤ k ≤ n),C(J , S) = {ϕ : J → S is continuous}
and PC(J , S) = {ϕ : J → S is continuous everywhere
except at finite number of points t , at which ϕ(t+), ϕ(t−)
exist and ϕ(t+) = ϕ(t)}. Let T = {ϕ : [t0,∞) → P =

{1, 2, · · · ,m},m ∈ Z+, is a piecewise constant function }.
DefineCτ = C([−τ, 0],Rn) andBC∞ = BC((−∞, 0],Rn).
K = {a ∈ C(R+,R+)| a(0) = 0 and a(s) > 0 for s > 0 and
a is strictly increasing in s}.

II. PRELIMINARIES
Consider the following switched nonlinear delayed system:{

ẋ(t) = fσ (t)(t, xt ), t ≥ t0,
xt0 = φ,

(1)

where x(t) ∈ Rn is the system state, ẋ(t) denotes the right-
hand derivative of x(t). We assume that the state of the
system (1) does not jump at the switching instances, i.e., the

trajectory x is everywhere continuous. σ (t) ∈ T denotes
a piecewise constant signal that called a switching signal,
which will be determined later. When σ (t) = l, 1 ≤
l ≤ m, we say that the mode ẋ(t) = fl is activated.
fσ (t) ∈ C([t0,∞) × Cτ , Rn) and fσ (t)(t, 0) ≡ 0 for all
t ≥ t0 and σ ∈ T . For each t ≥ t0, xt ∈ Cτ is defined
by xt (s) = x(t + s), s ∈ [−τ, 0] and ||xt || = sup{|x(t + s)| :
−τ ≤ s ≤ 0}. Denote by (x(t, t0, φ), σ (t)) (abbr. (x, σ )) the
solution of switched system (1) with switched signal σ ∈ T
and initial value (t0, φ), where φ ∈ Cτ .

We make the following preliminary assumptions:
(H1) infk∈Z+{tk − tk−1} > 0, where tk denotes the switch-

ing instance, k ∈ Z+;
(H2) The switching signal is minimal, i.e., σ (tk ) 6= σ (tk+1)

for all k ∈ Z+;
(H3) τ ∈ [0,∞]. In the case when τ = +∞, the interval

[t − τ, t] is understood to be replaced by (−∞, t], for any
t ∈ R+ and Cτ is understood to be replaced by BC∞;

(H4) fσ (t, ϕ) is Lipschitzian in ϕ in each compact set
in Cτ .

Note that assumption (H1) implies that the switching sig-
nals have at most finite switching times over a finite time
interval (exclude Zeno behavior [1]) and we denote such kind
of switching signals by set T0 for later use. Assumption (H2)
implies that the switched modes are different between any
consecutive time intervals [tk−1, tk ) and [tk , tk+1). In fact,
if the switchedmode is the same one between two consecutive
time intervals, then it can be understood that there is no switch
happened and the intervals can be merged. Assumption (H3)
implies that the time delay considered in this paper may be
non-differentiable, unknown, even unbounded. To this point,
our assumption is weaker than those in [27]–[34]. While
assumption (H4) is given to ensure the existence and unique-
ness of solutions of (1). Note that fσ (t)(t, 0) ≡ 0 for any
t ≥ t0 and σ ∈ T , it implies that (0, σ ) is a solution of (1),
which is called the trivial solution. For a detailed discussion
on the existence problem, we refer the reader to the books by
Gu et al. [18] and Hino et al. [50].
Now we introduce some of the notations [40], [46], [51].

For any δ > 0, letT1(δ) denote the set of all switching signals
satisfying

T1(δ) =
{
σ ∈ T0 : sup

σ (tk−1)∈Pu, k∈Z+
{tk − tk−1} ≤ δ

}
,

wherePu ⊆P denote the unstable modes of system (1) and
denote by Ps ⊆P the stable ones. Clearly, Pu ∩Ps = ∅,
Pu ∪Ps = P. Let πs(t) denotes the total activation time
of the stable modes and πu(t) the total activation time of the
unstable modes on the time interval [t0, t), i.e.,

πu(t) =
∑

σ (tk−1) ∈Pu,
1 ≤ k ≤ Nσ (t0, t)

(tk − tk−1),

πs(t) =
∑

σ (tk−1) ∈Ps,
1 ≤ k ≤ Nσ (t0, t)

(tk − tk−1),
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where Nσ (t0, t) denotes the number of switching times of σ
over the interval [t0, t).
For given N0 ≥ 0 and τD > 0, let Save[τD,N0] be the set

of all switching signals satisfying

Save[τD,N0] =
{
σ ∈ T0 : Nσ (β, t) ≤ N0 +

t − β
τD

}
,

for ∀t ≥ β ≥ t0,where the constant τD is called the ‘‘average
dwell time’’ and N0 the ‘‘chatter bound’’. The idea behind it
is that there may exist some consecutive switchings separated
by less than τD, but the average interval between consecutive
switchings is no less than τD. In addition, to control the rela-
tion between unstable modes and stable ones, the definition
of set T2(r,T ) is introduced as follows:

T2(r,T ) =
{
σ ∈ T0 :

πu(t)
πs(t)

≤ r, ∀t ≥ T ≥ t0
}
,

where r ≥ 0 and T ≥ t0 are two constants.
Let {Vp, p ∈P} be a family of continuous functions from

from R+ × Rn to R+. Denote by V0 the class of all radially
unbounded, infinitesimal upper bound, and positive definite
continuous functions Vp, p ∈ P . Denote by V1 the class of
functions Vp ∈ V0 satisfy ω1(|x|) ≤ Vp(t, x) ≤ ω2(|x|),
uniformly for all p ∈P and (t, x) ∈ [t0−τ,∞)×Rn, where
ω1, ω2 ∈ K. Denote by V2 the class of functions Vp ∈ V1
satisfy c1|x|m ≤ Vp(t, x) ≤ c2|x|m, uniformly for all p ∈ P
and (t, x) ∈ [t0 − τ,∞) × Rn, where c1, c2 and m are some
positive constants. For given Vp ∈ V0, the upper right-hand
derivative of Vp along the solution of switched system (1) is
defined by

D+Vp = lim sup
h→0+

1
h
{V (t + h, ϕ(0)+ hfp)− V (t, ϕ(0))}

for (t, ϕ) ∈ R+ × Cτ .
Definition 1: Given some family of piecewise switching

signals T , the switched system (1) is said to be
(P1) uniformly stable (US) over T , if for any t0 ≥ 0 and

ε > 0, there exists some δ0 = δ0(ε) > 0, independent of t0
and σ ∈ T , such that φ ∈ Cτ and ‖φ‖ ≤ δ0 implies that for
each σ ∈ T , |x(t)| ≤ ε, t ≥ t0.

(P2) globally uniformly exponentially stable (GUES)
over T , if there exist two constants γ > 0 and M ≥ 1,
independent of t0 and σ ∈ T , such that for any given initial
data φ ∈ Cτ and each σ ∈ T ,

|x(t)| ≤M‖φ‖ exp
(
− γ (t − t0)

)
, t ≥ t0.

III. SWITCHED SYSTEMS WITH FINITE DELAY
In this section, based on the ADT approach, we shall design
some delay-dependent switching laws to guarantee the GUES
of system (1) with finite delay (i.e.,τ <∞).
First, for any T ≥ t0, let U(t) ∈ PC([t0,T ),R+) with

t1, t2, · · · , tN (t0,T ) as the finite discontinuous points, where
N (t0,T ) denotes the number of discontinuous points over
the interval [t0,T ). Clearly, U(t) ∈ C([t0,T ),R+) when
N (t0,T ) = 0. Define

π (T ) =
{
[t0, t1), [t1, t2), · · · , [tN (t0,T ),T )

}
.

Set πū(T ), πs̄(T ) ⊆ π (T ) and satisfy

πū(T ) ∩ πs̄(T ) = ∅, πū(T ) ∪ πs̄(T ) = π (T ).

Denote

|πū(T )| =
∑

I∈πū(T )

|I |, |πs̄(T )| =
∑

I∈πs̄(T )

|I |,

where |I | denotes the length of interval I . Obviously, it holds
that |πū(T )| + |πs̄(T )| = T − t0.
Lemma 1: Assume that there exist constants λ ≥ 0,

λ̄ ≥ 0, and function U(t) ∈ PC([t0,T ),R+) such that

D+U(t) ≤ λU(t)+ λ̄Ū(t), t ∈ [tk−1, tk ), (2)

for every 1 ≤ k ≤ N (t0,T ). Then

U(t) ≤ Ū(tk−1) exp
(
(λ+ λ̄)(t − tk−1)

)
, (3)

for all t ∈ [tk−1, tk ), where Ū(t) = sups∈[t−τ,t] U(s).
In particular, the interval [tk−1, tk ) is understood to be
replaced by [t0,T ) when N (t0,T ) = 0.

Proof: For any ε > 0, we establish an auxiliary
function:

0ε(t) = U(t) exp
(
− (λ+ λ̄+ ε)(t − tk−1)

)
, t ∈ [tk−1, tk ).

To show that (2) holds, we first claim that

0ε(t) ≤ Ū(tk−1), t ∈ [tk−1, tk ). (4)

It is clear that 0ε(tk−1) = U(tk−1) ≤ Ū(tk−1). If there exists
some t ∈ (tk−1, tk ) such that 0ε(t) > Ū(tk−1), then one
may choose a t∗ ∈ [tk−1, tk ) such that 0ε(t∗) = Ū(tk−1),
0ε(t) ≤ Ū(tk−1), t ∈ [tk−1, t∗] and D+0ε(t∗) ≥ 0. In this
case, it holds that

U(t) = 0ε(t) exp
(
(λ+ λ̄+ ε)(t − tk−1)

)
≤ Ū(tk−1) exp

(
(λ+ λ̄+ ε)(t − tk−1)

)
= 0ε(t∗) exp

(
(λ+ λ̄+ ε)(t − tk−1)

)
= U(t∗) exp

(
(λ+ λ̄+ ε)(t − t∗)

)
≤ U(t∗), t ∈ [tk−1, t∗].

Note that t∗ ∈ [tk−1, tk ) and 0ε(t∗) ≤ U(t∗). It then can be
deduced that

Ū(t∗) ≤ max{U(t∗), Ū(tk−1)}=max{U(t∗), 0ε(t∗)}≤ U(t∗),

which together (2) yields

D+0ε(t∗) = D+U(t∗) exp
(
− (λ+ λ̄+ ε)(t∗ − tk−1)

)
− (λ+ λ̄+ ε)U(t∗)
× exp

(
− (λ+ λ̄+ ε)(t∗ − tk−1)

)
≤ exp

(
− (λ+ λ̄+ ε)(t∗ − tk−1)

)
×
{
λU(t∗)+ λ̄Ū(t∗)− (λ+ λ̄+ ε)U(t∗)

}
≤ −ε exp

(
− (λ+ λ̄+ ε)(t∗ − tk−1)

)
U(t∗) < 0,

which is a contradiction with D+0ε(t∗) ≥ 0 and thus (4)
holds for any ε > 0. Let ε → 0+, then inequality (3) can
be directly obtained. This completes the proof.
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Lemma 2: Assume that there exist constants λ? > λ̄? ≥ 0
and function U(t) ∈ PC([t0,T ),R+) such that

D+U(t) ≤ −λ?U(t)+ λ̄?Ū(t), t ∈ [tk−1, tk ), (5)

for every 1 ≤ k ≤ N (t0,T ). Then

U(t) ≤ Ū(tk−1) exp(−h(t − tk−1)), t ∈ [tk−1, tk ), (6)

where h > 0 is a constant and satisfies λ̄? exp(hτ )+ h ≤ λ?.
In particular, the interval [tk−1, tk ) is understood to be
replaced by [t0,T ) when N (t0,T ) = 0.

Proof: Since λ? > λ̄? ≥ 0, one may choose a constant
h > 0 such that λ̄? exp(hτ )+ h ≤ λ?. Then choose h̄ ∈ (0, h)
such that for any ε ∈ (0, h̄],

0 < λ̄? exp((h− ε)τ )+ h− ε < λ?. (7)

Consider the following auxiliary function:

�ε(t) = U(t) exp
(
(h− ε)(t − tk−1)

)
, t ∈ [tk−1, tk ).

We claim that

�ε(t) ≤ Ū(tk−1), t ∈ [tk−1, tk ). (8)

Firstly, it is clear that�ε(tk−1) = U(tk−1) ≤ Ū(tk−1). If there
exists some t ∈ (tk−1, tk ) such that �ε(t) > Ū(tk−1), then
one may choose a t? ∈ [tk−1, tk ) such that �ε(t?) = Ū(tk−1),
�ε(t) ≤ Ū(tk−1), t ∈ [tk−1, t?] and D+�ε(t?) ≥ 0. In this
case, it holds that

U(t) = �ε(t) exp
(
− (h− ε)(t − tk−1)

)
≤ Ū(tk−1) exp

(
− (h− ε)(t − tk−1)

)
= �ε(t?) exp

(
− (h− ε)(t − tk−1)

)
= U(t?) exp

(
(h− ε)(t? − t)

)
, t ∈ [tk−1, t?]. (9)

Then we can show that

U(t) ≤ U(t?) exp((h− ε)τ ), t ∈ [t? − τ, t?]. (10)

In fact, one may prove the above problem from two cases.
First, if t?−τ ≥ tk−1, then the inequality (10) can be directly
deduced in view of (9). Second, if t? − τ < tk−1, then it
follows that

U(t) ≤
{
U(t?) exp

(
(h− ε)(t? − t)

)
, t ∈ [tk−1, t?]

Ū(tk−1), t ∈ [t? − τ, tk−1]

≤ max{U(t?) exp
(
(h− ε)(t? − tk−1)

)
, Ū(tk−1)}

= max{U(t?) exp
(
(h− ε)(t? − tk−1)

)
, �ε(t?)}

= U(t?) exp
(
(h− ε)(t? − tk−1)

)
≤ U(t?) exp((h− ε)τ ),

that is, the inequality (10) holds. Hence, it follows from (5),
(7) and (10) that

D+�ε(t?) = D+U(t?) exp
(
(h− ε)(t? − tk−1)

)
+ (h− ε)U(t?) exp

(
(h− ε)(t? − tk−1)

)
≤ exp

(
(h− ε)(t? − tk−1)

){
− λ?U(t?)+ λ̄?Ū(t?)

+ (h− ε)U(t?)
}

≤ exp
(
(h− ε)(t? − tk−1)

)
U(t?)

{
− λ? + h− ε

+ λ̄? exp((h− ε)τ )
}
< 0,

which is contradiction with D+�ε(t?) ≥ 0 and thus (8) holds
for any ε ∈ (0, h̄]. Let ε → 0+, then inequality (6) can be
derived. This completes the proof.
Based on Lemmas 1 and 2, the following result can be

derived, which plays an important role in the design of
ADT-based switching laws for stability of delayed switched
system (1) with unstable modes.
Lemma 3: Assume that there exist constants λ ≥ 0,

λ̄ ≥ 0, λ? > λ̄? ≥ 0, ρ ≥ 1 and function U(t) ∈
PC([t0,T ),R+) such that

D+U(t) ≤

λU(t)+ λ̄Ū(t), t ∈ πū(T ),

−λ?U(t)+ λ̄?Ū(t), t ∈ πs̄(T )
(11)

and when N (t0,T ) ≥ 1, it holds that

U(tk ) ≤ ρU(t−k ), 1 ≤ k ≤ N (t0,T ). (12)

Then

U(T−) ≤ Ū(t0)
[
exp(hτ )ρ

]N (t0,T )

× exp
(
(λ+ λ̄)|πū(T )| − h|πs̄(T )|

)
, (13)

where h > 0 is a constant and satisfies λ̄? exp(hτ )+ h ≤ λ?.
Proof: First, if there is no switching point over the inter-

val [t0,T ), i.e., N (t0,T ) = 0, then [t0,T ) ∈ πū(T ) or πs̄(T ).
If [t0,T ) ∈ πū(T ), then it implies that πs̄(T ) = ∅. By (11)
and lemma 1, we have

U(t) ≤ Ū(t0) exp
(
(λ+ λ̄)(t − t0)

)
, t ∈ [t0,T ),

which together with the fact that |πū(T )| + |πs̄(T )| = T − t0
yields that

U(T−) ≤ Ū(t0) exp
(
(λ+ λ̄)(T − t0)

)
= Ū(t0) exp

(
(λ+ λ̄)|πū(T )|

)
.

Hence, (13) holds for [t0,T ) ∈ πū(T ). If [t0,T ) ∈ πs̄(T ), then
it implies that πū(T ) = ∅. Similarly, by (11) and lemma 1,
it can be easily deduced that (13) holds.

Now we assume that (13) holds for N (t0,T ) = k.
By induction, next we shall show that (13) holds for
N (t0,T ) = k + 1. Note that t0 < t1 < t2 < · · · < tk <
tk+1 < T , by inductive assumption, it holds that

U(t−k+1) ≤ Ū(t0)
[
exp(hτ )ρ

]N (t0,tk+1)

× exp
(
(λ+ λ̄)|πū(tk+1)| − h|πs̄(tk+1)|

)
. (14)

Since |πū(t)| and |πs̄(t)| are both monotonic nondecreasing
for t ∈ [t0,T ), we can easily obtain that

|πs̄(tk+1 − τ )| ≤ |πs̄(tk+1)| ≤ |πs̄(tk+1 − τ )| + τ,
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which together with (14) gives

Ū(t−k+1) ≤ Ū(t0)
[
exp(hτ )ρ

]N (t0,tk+1)

× exp
(
(λ+ λ̄)|πū(tk+1)| − h|πs̄(tk+1 − τ )|

)
≤ Ū(t0)

[
exp(hτ )ρ

]N (t0,tk+1)

× exp
(
(λ+ λ̄)|πū(tk+1)| − h|πs̄(tk+1)| + hτ

)
.

(15)

Next we consider the interval [tk+1,T ). There are two cases.
First, assume that [tk+1,T ) ∈ πū(T ). Then it implies that
πū(tk+1) + T − tk+1 = πū(T ) and πs̄(T ) = πs̄(tk+1).
By lemma 1 and considering (12) and (15), we get

U(T−) ≤ Ū(tk+1) exp
(
(λ+ λ̄)(T − tk+1)

)
≤ ρŪ(t0)

[
exp(hτ )ρ

]N (t0,tk+1)
exp

(
(λ+ λ̄)(T − tk+1)

)
× exp

(
(λ+ λ̄)|πū(tk+1)| − h|πs̄(tk+1)| + hτ

)
= Ū(t0) exp

(
hτ [N (t0, tk+1)+ 1]

)
ρN (t0,tk+1)+1

× exp
(
(λ+ λ̄)|πū(T )| − h|πs̄(T )|

)
= Ū(t0)

[
exp(hτ )ρ

]N (t0,T )

× exp
(
(λ+ λ̄)|πū(T )| − h|πs̄(T )|

)
,

where N (t0, tk+1) + 1 = N (t0,T ). Second, assume that
[tk+1,T ) ∈ πs̄(T ). Then it implies that πs̄(tk+1)+T − tk+1 =
πs̄(T ) and πū(T ) = πū(tk+1). By lemma 2 and considering
(12) and (15), we get

U(T−) ≤ Ū(tk+1) exp
(
− h(T − tk+1)

)
≤ ρŪ(t0)

[
exp(hτ )ρ

]N (t0,tk+1)
exp

(
(λ+ λ̄)|πū(tk+1)|

)
× exp

(
− h|πs̄(tk+1)| + hτ

)
exp

(
− h(T − tk+1)

)
= Ū(t0) exp

(
hτ [N (t0, tk+1)+ 1]

)
ρN (t0,tk+1)+1

× exp
(
(λ+ λ̄)|πū(T )| − h|πs̄(T )|

)
= Ū(t0)

[
exp(hτ )ρ

]N (t0,T )

× exp
(
(λ+ λ̄)|πū(T )| − h|πs̄(T )|

)
.

Thus either case implies that (13) holds for N (t0,T ) = k+1.
The proof is completed.

Now we are in a position to establish some sufficient
conditions on GUES of systems (1).
Theorem 1: Assume that there exist a family of continu-

ous functions {Vp ∈ V2, p ∈ P} and constants λ ≥ 0,
λ̄ ≥ 0, λ? > λ̄? ≥ 0, ρ ≥ 1, r ≥ 0, τD > 0, h > 0 such
that
(i) for every t ≥ t0, it holds that

D+Vp ≤

{
λVp(t, x(t))+ λ̄V̄p(t, x(t)), ∀p ∈Pu,

−λ?Vp(t, x(t))+ λ̄?V̄p(t, x(t)), ∀p ∈Ps,

where V̄p(t, x(t)) = sup{Vp(s, x(s)) : t − τ ≤ s ≤ t};
(ii) Vσ (t)(t, x(t)) ≤ ρVσ (t−)(t, x(t)), for all t > t0;
(iii) λ̄? exp(hτ )+ h ≤ λ?;

(iv)
hτ + ln ρ
τD

+
(λ+ λ̄)r − h

1+ r
< 0,

where (x, σ ) is a solution of system (1) with σ ∈ T . Then the
switched system (1) is GUES overT , whereT ⊆ T2(r,T )∩
Save[τD,N0] for some N0 > 0 and T ≥ t0.

Proof: Let (x, σ ) = (x(t), σ (t)) = (x(t, t0, φ), σ (t))
be a solution of system (1) with initial value (t0, φ) and
switched signal σ ∈ T , where T ⊆ T2(r,T ) ∩
Save[τD,N0] for any N0 > 0 and T ≥ t0. For conve-
nience, define U(t) := Vσ (t)(t, x(t)). Obviously, U is a piece-
wise continuous function on [t0,∞). Next we shall prove
that

U(t) ≤ Ū(t0)M exp
(
−1(t − t0)

)
, t ≥ t0, (16)

where

M = ρ[exp(hτ )ρ]c exp((λ+ λ̄+1)T )+ exp(hτN0)ρN0+1,

c=N0 +
T
τD
, 1 = −

hτ + ln ρ
τD

−
(λ+ λ̄)r − h

1+ r
> 0.

We shall show that (16) holds on the interval [t0,T ) and
[T ,∞), respectively. First, we consider the interval [t0,T ).
Note that σ ∈ T ⊆ Save[τD,N0], we get

Nσ (t0, t) ≤ N0 +
t − t0
τD
≤ N0 +

T
τD
= c, t ∈ [t0,T ].

On the other hand, it follows from the definitions of πu and
πs that for t ≥ t0, |πū(t)| = πu(t), |πs̄(t)| = πs(t), πu(t) +
πs(t) = t − t0 and N (t0, t) = Nσ (t0, t). Thus by assumptions
(i) and (iii), it is easy to check that all conditions in Lemma 3
are satisfied, which leads to

U(t−) ≤ Ū(t0)
[
exp(hτ )ρ

]N (t0,t)

× exp
(
(λ+ λ̄)πu(t)− hπs(t)

)
≤ Ū(t0)

[
exp(hτ )ρ

]c
exp

(
(λ+ λ̄)πu(t)

)
≤ Ū(t0)

[
exp(hτ )ρ

]c
exp

(
(λ+ λ̄)T

)
, (17)

for every t ∈ [t0,T ). Then we claim that

U(t) ≤ Ū(t0)ρ
[
exp(hτ )ρ

]c
exp

(
(λ+ λ̄)T

)
, (18)

for every t ∈ [t0,T ). In fact, if t ∈ [t0,T ) is a contin-
uous point of function U , then (18) can be easily obtained
by (17). If not, assume that t = tk ∈ [t0,T ), then U(tk ) =
Vσ (tk )(tk , x(tk )) ≤ ρVσ (t−k )(tk , x(tk )) = ρU(t−k ) in view of
condition (ii) and the continuity of Vσ for given σ. This
together with (17) yields

U(tk ) ≤ ρU(t−k ) ≤ Ū(t0)ρ
[
exp(hτ )ρ

]c
exp

(
(λ+ λ̄)T

)
,
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which implies that (18) holds for every t ∈ [t0,T ). To show
that (16) holds on the interval [t0,T ), by (18), we only need
to show that

Ū(t0)ρ
[
exp(hτ )ρ

]c
exp

(
(λ+ λ̄)T

)
≤ Ū(t0)M exp

(
−1(t − t0)

)
, t ∈ [t0,T ).

For convenience, let

4(t) := Ū(t0)M exp
(
−1(t − t0)

)
.

In view of the definition of M and (18), it is obvious that

4(t) ≥ Ū(t0)M exp
(
−1(T − t0)

)
≥ Ū(t0)M exp(−1T )

≥ Ū(t0)ρ
[
exp(hτ )ρ

]c
exp

(
(λ+ λ̄)T

)
,

which implies that (16) holds on the interval [t0,T ).
Next we show that (16) holds on the interval [T ,∞). Since

σ ∈ T ⊆ T2(r,T ) ∩ Save[τD,N0], we get

πu(t)
πs(t)

≤ r, t ≥ T and Nσ (t0, t) ≤ N0 +
t − t0
τD

, (19)

for t ≥ t0. Note that πu(t) + πs(t) = t − t0, it follows from
(19) that

πs(t) ≥
t − t0
1+ r

, t ≥ T . (20)

It then follows from assumptions (i) and (iii) in Theorem 1
that all conditions in Lemma 3 are satisfied. Thus from (19),
(20) and assumption (iv), one derives that

U(t−) ≤ Ū(t0)
[
exp(hτ )ρ

]N (t0,t)
exp

(
(λ+ λ̄)πu(t)− hπs(t)

)
≤ Ū(t0)

[
exp(hτ )ρ

]N0+
t−t0
τD exp

([
(λ+ λ̄)r − h

]
πs(t)

)
≤ Ū(t0)

[
exp(hτ )ρ

]N0+
t−t0
τD exp

((λ+ λ̄)r − h
1+ r

(t − t0)
)

≤ Ū(t0) exp
(
hτN0

)
ρN0 exp

(
−1(t − t0)

)
,

for every t ≥ T . Then applying the similar argument as the
proof of (18), it can be deduced from the above that

U(t) ≤ Ū(t0) exp
(
hτN0

)
ρN0+1 exp

(
−1(t − t0)

)
≤ Ū(t0)M exp

(
−1(t − t0)

)
, t ≥ T .

This completes the proof of (16) for all t ≥ t0.
Note that Vp ∈ V2, p ∈P . By (16), one may derive that

c1|x(t)|m ≤ U(t) ≤ Ū(t0)M exp
(
−1(t − t0)

)
≤ c2‖φ‖mM exp

(
−1(t − t0)

)
, t ≥ t0,

i.e.,

|x(t)| ≤
(c2
c1

) 1
m
‖φ‖M

1
m exp

(
−
1

m
(t − t0)

)
, t ≥ t0.

Note that M and 1 are independent of t0 and σ. It implies
that system (1) is GUAS over T , where T ⊆ T2(r,T ) ∩
Save[τD,N0] for some N0 > 0 and T ≥ t0. The proof is
completed.

Remark 1: In Theorem 1, when p ∈ Ps, the constant
λ? provides an estimate of the decay rate and λ̄? reflects
the insidious destructive effect of the time delay in stable
modes. While p ∈Pu, constants λ and λ̄ provide an estimate
for the divergence rate of unstable modes. Generally, (but
not always) the unstable modes will destabilize the process.
We usually require that they do not diverge too fast and the
dwell time in those modes is not too long. Not surprisingly,
in this case, conditions (iii) and (iv) in Theorem 1 enforce
restrictions on the divergence rate and total dwell time of
unstable modes. In fact, it is easy to find that condition (iv)
implies that

r <
(τD − τ )h

hτ + τD(λ+ λ̄)
,

where constant r denotes the ratio of the total dwell time
between unstable and stable modes. Note that the above
inequality indicates that the dwell times in some unstable
modes may be longer, but the ratio of the total dwell time
between unstable and stable modes should be less than the
right term of the above inequality. Moreover, it implies that it
is possible that r ≥ 1. This means that the total dwell time on
unstable modes is longer than on stable ones if τD, τ, h and
λ + λ̄ satisfy certain conditions. This inequality establishes
a relationship between average dwell time τD, time delay τ
and the ratio r . It shows that the stability of finitely delayed
switched systems with stable and unstable modes can be
guaranteed if the divergence rate and total dwell times of
unstable modes can be effectively controlled and balanced by
the ADT-based switching control with stable modes.
Remark 2: Switching controls for the stability of switched

systems with time delays have been extensively studied in
recent years. For example, [28], [32], and [52]–[54] addressed
switched systems with constant delays, and [25], [31], [33],
and [49] examined time-varying delays. However, most of
them are based on the assumption that time delays are
constant or time-varying and differentiable. Moreover, they
mainly considered the switched systems with only stable
modes. Recently, [49] studied the switched time-varying
delay systems with both stable and unstable modes and
derived some interesting results. However, the results are only
valid for a special linearly switched delay system. Moreover,
the differentiability and exact bound of the time-varying delay
is needed. In this paper, the differentiability of the time-
varying delays is removed. Moreover, the obtained result
can be applied to nonlinear switched systems with unstable
modes.
Remark 3: [33] and [55] studied delay switched systems

with both stable and unstable modes under the assumption
that tk − tk−1 ≥ τ, (the dwell time is not less than the
maximum time delay). Our results relax that requirement
and do not impose direct restrictions between the time delay
and dwell time of two consecutive switching signals in
which the switched criteria in this section are established
via the ADT technique. The advantages will be illustrated in
Section V.
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In particular, when there is no unstable mode in (1),
i.e., Pu = ∅ and P = Ps, it is obvious that πu(t) ≡ 0 and
r = 0. In this case, the following corollary can be obtained
by Theorem 1.
Corollary 1: Assume that there exist a family of continu-

ous functions {Vp ∈ V2, p ∈P} and constants λ? > λ̄? ≥ 0,
ρ ≥ 1, τD > 0, h > 0 such that
(i) D+Vp ≤ −λ?Vp(t, x) + λ̄?V̄p(t, x), for all t ≥ t0 and
p ∈P;
(ii) Vσ (t)(t, x(t)) ≤ ρVσ (t−)(t, x(t)), for all t > t0;
(iii) λ̄? exp(hτ )+ h ≤ λ?;
(iv) hτ+ln ρh < τD,

where (x, σ ) is a solution of system (1) with σ ∈ T . Then
the system (1) is GUES over T , where T ⊆ Save[τD,N0]
for some N0 > 0.
Assume that Ts = {s1, · · · , sk},Tu = {u1, · · · , ul},m =

k + l. Next, let us consider a class of switched linear delayed
systems

ẋ(t) = Asix(t)+ Bsix(t − τ (t)), σ = si ∈ Ts, (21a)

ẋ(t) = Aujx(t)+ Bujx(t − τ (t)), σ = uj ∈ Tu, (21b)

where τ (t) ∈ [0, τ ], τ > 0 is a real constant, modes (21a)
are stable and modes (21b) are unstable. Asi ,Bsi ,Auj , and Buj
are some n × n real matrices. For system (21), we have the
following result.
Theorem 2: Assume that there exist some constants λ ≥

0, λ̄ ≥ 0, λ? > λ̄? ≥ 0, ρ ≥ 1, r ≥ 0, τD > 0, h > 0,
and some n × n matrices Psi > 0,Quj > 0, i = 1, ..., k ,
j = 1, ..., l, such that

4σ ≤ 0, σ ∈ T ,

λ̄? exp(hτ )+ h ≤ λ?,
hτ + ln ρ
τD

+
(λ+ λ̄)r − h

1+ r
< 0,

Qsi ≤ λ̄
?Psi , i = 1, ..., k,

Quj ≤ λ̄Puj , j = 1, ..., l,
Pσ ≤ ρPσ− , σ ∈ T ,

(22)

where

4si =

[
PsiAsi + A

T
siPsi + λ

?Psi PsiBsi
? −Qsi

]
,

4uj =

[
PujAuj + A

T
ujPuj − λPuj PujBuj
? −Quj

]
.

Then the system (21) is GUES over T , where T ⊆

T2(r,T ) ∩ Save[τD,N0] for some N0 > 0 and T ≥ 0.
Proof: Let Vσ (t) = xT (t)Pσ x(t), σ ∈ T , then we can

compute that

D+Vσ ≤ 2xT (t)Pσ
[
Aσ x(t)+ Bσ x(t − τ )

]
≤ 2xT (t)PσAσ x(t)+ 2xT (t)PσBσ x(t − τ )

≤ 2xT (t)PσAσ x(t)+ xT (t)PσBσQ−1σ BTσPσ x(t)

+ xT (t − τ )Qσ x(t − τ ).

When σ = si ∈ Ts, it follows from the assumption (30) that

D+Vsi ≤ xT
[
PsiAsi + A

T
siPsi + PsiBsiQ

−1
si B

T
siPsi

]
x

+ xT (t − τ )Qsix(t − τ )

≤ −λ?xT (t)Psix(t)+ λ̄
?xT (t − τ )Psix(t − τ )

= −λ?Vsi (t)+ λ̄
?Vsi (t − τ ).

While σ = uj ∈ Tu, it leads to

D+Vuj ≤ xT
[
PujAuj + A

T
ujPuj + PujBujQ

−1
uj B

T
ujPuj

]
x

+ xT (t − τ )Qujx(t − τ )

≤ λxT (t)Pujx(t)+ λ̄x
T (t − τ )Pujx(t − τ )

= λVuj (t)+ λ̄Vuj (t − τ ).

Then it is easy to check that all conditions in Theorem 1 are
satisfied. Hence, we obtain that the switched system (21) is
GES over T , where T ⊆ T2(r,T ) ∩ Save[τD,N0] for some
N0 > 0 and T ≥ 0. The proof is completed.

In Theorem 2, it is shown that if the parameters of the
switched system (21) satisfy those inequalities in assump-
tion (22), then it is GES over T , where T ⊆ T2(r,T ) ∩
Save[τD,N0]. However, it should be pointed out that those
inequalities in assumption (22) can only be partially solved by
Matlab’s LMI toolbox since there exist some nonlinear terms
such as µiPσi and ρPσi . In practical applications, we have to
give those parameters (µi and ρ) a priori such that the those
inequalities work via the LMI toolbox.

IV. SWITCHED SYSTEMS WITH INFINITE DELAY
In this section, we focus on the study of infinite delay
(τ = ∞) for switched systems (1). We suppose that the term
xt in system (1) is still given as follows: xt = x(t + s), s ∈
[−τ, 0], where τ = ∞. Some delay-independent switching
laws which guarantee the US and GUESwill be presented via
multiple Lyapunov functions and Razumikhin technique.
Theorem 3: Assume that there exist a family of continuous

functions {Vp ∈ V1, p ∈ P} and constants λ ≥ 0, λ? >
0, η > 0, δ > 0, q > 1 such that
(i) D+Vp ≤ λVp(t, x(t)), t ≥ t0, whenever Vp(s, x(s)) ≤
qVp(t, x(t)) for all s ∈ [t − τ, t] and p ∈Pu;

(ii) D+Vp ≤ 0, t ≥ t0, whenever Vp(s, x(s)) ≤ qVp(t, x(t))
for all s ∈ [t − τ, t] and p ∈Ps;

(iii) σ (t−b ) ∈ Pu, for some b ∈ Z+, implies that σ (tb) ∈
Ps and tb+1 − tb ≥ η, and moreover, D+Vσ (tb) ≤
−λ?Vσ (tb)(t, x(t)), t ∈ [tb, tb+1), whenever Vσ (tb)(s, x(s)) ≤
qVσ (tb)(t, x(t)) for all s ∈ [t − τ, t];
(iv) Vσ (t)(t, x(t)) ≤ Vσ (t−)(t, x(t)), ∀t > t0;
(v) λ?η ≥ ln q > δλ;

where (x, σ ) is a solution of system (1) with σ ∈ T . Then
the switched system (1) with τ = ∞ is US over T , where
T ∈ T1(δ).

Proof: Note that Vp ∈ V1, p ∈P . There exist ω1, ω2 ∈

K such that ω1(|x|) ≤ Vp(t, x) ≤ ω2(|x|), uniformly for all
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p ∈ P and (t, x) ∈ [t0 − τ,∞) × Rn. For any ε > 0,
choose δ0 > 0 such that qw2(δ0) ≤ w1(ε). Let (x, σ ) =
(x(t), σ (t)) = (x(t, t0, φ), σ (t)) be the solution of system (1)
with initial value (t0, φ) and switched signal σ ∈ T , where
T ∈ T1(δ).Next we shall prove the uniform stability, that is,
for any t0 ≥ 0 and φ ∈ Cτ , ‖φ‖ ≤ δ0 implies that for each
σ ∈ T , |x(t)| ≤ ε, t ≥ t0.
For convenience, let U(t) = Vσ (t)(t, x(t)). If we can prove

that for any T ∗ ≥ t0, U(T ∗−) ≤ qw2(δ0), then it follows from
assumption (iv) and the continuity of Vσ for given σ that

Vσ (T ∗)(T ∗, x(T ∗)) ≤ Vσ (T ∗−)(T
∗, x(T ∗))

= Vσ (T ∗−)(T
∗−, x(T ∗−)) ≤ qw2(δ0).

In view of the fact that qw2(δ0) ≤ w1(ε), the uniform stability
can be directly obtained. Hence, in the following our main
work is to show that for any given T ∗ ≥ t0, it holds that
U(T ∗−) ≤ qw2(δ0). For later use, denote by t1 < t2 < · · · <
tNσ (t0,T ∗) the switching times of σ over the interval [t0,T ∗)
and Nσ (t0,T ∗) the number of switching times of σ over the
interval [t0,T ∗).
First, we consider the case thatNσ (t0,T ∗) = 0, i.e., there is

no switching signal on the interval [t0,T ∗). One may analyze
the problem from two cases: σ (t0) ∈Ps or σ (t0) ∈Pu.

Case 1: When σ (t0) ∈ Ps, we claim that U(t) ≤
w2(δ0), t ∈ [t0,T ∗). For any κ > 0, let Uκ (t) =
U(t) exp(−κ(t − t0)), t ∈ [t0,T ∗) and Uκ (t) = U(t), t ∈
[t0 − τ, t0].We first prove that Uκ (t) ≤ w2(δ0), t ∈ [t0,T ∗).
Suppose on the contrary, then there exists a t∗ ∈ [t0,T ∗)
such that Uκ (t∗) = w2(δ0), Uκ (t) ≤ w2(δ0), t ∈ [t0, t∗] and
D+Uκ (t∗) ≥ 0. Since ‖φ‖ ≤ δ0, it can be deduced that
qUκ (t∗) = qw2(δ0) ≥ qUκ (s) ≥ Uκ (s), s ∈ [t∗ − τ, t∗].
Note that if t∗ − τ ≥ t0 and s ∈ [t∗ − τ, t∗], qUκ (t∗) ≥
Uκ (s) = U(s) exp(−κ(s − t0)), which implies that qU(t∗) ≥
qU(t∗) exp(−κ(t∗ − s)) ≥ U(s); While if t∗ − τ < t0 and
s ∈ [t∗ − τ, t0), qU(t∗) ≥ qUκ (t∗) ≥ Uκ (s) = U(s),
which implies that qU(t∗) ≥ U(s) for all s ∈ [t∗ − τ, t∗].
By assumption (ii), it holds that D+U(t∗) ≤ 0, which
implies that D+Uκ (t∗) = D+U(t∗) exp(−κ(t − t0)) −
κU(t∗) exp(−κ(t − t0)) ≤ −κU(t∗) exp(−κ(t − t0)) < 0,
which is contradiction with D+Uκ (t∗) ≥ 0. Hence, we obtain
that for any κ > 0, it holds that Uκ (t) ≤ w2(δ0), t ∈ [t0,T ∗),
which leads to U(t) ≤ w2(δ0) exp(κ(T ∗ − t0)), t ∈ [t0,T ∗).
By the arbitrary of constant κ > 0, it can be deduced that
U(t) ≤ w2(δ0), t ∈ [t0,T ∗). This completes the proof of
Case 1.
Case 2: When σ (t0) ∈ Pu, we claim that U(t) ≤

qw2(δ0), t ∈ [t0,T ∗). Suppose on the contrary, then there
exists a t? ∈ [t0,T ∗) such that U(t?) = qw2(δ0), U(t) ≤
qw2(δ0), t ∈ [t0, t?]. Moreover, it follows from U(t0) ≤
w2(δ0) that t? > t0. In this case, we note that U(t?) =
qw2(δ0) > w2(δ0) and U(t0) ≤ w2(δ0). Thus there must
exist a t?? ∈ [t0, t?) such that U(t??) = w2(δ0) and U(t) >
w2(δ0), t ∈ (t??, t?]. Hence, we get qU(t) ≥ qw2(δ0) ≥
U(s), s ∈ [t−τ, t], t ∈ [t??, t?].By assumption (i),D+U(t) ≤
λU(t), t ∈ [t??, t?]. Integrating it from t?? to t?, it holds from

T ∈ T1(δ) that qw2(δ0) = U(t?) ≤ U(t??)eλ(t?−t??) ≤
w2(δ0)eλδ, which contradicts ln q > λδ in assumption (v).
This completes the proof of Case 2.
Thus either Case 1 or Case 2, we arrive at the assertion that

U(t) ≤ qw2(δ0), t ∈ [t0,T ∗), which implies that U(T ∗−) ≤
qw2(δ0).
Now we consider the case that Nσ (t0,T ∗) ≥ 1 (abbr. Nσ ),

i.e., there exists at least a switching point on the interval
[t0,T ∗). For this case, we will prove that

σ (tj) ∈Ps ⇒

{
U(t) ≤ qw2(δ0), t ∈ [tj, tj+1),
U(t−j+1) ≤ w2(δ0), 0 ≤ j < Nσ .

σ (tj) ∈Pu ⇒ U(t) ≤ qw2(δ0), t ∈ [tj, tj+1), 0 ≤ j < Nσ .

(23)

The above assertions can be shown by induction. First, it is
obvious that (23) holds when Nσ = 1 from the proof of the
case that Nσ = 0. Now we assume that (23) holds when
Nσ = k. Then it holds that

σ (tj) ∈Ps ⇒

U(t) ≤ qw2(δ0), t ∈ [tj, tj+1),

U(t−j+1) ≤ w2(δ0), 0 ≤ j < k.

σ (tj) ∈Pu ⇒ U(t) ≤ qw2(δ0), t ∈ [tj, tj+1), 0 ≤ j < k.

(24)

which implies that

U(t) ≤ qw2(δ0), t ∈ [t0, tk ). (25)

Next we shall show that (23) holds when Nσ = k + 1. To do
this, we begin it with σ (tk−1) ∈ Ps or σ (tk−1) ∈ Pu.

If σ (tk−1) ∈ Ps, then there are two cases: σ (tk ) ∈
Ps or σ (tk ) ∈Pu.

Case 1?: When σ (tk ) ∈ Ps, we claim that U(t) ≤
w2(δ0), t ∈ [tk , tk+1). Since σ (tk−1) ∈ Ps, it holds from
(24) that U(t−k ) ≤ w2(δ0), which together with assumption
(iv) yields that U(tk ) ≤ U(t−k ) ≤ w2(δ0). Thus the assertion
U(t) ≤ w2(δ0) holds for t = tk . Next we only need to
prove that U(t) ≤ w2(δ0), t ∈ (tk , tk+1). For any κ > 0,
let Uκ (t) = U(t) exp(−κ(t − tk )), t ∈ [tk , tk+1) and Uκ (t) =
U(t), t ∈ [t0, tk ). We firstly prove that Uκ (t) ≤ w2(δ0), t ∈
[tk , tk+1). If it is false, then there exists a t̂ ∈ [tk , tk+1)
such that Uκ (t̂) = w2(δ0), Uκ (t) ≤ w2(δ0), t ∈ [tk , t̂] and
D+Uκ (t̂) ≥ 0. In this case, it can be deduced from (25)
that qU(t̂) ≥ qUκ (t̂) = qw2(δ0) ≥ U(s), s ∈ [t̂ − τ, t̂].
By assumption (ii), D+Uκ (t̂) ≤ −κU(t̂) exp(−κ(t̂ − t0)) <
0, which is contradiction. Then by the arbitrary of constant
κ > 0, it can be deduced that U(t) ≤ w2(δ0), t ∈ [tk , tk+1).
This completes the proof of Case 1?.
Case 2?: When σ (tk ) ∈ Pu, we claim that U(t) ≤

qw2(δ0), t ∈ [tk , tk+1). The proof process is similar to Case 2,
where Nσ (t0,T ∗) = 0, and thus is omitted here.
If σ (tk−1) ∈ Pu, then σ (tk ) ∈ Ps in view of assump-

tion (iii).
In this case, we can show that

U(t) ≤ qw2(δ0), t ∈ [tk , tk+1) (26)
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and

U(t−k+1) ≤ w2(δ0). (27)

The proof of (26) is similar to Case 1?, where σ (tk ) ∈ Ps
and is also omitted here. Next we only show that (27) holds.
If this assertion is false, then U(t−k+1) > w2(δ0). There are
two cases: (I). U(t) > w2(δ0) for all t ∈ [tk , tk+1); (II)
There exists some t ∈ [tk , tk+1) such that U(t) ≤ w2(δ0).
For case (I), it can be deduced from (25) and (26) that
qU(t) ≥ qw2(δ0) ≥ U(s), s ∈ [t − τ, t], t ∈ [tk , tk+1).
By assumption (iii) and (26), we get w2(δ0) < U(t−k+1) ≤
U(tk )e−λ

?(tk+1−tk ) ≤ qw2(δ0)e−λ
?η, which is a contradiction

with eλ
?η
≥ q. Thus case (I) is impossible. For case (II), one

may choose a t̄ ∈ [tk , tk+1) such that U(t̄) = w2(δ0) and
U(t) > w2(δ0), t ∈ (t̄, tk+1]. It is obvious that t̄ < tk+1 in
view of the assumption that w2(δ0) < U(t−k+1). Thus it can be
deduced from (25) and (26) that qU(t) ≥ qw2(δ0) ≥ U(s), s ∈
[t − τ, t], t ∈ [t̄, tk+1). By assumption (iii), we know that U
is monotonic nonincreasing on [tk , tk+1), which yields that
w2(δ0) < U(t−k+1) ≤ U(t̄) = w2(δ0). Obviously, this is
a contradiction and case (II) is also impossible. Thus (27)
holds.
From the above discussion, we obtain that

σ (tk ) ∈Ps ⇒

{
U(t) ≤ qw2(δ0), t ∈ [tk , tk+1),
U(t−k+1) ≤ w2(δ0),

σ (tk ) ∈Pu ⇒ U(t) ≤ qw2(δ0), t ∈ [tk , tk+1). (28)

By induction, we know that (23) holds for any Nσ ≥ 1.
Based on (23), we can show that U(t) ≤ qw2(δ0), t ∈
[tNσ (t0,T ∗),T

∗), which implies that U(T ∗−) ≤ qw2(δ0). The
proof process is similar to the proof of (28). We need only to
notice two points here. First, we should begin the proof with
σ (tNσ (t0,T ∗)−1) ∈ Ps or σ (tNσ (t0,T ∗)−1) ∈ Pu. Second, it
follows from (23) that U(t) ≤ qw2(δ0), t ∈ [t0, tNσ (t0,T ∗)).
Combining all the assertions obtained, the proof is
completed.

In particular, if we strengthen some conditions in Theo-
rem 3, then the following immediate results can be derived.
Corollary 2: Assume that there exist a family of continu-

ous functions {Vp ∈ V1, p ∈ P} and constants λ ≥ 0, λ? >
0, η > 0, δ > 0, q > 1 such that
(i) D+Vp ≤ λVp(t, x(t)), t ≥ t0, whenever Vp(s, x(s)) ≤
qVp(t, x(t)) for all s ∈ [t − τ, t] and p ∈Pu;

(ii) D+Vp ≤ −λ?Vp(t, x(t)), t ≥ t0, whenever Vp(s, x(s)) ≤
qVp(t, x(t)) for all s ∈ [t − τ, t] and p ∈Ps;

(iii) σ (t−b ) ∈Pu, for some b ∈ Z+, implies that σ (tb) ∈Ps
and tb+1 − tb ≥ η;
(iv) Vσ (t)(t, x(t)) ≤ Vσ (t−)(t, x(t)), ∀t > t0;
(v) λ?η ≥ ln q > δλ;

where (x, σ ) is a solution of system (1) with σ ∈ T . Then
the switched system (1) with τ = ∞ is US over T , where
T ∈ T1(δ).
Corollary 3: Assume that there exist a family of contin-

uous functions {Vp ∈ V1, p ∈ P} and constants λ ≥ 0,
λ? > 0, η > 0, δ > 0 such that

(i) D+Vp ≤ λVp(t, x(t)), t ≥ t0, whenever Vp(s, x(s)) ≤ eλ
?η

Vp(t, x(t)) for all s ∈ [t − τ, t] and p ∈Pu;

(ii) D+Vp ≤ −λ?Vp(t, x(t)), t ≥ t0, whenever Vp(s, x(s)) ≤
eλ

?η Vp(t, x(t)) for all s ∈ [t − τ, t] and p ∈Ps;

(iii) σ (t−b ) ∈Pu, for some b ∈ Z+, implies that σ (tb) ∈Ps
and tb+1 − tb ≥ η;
(iv) Vσ (t)(t, x(t)) ≤ Vσ (t−)(t, x(t)), ∀t > t0;
(vi) λ?η − δλ > 0,
where (x, σ ) is a solution of system (1) with σ ∈ T . Then
the switched system (1) with τ = ∞ is US over T , where
T ∈ T1(δ).
Furthermore, when there is no unstable mode in (1), i.e.,

Pu = ∅ and P = Ps, the following result can be obtained
by Theorem 3.
Corollary 4: Assume that there exist a family of continu-

ous functions {Vp ∈ V1, p ∈ P} and constant q > 1 such
that
(i) D+Vp ≤ 0, t ≥ t0, whenever Vp(s, x(s)) ≤ qVp(t, x(t))
for all s ∈ [t − τ, t] and p ∈Ps;

(ii) Vσ (t)(t, x(t)) ≤ Vσ (t−)(t, x(t)), ∀t > t0;
where (x, σ ) is a solution of system (1) with σ ∈ T .

Then the switched system (1) with τ = ∞ is US over T ,
where T ∈ T0.

In switched systems, a significant control problem is to
design a set of controllers for the unforced system and find
admissible switching signals such that the closed-loop system
is stable and satisfies certain performance. If we ignore the
unstable modes and focus on the design of controllers. Then
let us consider a class of linear delayed switched systems with
control input, which is given in the form

ẋ(t) = Aσ (t)x(t − τ (t))+ Bσ (t)u(t), σ (t) ∈ T , (29)

where u(t) = Kσ (t)x(t) is the control input and Kσ (t) is
control gain that will be designed to achieve the stability.
Assume that the time delay τ (t) > 0 in switched system (29)
can not be exactly observed, that is, it is possible that τ (t) is
mall or large, even unbounded. Also it is possible that τ (t)
is not differentiable or discontinuous. In this case, all those
results in [27]–[34], [49], and [52]–[55] cannot be applied to
the design of controller u such that the switched system (29)
is stable. By Corollary 4, we can derive the following result.
Theorem 4: Assume that there exist n× n real symmetric

matrices Uσ (t), positive definite matrices Pσ (t) > 0, σ ∈ T ,
and constant q > 1 such that Pσ (t) ≤ Pσ (t−) and

Bσ (t)Uσ (t) + Uσ (t)BTσ (t) + Aσ (t)Pσ (t)A
T
σ (t) + qPσ (t) ≤ 0,

(30)

for all σ ∈ T . Then the switched system (29) is US over T ,
where T ∈ T0 and the input gains are designed by

Kσ (t) = Uσ (t)P
−1
σ (t), σ ∈ T .

Proof: Define

4 := P−1σ (t)Bσ (t)Kσ (t) +KT
σ (t)B

T
σ (t)P

−1
σ (t) + qP

−1
σ (t)

+ P−1σ (t)Aσ (t)Pσ (t)A
T
σ (t)P

−1
σ (t)
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Note that Kσ (t) = Uσ (t)P
−1
σ (t), σ ∈ T . It implies that

4 ≤ 0⇔ (30) holds.

Consider Lyapunov function Vσ (t) = xT (t)P−1σ (t)x(t). When
Vp(s, x(s)) ≤ qVp(t, x(t)) for all s ∈ [t−τ, t], we can compute
that

D+Vσ = 2 xT (t)P−1σ (t){Aσ (t)x(t − τ (t))+ Bσ (t)Kσ (t)x(t)}

≤ 2 xT (t)P−1σ (t)Bσ (t)Kσ (t)x(t)

+ xT (t)P−1σ (t)Aσ (t)Pσ (t)A
T
σ (t)P

−1
σ (t)x(t)

+ xT (t − τ (t))P−1σ (t)x(t − τ (t))

≤ xT (t){P−1σ (t)Bσ (t)Kσ (t) +KT
σ (t)B

T
σ (t)P

−1
σ (t)

+P−1σ (t)Aσ (t)Pσ (t)A
T
σ (t)P

−1
σ (t) + qP

−1
σ (t)}x(t)

= xT (t)4x(t) ≤ 0.

Based on Corollary 4, the switched system (29) is US over
T , where T ∈ T0. The proof is completed.

By establishing another auxiliary function, the result for
GUES of the switched systems (1) can be derived as follows.
Theorem 5: Assume that there exist a family of continuous

functions {Vp ∈ V2, p ∈ P} and constants λ ≥ 0, λ? >
0, η > 0, δ > 0, q > 1, γ > 0 such that
(i) D+Vp ≤ λVp(t, x(t)), t ≥ t0, whenever Vp(s, x(s)) ≤
qeγ (t−s)Vp(t, x(t)) for all s ∈ [t − τ, t] and p ∈Pu;

(ii) D+Vp < −λ?Vp(t, x(t)), t ≥ t0, whenever Vp(s, x(s)) ≤
qeγ (t−s)Vp(t, x(t)) for all s ∈ [t − τ, t] and p ∈Ps;

(iii) σ (t−b ) ∈Pu, for some b ∈ Z+, implies that σ (tb) ∈Ps
and tb+1 − tb ≥ η;
(iv) Vσ (t)(t, x(t)) ≤ Vσ (t−)(t, x(t)), ∀t > t0;
(v) λ?η > ln q > δλ;

where (x, σ ) is a solution of system (1) with σ ∈ T . Then
the switched system (1) with τ = ∞ is GUES overT , where
T ∈ T1(δ).

Proof: Let (x, σ ) = (x(t), σ (t)) = (x(t, t0, φ), σ (t))
be the solution of system (1) with initial value (t0, φ) and
switched signal σ ∈ T , where T ∈ T1(δ). Since Vp ∈
V2, p ∈ P . There exist constants c1, c2 and m such that
c1|x|m ≤ Vp(t, x) ≤ c2|x|m, uniformly for all p ∈ P and
(t, x) ∈ [t0 − τ,∞) × Rn. Then we can show that for any
t0 ≥ 0 and φ ∈ Cτ , the following inequality holds for each
σ ∈ T ,

|x(t)| ≤
(qc2
c1

) 1
m
‖φ‖e−

ε
m (t−t0), t ≥ t0, (31)

where ε = 1
2 min{ ln q−δλ

δ
, λ

?η−ln q
η
} and T ∈ T1(δ).

In fact, define an auxiliary function:

U(t) =
{
Vσ (t)(t, x(t))eε(t−t0), t ≥ t0,
Vσ (t)(t, x(t)), t0 − τ ≤ t ≤ t0.

Then applying exactly the same argument as Theorem 3, one
may prove that for any T ∗ ≥ t0, U(T ∗−) ≤ qw2(‖φ‖),
wherew2(‖φ‖) = c2‖φ‖m,which will lead to (31). The proof
process is repetitive and thus is omitted here.

As an application, we consider the delayed switched sys-
tem (1) with

fsi = Asix(t)+ Bsi

∫
∞

0
x(t − v)h(v)dv, si ∈ Ts, (32a)

fuj = Aujx(t)+ Buj

∫
∞

0
x(t − v)h(v)dv, uj ∈ Tu, (32b)

whereAsi ,Bsi ,Auj , andBuj are some n×n real matrices,Ts =

{s1, · · · , sk},Tu = {u1, · · · , ul},m = k + l, modes (32a)
are stable and modes (32b) are unstable. h ∈ C([0,∞),R+)
satisfying∫

∞

0
h(v)dv = 1 and

∫
∞

0
h(v) exp(ωv)dv := h? <∞,

in which ω > 0 is a given constant.
Theorem 6: Assume that there exist n×n positive definite

matrices Psi > 0,Puj > 0, si ∈ Ts, uj ∈ Tu, and constants
q > 1, η > 0, λ ≥ 0, λ? > 0, and δ > 0 satisfying λ?η >
ln q > δλ,

AsiPsi + PsiA
T
si + BsiPsiB

T
si + [qh? + λ?]Psi ≤ 0, (33)

AujPuj + PujA
T
uj + BujPujB

T
uj + [qh? − λ]Puj ≤ 0, (34)

for all si ∈ Ts, uj ∈ Tu. Moreover, σ (t−b ) ∈ Pu, for some
b ∈ R+, implies that σ (tb) ∈ Ps, tb+1 − tb ≥ η. Then the
switched system (32) is GUES over T , where T ∈ T1(δ).

Proof: Define

61 := P−1si Asi + A
T
siP
−1
si + [qh? + λ?]P−1si

+P−1si BsiPsiB
T
siP
−1
si , si ∈ Ts.

62 := P−1uj Auj + A
T
ujP
−1
uj + [qh? − λ]P−1uj

+P−1uj BujPujB
T
ujP
−1
uj , uj ∈ Tu.

It is easy to find that

61 ≤ 0⇔ (33) holds,

62 ≤ 0⇔ (34) holds.

Then considering Lyapunov function Vσ (t) = xT (t)P−1σ (t)x(t),
σ (t) = si or uj, and applying the similar discussion in
Theorem 4, we can obtain the above result. The proof is
omitted here.
Remark 4: In this section, we present some results for the

uniform stability and globally uniformly exponential stability
of delayed switched systems with stable and unstable modes
in which the time delay may be unknown or infinite. To over-
come the difficulties caused by the fact that the exact time
delay cannot be observed, all those results are based on the
assumption that σ (t−b ) ∈ Pu, for some b ∈ R+, implying
that σ (tb) ∈ Ps, tb+1 − tb ≥ η. This indicates that when
an unstable mode is working, the next mode to be activated
should be a stable one and the dwell time at that mode
should be not less than η. This assumption is slightly stronger
than the results for the finitely delayed switched systems in
Section III. Hence, the stability and switching signal design
for infinitely delayed switched systems requires further study.
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V. NUMERICAL EXAMPLES
In this section, we shall present some numerical examples and
their simulations to demonstrate the validity and advantages
of the designed switched laws.
Example 1: Consider a 1D switched delayed system (1)

with P = {1, 2} and

f1(t, xt ) = x(t)+ 0.2 sin
(
x(t − τ (t))

)
, t ≥ 0, (35a)

f2(t, xt ) = −2x(t)+ 0.1 tanh
(
x(t − τ (t))

)
, t ≥ 0. (35b)

where τ (t) ∈ [0, τ ], τ ≤ ∞. We have the following
assertions for τ <∞ and τ = ∞, respectively.
Assertion 1 (Case: τ <∞): Assume that there exist con-

stants h > 0, τD > 0 and r ≥ 0 such that 0.1 exp(hτ )+h ≤ 2
and

hτ
τD
+

1.2r − h
1+ r

< 0.

Then the switched system (35) is GUES overT ,whereT ⊆
T2(r,T ) ∩ Save[τD,N0] for some N0 > 0 and T ≥ 0.
Assertion 2 (Case: τ = ∞): Assume that there exist con-

stants q > 1, η > 0 and δ > 0 such that(
2−

q
10

)
η ≥ ln q > δ

(
1+

q
5

)
.

Moreover, σ (t−b ) ∈ Pu, for some b ∈ R+, implies that
σ (tb) ∈ Ps and tb+1 − tb ≥ η. Then the switched system
(35) is US over T , where T ∈ T1(δ).
Remark 5: Consider Lyapunov functions V1 = V2 = |x|.

Then it is easy to derive that

D+V1(t) ≤ V1(t)+ 0.2V1(t − τ (t)),

D+V2(t) ≤ −2V2(t)+ 0.1V2(t − τ (t)).

By Theorem 1 and Theorem 3, it is easy to derive the above
two assertions. In particular, if τ = 0.2 and τD = 1, then
we take h = 1.85, and r = 0.9 such that all conditions in
Assertion 1 hold. We obtain that the switched system (35)
with τ = 0.2 is GES over T , where T ⊆ T2(0.9,T ) ∩
Save[1,N0] for some N0 > 0 and T ≥ 0. In simulations, we
choose the switching signal as follows

σ̄ (t) =

{
2, t ∈ [t2k−2, t2k−1), k ∈ Z+,
1, t ∈ [t2k−1, t2k ), k ∈ Z+,

(36)

where the switching points tk , k ∈ Z+, satisfy

t4k − t4k−1 = 0.88, t4k−1 − t4k−2 = 2,

t4k−2 − t4k−3 = 1, t4k−3 − t4k−4 = 0.12. (37)

In this case, it is easy to check that one may choose N0 = 3
and T = 40 such that Nσ (β, t) ≤ 3 + t − β for all t ≥
β ≥ 0 and πu/πs ≤ 0.9 for all t ≥ 40. Then we know that
σ̄ ∈ T2(0.9, 40)∩Save[1, 3]. Fig. 1.(a) shows the trajectories
of switched system (35) with τ (t) = 0.1 + 0.1[sin t]∗.
Under the same conditions, if we exchange the dwell times
of [t4k−3, t4k−2] and [t4k−2, t4k−1], i.e., t4k−1 − t4k−2 = 1
and t4k−2− t4k−3 = 2. Then it will go against the Assertion 1
and in this case, Fig. 1.(b) tells us that switched system (35)
is unstable under such undesigned switching law.

FIGURE 1. (a). Trajectories of switched system (35) with switching law
(36)-(37) and time delay τ (t) = 0.1+ 0.1[sin t ]∗. (b) Trajectories of
switched system (35) with the undesigned switching law. (c) Trajectories
of switched system (35) with τ (t) = n[ln(1+ t)]∗, n = 1,5, and 10,
respectively. (d). Trajectories of switched system (35) with the undesigned
switching law.

On the other hand, if τ = ∞ and we take q = 2.4, η =
0.5 and δ = 0.59. It then follows from Assertion 2 that if
σ (t−b ) ∈ Pu implies that σ (tb) ∈ Ps and tb+1 − tb ≥ 0.5,
then the switched system (35) with τ = ∞ is US over T ,

where T ∈ T1(0.59). In simulations, we choose the same
switching signal (36) but the switching points tk , k ∈ Z+, is
updated by

t2k − t2k−1 = 0.55, t2k−1 − t2k−2 = 0.5.

Obviously, it satisfies that σ (t−b ) ∈ Pu implies that σ (tb) ∈
Ps and tb+1 − tb ≥ 0.5. Fig. 1.(c) shows the trajectories
of switched system (35) with τ (t) = n[ln(1 + t)]∗, n =
1, 5, and 10, respectively. Under the same conditions, if the
dwell time on the interval [t2k−1, t2k ] is extended by t2k −
t2k−1 = 0.8, which goes against the Assertion 2. In this case,
the switched system (35) is unstable under the same initial
value, which is shown in Fig. 1.(d). In above simulations,
we choose the time step s = 0.001 and the initial values
φ = 0.5l(−1)l, l = 1, · · · , 20, in Fig. 1.(a, b), and φ = 0.1
in Fig. 1.(c, d).
Example 2: Consider the switched delay system (21) with

P = {1, 2}, τ (t) ∈ [0, τ ], τ = 0.1, and

A1 =

 2 −0.3 0.1
0.2 1 0
0 −0.2 2

, B1 =

 1 0.5 −0.2
0.1 0.1 0.1
−0.2 0 0.3

,
A2 =

−4 0.1 0.13
0.1 −5 0.4
0 0.3 −4

, B2 =

0.2 −0.3 0.3
0.1 0.3 0.2
0 −0.2 0.1

.
When σ = 1, the mode is unstable; while σ = 2, the mode is
stable. Based on Theorem 2, we have the following assertion.
Assertion 3: Assume that there exist two constants τD and

r such that
0.7523
τD

+
3r − 5.7
1+ r

< 0. (38)
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FIGURE 2. (a). Trajectories of switched system (21) with
τ (t) = 0.08− 0.02[cos t ]∗. (b) Phase plots of switched system (21).

Then the system (21) is GUES over T , where T ⊆

T2(r,T ) ∩ Save[τD,N0] for some N0 > 0 and T ≥ 0.
In fact, choose λ = 2, λ̄ = λ̄? = 1, λ? = 7.5, ρ =

1.2, µ̄2 = 1. Via the Matlab’s LMI toolbox, we can obtain
that LMIs in Theorem 2 have feasible solutions. Then one
may choose h = 5.7 such that all conditions in Theorem 2
are satisfied and thus the above assertion can be obtained.
In particular, we take τD = 0.5 and r = 0.93. It then
follows from (38) that the stability can be guaranteed when
T ⊆ T2(0.93,T ) ∩ Save[0.5,N0] for some N0 > 0 and
T ≥ 0. In simulations, we still consider the switching signal
(36) but the switching points tk , k ∈ Z+, is replaced by

t4k − t4k−1 = 0.45, t4k−1 − t4k−2 = 0.75,

t4k−2 − t4k−3 = 0.6, t4k−3 − t4k−4 = 0.2.

In this case, one may choose N0 = 3 and T = 50 such that
Nσ (β, t) ≤ 3 + 2(t − β) for all t ≥ β ≥ 0 and πu/πs ≤
0.93 for all t ≥ 50. Then it holds that σ̄ ∈ T2(0.93, 50) ∩
Save[0.5, 3]. Fig. 2. shows the trajectories and phase plots of
switched system (21) with τ (t) = 0.08− 0.02[cos t]∗.

In above simulations, we choose the time step s = 0.001
and the initial values φ = (−1)l(−0.3l, 0.5l, 0.4l)T , l =
1, · · · , 20.
Example 3: Consider the closed-loop switched system

(29) with P = {1, 2}, τ (t) : R+→ R+ is unknown, and

A1 =
[

2 0.1
0.2 1

]
, B1 =

[
1 0.5
2 −1

]
,

A2 =
[

1 0.2
0.1 1

]
, B2 =

[
1 −0.5
0.1 0.3

]
.

Based on Theorem 4, we have the following assertion.
Assertion 4: The switched system (29) is US over T ,

where T ∈ T0 and the input gains are designed by

K1 =

[
−1.2359 −1.2401
−1.2401 0.3111

]
,

K2 =

[
−1.7548 1.2286
1.2286 −0.1889

]
In fact, choose q = 1.2 and it is easy to check that the LMIs

in (30) have feasible solution and then the above input gains
K1 and K2 can be derived. The corresponding numerical
simulations are shown in Fig. 3, where Fig. 3.(a) deals with
τ = 0.2 and Fig. 3.(b) deals with τ = [

√
t]∗. In simulations,

we choose the time step s = 0.001 and the initial values
φ = (−0.2, 0.4)T .

FIGURE 3. (a). Phase plot of switched system (29) with input gains
K1,K2 and time delay τ = 0.2 (b) Phase plot of switched system (29)
with input gains K1,K2 and time delay τ = [

√
t ]∗.

Remark 6: In this section, we present three numerical
examples in which the time delays are finitely/infinitely
time-varying but not differentiable. Existing results (such
as [40]–[42] and [44]–[48]) from studies on switched
systems with unstable modes cannot be utilized to design
the stable switching laws. Moreover, our designed switching
law ensures that the total dwell time on unstable modes is
longer than stable ones, such as with the switching signals in
Assertion 2 or Assertion 3 with τD ≥ 0.5573.

VI. CONCLUSION
This paper was dedicated to the problem of designing stable
switching laws for delay switched systems with stable and
unstable modes, in which the modes may be finite delay,
infinite delay or unknown delay modes. Different approaches
(including inequality techniques, average dwell time tech-
niques, multiple Lyapunov functions, and the Razumikhin
method with both delay-dependent and delay-independent
switching laws) have been presented to guarantee uniform
stability and globally uniform exponential stability. Our
results show that the stability of finitely delayed switched
systems with stable and unstable modes can be guaranteed
if the divergence rate and total dwell times of unstable modes
can be effectively controlled and balanced by the ADT-based
switching control with stable modes. Our results for infinitely
delayed switched systems are very useful for the design of
switching laws for stable or unstable modes that are sub-
ject to unknown, infinite, or inestimable value time delays.
However, it should be mentioned that the designed switching
law for infinitely delayed switched systems is not applicable
to switched controls that include two consecutive unstable
modes, and it requires further study.
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