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ABSTRACT Vehicle positioning has played an important role in intelligent transportation systems. Previous
research has had difficulties in increasing the sensor aperture and reducing the computational complexity of
the vehicle positioning algorithm. This paper proposes a new sensor model to extend the sensor aperture,
which is similar to the nested sensor model combined with fourth-order cumulants. The proposed algorithm
estimates the number of vehicles, which is much higher than the actual number of sensors. An ideal
characteristic equation-based method is used to avoid the use of eigenvalue decomposition and spectrum
peak search, thereby greatly reducing the computation complexity. In addition, the weighted coefficient
matrix is introduced for optimization. Theoretical analysis and simulation results show that the proposed
algorithm has lower computational complexity, avoids 2-D parameter matching, and has a high utilization
of arrays while still ensuring accurate parameter estimation.

INDEX TERMS Intelligent transportation system, vehicle detection, sensor systems, the sensor aperture
extension, characteristic equation-based method (CEM), weighted coefficient matrix.

I. INTRODUCTION
An intelligent transportation system is a fundamental
approach used to solve the problems of transportation in the
world. An intelligent transportation system is produced in the
background of the full development and progress of modern
science and technology. The real-time positioning of the vehi-
cles facilitates unified management, monitoring, scheduling
and so on. Vehicle positioning has played an important role
in intelligent transportation systems. In the past few years,
source location has received significant attention. Most rel-
evant papers have focused on the estimation of far-field
sources [1]–[5], as it is assumed that such an approach greatly
simplifies the spatial spectrum estimation. In contrast, there
are relatively few studies on near-field sources. In real envi-
ronments, near-field sources location are typically used in
vehicle positioning. Therefore, the study of the localization
of near-field sources has started to receive more attention
and has achieved many good results. Some specific algo-
rithms [6]–[13] have been presented for near-field sources,
such as the two-dimensional (2-D) MUSIC method [14],
the maximum likelihood method [15], the path follow-
ing method [16] and the polynomial rooting method [17].
The high-order ESPRIT method was also presented in
reference [18].

Currently, the symmetric sensor model is adopted by most
of the traditional algorithms [19]–[21] for near-field sources.
Traditional algorithms can lead to a loss of sensor apertures
because the number of sources that can be resolved by tra-
ditional algorithms is less than the number of the sensors.
Additionally, most algorithms require eigen value decompo-
sition (EVD) and a spectrum search, thereby increasing the
computational complexity.

In this paper, we present a novel sensor model named
the extended symmetry nested sensor (ES-nested), which is
similar to the combination of the NEST sensor model [22]
with a special high-order cumulants vector to greatly expand
the sensor aperture. The proposed algorithm can estimate a
much larger number of sources than the number of sensors
and adopts the characteristic equation-based method (CEM)
[23], [24] instead of EVD and spectrum search. The proposed
algorithm can reduce the computational complexity and can
also guarantee the estimation precision. The theory shows
that the proposed algorithm has a large aperture extension
ability and a low computational complexity. The novel sensor
model is applied to intelligent transportation, meanwhile it is
also applied to Smart grid [25], [26].

The main factors that affect the performance of the
proposed algorithm are the precision of the high-order
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cumulant vector z and the difference between the elements
of z. The algorithm can be further improved by introduction
of a weighted coefficient matrix W for optimization. The
theory shows that the improved algorithm can improve the
performance of the proposed algorithm without increasing
the computational complexity.

The remainder of the paper consists of five sections.
Section 2 briefly reviews the novel sensor model and the
signal model. Section 3 introduces the proposed algorithm
in further detail. Section 4 introduces the weighted coeffi-
cient matrix and provides details on how it can improve the
proposed algorithm. Section 5 presents sufficient numerical
examples to demonstrate the performance of the proposed
algorithm. Section 6 concludes the paper.

II. SPECIAL SENSOR MODEL AND SIGNAL MODEL
The novel sensor structure used is shown in Figure 1. The
sensor model, which contains 2(M+N)+1 omni-directional
sensors, is composed of three sub-sensors. Sub-sensor 1 con-
tains 2N+1 omni-directional sensors, with a sensor element
spacing of d. Sub-sensor 2 and sub-sensor 3 are located at
each side of sub-sensor 1. The distance between the central
sensor and the side sensors is (3N+1)d. These two sub-
sensors contain M omni-directional sensors, with the sensor
element spacing of (2N+1)d. Meanwhile in Figure 1. The
solid line represents the real distance, the dotted line repre-
sents the virtual distance, and the dotted line contains several
sensors.

FIGURE 1. Special symmetrical linear sensor configuration.

It is assumed that L narrowband sources are impinging on
the novel sensor model, as shown in Figure 1. The center of
the sensor is considered to be the phase reference point. The
data received by sensor m can be expressed as:

xm(t) =
L∑
k=1

sk (t)ej[okpm+φkp
2
m] + nm(t) t = 1, 2, · · · ,K

(1)

where K is the number of snapshots, sk (t) is the kth narrow-
band near-field source, and nm(t) is the additive Gaussian
noise received by the mth sensor.

pm is the distance between the reference sensor and sen-
sor m. ok and φk can be expressed as follows:

ok =
2πd sin(θk )

λ
(2)

φk =
πd2 cos2(θk )

λrk
(3)

where λ is the wavelength of the near-field sources, and
θk and rk are the DOA and the range of the kth near-field
sources, respectively.

The vector form of the data received by the sensor can be
expressed as:

X(t) = A(θ, r)S(t)+ N(t) (4)

where X(t) = [x1(t), x2(t), · · · , x2(N+M )+1(t)]T is the data
received by the sensor,
N(t) = [n1(t),n2(t), · · · ,n2(N+M )+1(t)]T is the noise

matrix,
S(t) = [s1(t), · · · , sL(t)]T is the source matrix and A(θ, r)

is the (2(N + M ) + 1) × L manifold matrix, which can be
expressed as:

A(θ, r) = [a(θ1, r1), · · · , a(θL , rL)] (5)

where a(θk , rk ) is expressed as:

a(θk , rk ) = [exp(j(p−(M+N )ok + p2−(M+N )φk )), · · · ,

exp(j(p(M+N )ok + p2(M+N )φk ))]
T 1 ≤ k ≤ L

(6)

In this paper, the following assumptions are made:
(1) The L signals are all statistically independent;
(2) The sensor noise is additive white Gaussian noise,

which is independent of the signal sources.
(3) The minimum sensor spacing d is less than a quarter-

wavelength.

III. PROPOSED ALGORITHM
A. DOA ESTIMATION OF NEAR-FIELD SOURCES
In this section, a special cumulant matrix is constructed to
obtain the angle of the near-field source estimation based
on the characteristics of high-order cumulants. Based on the
assumptions above, we define the fourth-order cumulant as

C(m,−m, n,−n) = cum{xm, x∗−m, x
∗
n , x−n}

=

L∑
i=1

c4siai(m)a∗i (−m)a
∗
i (n)ai(−n)

=

L∑
i=1

c4si exp(j(2(pm − pn)oi)) (7)

where c4si is expressed as:

c4si = cum(si(t), si(t), si(t), si(t))

In contrast with the traditional algorithms, the proposed
algorithm utilizes the novel sensor model to construct fewer
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C1 =


z1(0) z1(−1) z1(−2) · · · z1(−2N )
z1(1) z1(0) z1(−1) · · · z1(−2N + 1)
z1(2) z1(1) z1(0) · · · z1(−2N + 2)
...

...
...

. . .
...

z1(2N ) z1(2N − 1) z1(2N − 2) · · · z1(0)

 (10)

cumulant elements to obtain a higher utilization of sensors
and a lower computational complexity.

Sub-sensor 1 is first utilized to construct the cumulant
matrix C1 as follows:

C1(m, n) = cum{xm, x∗−m, x
∗
n , x−n}

=

L∑
i=1

c4siexp(j2(pm − pn)oi)

=

L∑
i=1

c4siexp(j2(m− n)oi)m, n ∈ [−N ,N ] (8)

The following function is then defined to facilitate the
derivation of the proposed algorithm:

z1(i) =
L∑
i=1

c4siexp(j2ioi) i ∈ [−2N , 2N ] (9)

From equation (9), it can be seen that the high-order cumu-
lantmatrixC1 is a complex Toeplitzmatrix. Therefore, theC1
matrix can be expressed in (10), as shown at the top of this
page.

An estimate of the vector z1 can be obtained by adding the
oblique diagonal elements of matrix C1.
When k = −1,−2, · · · ,−2N :

z1(k) =
1

(2N + 1+ k)

2N+1+k∑
q=1

C1(q, q− k) (11)

When k = 0, 1, · · · , 2N :

z1(k) =
1

(2N + 1− k)

2N+1+k∑
q=1

C1(q, q− k) (12)

Sub-sensor 1 and sub-sensor 2 are then used to construct
the M(2N+1) dimensional high-order cumulant matrix C2 as
follows:

C2(m, n)

= cum{xm, x∗−m, x
∗
n , x−n}

=

L∑
i=1

c4siexp(j2(pm − pn)oi)

m ∈ [−M − N − 1,−N − 1], n ∈ [−N ,N ]

−→ (pm − pn) ∈ [−(2MN +M + 2N ),−(2N + 1)] (13)

The high-order cumulant matrix C2 is then vectored to
obtain the new vector z2, which can be expressed as follows:

z2 = vec(C2) (14)

Namely:

z2((2N + 1)(i− 1)+ k) = C2(i, k)

=

L∑
i=1

c4siexp(j2(p−i−N − pk−N−1)oi)

=

L∑
i=1

c4siexp(j2((−i− 1)(2N + 1)− (3N + 1)

− (k − 1− N ))oi)
i = 1, · · · ,M; k = 1, 2, · · · , 2N + 1 (15)

Sub-sensor 1 and sub-sensor 3 are then used to construct
the M(2N+1) dimensional high-order cumulant matrix C3 as
follows:

C3(m, n) = cum{xm, x∗−m, x
∗
n , x−n}

=

L∑
i=1

c4siexp(j2(pm − pn)oi)

m ∈ [N + 1,M + N + 1], n ∈ [−N ,N ]

−→ (pm − pn) ∈ [(2N + 1), (2MN +M + 2N )]

(16)

The high-order cumulant matrix C3 is then vectored to
obtain the new vector z3, which can be expressed as follows:

z3 = vec(C3) (17)

Namely:

z3((2N + 1)(i− 1)+ k) = C3(i, k)

=

L∑
i=1

c4siexp(j2(pi+N − pn−N−1)oi)

=

L∑
i=1

c4siexp(j2((i− 1)(2N + 1)+ (3N + 1)

− (k − 1− N ))oi)

i = 1, · · · ,M; n = 1, 2, · · · , 2N + 1 (18)

The high-order cumulant vectors z1, z2 and z3 are recom-
bined to obtain the (4N+1)+2(2N+1)M dimensional high-
order cumulant vector z as follows:

z = [z2 z1 z3] (19)

where

z(i) =
L∑
i=1

c4siexp(j2ioi) i ∈ [−(2N + (2N + 1)M ),

2N + (2N + 1)M ]
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There are three main factors that cause the traditional algo-
rithms to have high computational complexity: construction
of the high-order cumulant matrix, the eigenvalue decompo-
sition and the one-dimensional or multidimensional spectrum
peak search. The proposed algorithm reduces the compu-
tational complexity by using the CEM method for simpli-
fication, thus removing the requirement for eigenvalue and
spectrum searching. This method will now be discussed in
more detail.

First, an L-order polynomial is constructed as follows:

f (χ ) =
L∏
k=1

(χ−e(j2ok )) = χL+cL−1χL−1+· · ·+c1χ1
+c0

(20)

It can be easily seen that the L roots of the polynomial
in equation (20) correspond to the angle information of the
near-field sources. Therefore, the coefficient of this polyno-
mial [cL−1, cL−2, · · · , c0] must be obtained to construct the
polynomial in equation (20); the angle information can be
obtained by solving this equation.

Based on the relationship between the angle information
and the polynomial, we can summarize the parameter estima-
tion method in three steps: (1) obtain the high-order cumulant
vector z; (2) obtain the polynomial coefficient and convert it
into the polynomial f (χ ); (3) obtain the roots of the polyno-
mial and transform these roots into the angle information of
the near-field sources. The derivation process of the proposed
algorithm is given as follows.

For the convenience of the derivation process of the pro-
posed algorithm, set P = 2N + (2N + 1)M .
Because ej2ok k = 1, 2, · · · ,L are the solutions to equation

(20), the following K equalities hold:

ej2okL + cL−1ej2ok (L−1) + · · · + c1ej2ok + c0 = 0

k = 1, 2, · · · ,L (21)

Multiplying both sides of equation (21) with c4siej2okJ for
different values of k and J yields:

c4s1ej2o1J ej2o1L + c4s1ej2o1J cL−1ej2o1(L−1) + · · ·
+ c4s1ej2o1J c1ej2o1 + c4siej2o1J c0 = 0
...

c4sLej2oLJ ej2oLL + c4sLej2oLJ cL−1ej2oL (L−1) + · · ·
+ c4sLej2oLJ c1ej2oL + c4sLej2oLJ c0 = 0

J = −P, · · · 0, · · · ,P− L (22)

Taking the sum of (22) for each value of k = 1, 2, · · · ,L
yields:

L∑
i=1

c4siej2oiJ ej2oiL +
L∑
i=1

c4siej2oiJ cL−1ej2oi(L−1)

+ · · · +

L∑
i=1

c4siej2oiJ c1ej2oi +
L∑
i=1

c4siej2oiJ c0 = 0

J = −P, · · · 0, · · · ,P− L (23)

Substituting (19) into (23) yields a relationship between the
equation and the coefficients and measurements as follows:

z(J + L)+ z(J + L − 1)cL−1 + · · · + z(J + 1)c1
+ z(J )c0 = 0 J = −P, · · · 0, · · · ,P− L (24)

For the convenience of the derivation, the 2P − L + 1
functions can be expressed in matrix form as follows:

z(−P) z(−P+ 1) · · · z(−P+ L − 1)
z(−P+ 1) z(−P+ 2) · · · z(−P+ L)

...
...

. . .
...

z(P− L) z(P− L + 1) · · · z(P− 1)



×


c0
c1
...

cL−1

 = −

z(−P+ L)
z(−P+ L + 1)
...

z(P)

 (25)

This matrix clearly shows that the polynomial coeffi-
cient [cL−1, cL−2, · · · , c0] can be obtained by the high-order
cumulant vector z.
In practical applications, there can be only a limited num-

ber of snapshots. An estimation of the high-order cumulant
matrices C1, C2 and C3 can be obtained using equation (26):

C4S =

K∑
t=1

xm(t)x∗−m(t)x
∗
p (t)x−p(t)

−

K∑
t=1

xm(t)x∗p (t)
K∑
t=1

x∗−m(t)x−p(t)

−

K∑
t=1

xm(t)x∗−m(t)
K∑
t=1

x∗p (t)x−p(t)

−

K∑
t=1

xm(t)x−p(t)
K∑
t=1

x∗−m(t)x
∗
p (t) (26)

Because the noise-free measurements z are not available,
their estimates z are used instead.

Substituting z into (25) instead of z gives:

ZC = b (27)

where

Z _
=


z(−P) z(−P+ 1) · · · z(−P+ L − 1)

z(−P+ 1) z(−P+ 2) · · · z(−P+ L)
...

...
. . .

...

z(P− L) z(P− L + 1) · · · z(P− 1)

,

C =


c0
c1
...

cL−1

, b = −


z(−P+ L)
z(−P+ L + 1)
...

z(P)


The polynomial coefficient [cL−1, cL−2, · · · , c0] can then

be estimated by minimizing the following penalty function:

G(c) =
∥∥Zc− b∥∥22 (28)
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Estimation of [cL−1, cL−2, · · · , c0] by minimizing G(c)
is an open problem in the solution of these types of over-
determined linear equation sets, with perturbations of a con-
strained structure on both sides. According to reference [21],
the total least squares estimation provides only a small
improvement over the ordinary least squares estimation and
may destroy the structure of the data matrices. Moreover, ref-
erence [21] also shows that other solutions to linear equation
sets with structured perturbations generally require too many
computations. Therefore, we apply the ordinary least squares
solution to estimate c:

C = Z
†
b (29)

where

Z
†
= (Z

H
Z)−1Z

H
.

Once the coefficient estimates are known, the
DOA-dependent equation of (20) can be established as:

f (χ ) = χL + cL−1χL−1 + · · · + c1χ1
+ c0 = 0 (30)

If the L roots are denoted by χkk = 1, 2, · · · ,L, then the
direction estimates are given by:

θi = sin−1(arg(χk )λ/(4πd)) i = 1, 2, · · · ,L (31)

B. RANGE ESTIMATION OF NEAR-FIELD SOURCES
Once the DOA estimation has been obtained, the next step is
to obtain the range information of the near-field sources. The
covariance matrix R is first constructed by the data received
by sub-sensors 1 as follows:

R = E[x(t)xH (t)] = ARsAH + σ 2I (32)
We implement the EVD of R as follows:

R = U3UH
= US3SUH

S + UN3NUH
N (33)

where 3S corresponds to the signal, and US spans the signal
subspace of R. 3N corresponds to the noise, and UN spans
the noise subspace of R.
Based on the conventional MUSIC algorithm, the angle

information is substituted into a(θ, r), and the minim of the
following function are found:

ri = min(aHθi,rUNUH
N aθi,r ) (34)

Traditional algorithms obtain the range information of the
near-field sources by searching the spectrum, thus increasing
the computation complexity. Additionally, the search step
length limits the estimation precision. Therefore, the pro-
posed algorithm utilizes the EVDmethod instead of spectrum
searching to reduce the computational complexity.

To decrease the number of the dimensions requiring EVD,
the following processing is performed:

aθi,r = a1θia2r (35)

a1θi =
[
diag(ej−(N )oi , ej(−(N )+1)oi · · ·

1 · · · ej((N )−1)oi , ej(N )oi )
]

(36)

a2r = [ej(N )2φ
· · · 1 · · · ej(N )2φ]T (37)

Substituting (35) into (34) yields:

ri = min(a2Hr a1
H
θi
UNUH

N a1θia2r ) (38)

Equation (38) implies that a2r is the eigenvector corre-
sponding to the smallest eigenvalue of the Hermitian matrix
a1HθiUNUH

N a1θi . Based on the eigenvector a2r obtained from
the EVD of a1HθiUNUH

N a1θi , a2r can be utilized to obtain the
range information of the near-field sources.

a2r (h)/a2r (h+ 1) = ej((2h−1)
πd2 cos2(θi)

λri
)h ∈ [1,N ] (39)

ri =
π2d2 cos(θi)2

λ( 1N
N∑
h=1

( 1
2h−1angle(a2r (h)/a2r (h+ 1))))

. (40)

The proposed algorithm can avoid two-dimensional
parameter matching and can also be applied to the problem
of mixed sources estimation.

A description of the proposed algorithm is given as
follows:

1. Construct the high-order cumulant vectors z1, z2 and
z3. Combine these vectors to obtain the vector z:

2. Use equation (28) to obtain the polynomial coefficient
[cL−1, cL−2, · · · , c0];

3. Substitute the polynomial coefficient [cL−1,
cL−2, · · · , c0] into the polynomial f (χ ) and obtain the
roots of the polynomial to obtain the angle information
of the near-field source;

4. Construct the covariance matrix R, and then implement
the EVD of R to obtain the signal subspace US and the
noise subspace UN ;

5. Implement the EVD of a1HθiUNUH
N a1θi to obtain the

eigenvector a2r corresponding to the smallest eigen-
value;

6. Estimate the range information of the near-field sources
from (40).

IV. IMPROVING THE PERFORMANCE OF
THE PROPOSED ALGORITHM
The precision difference between the high-order cumulant
vectors z can be resolved intuitively by attaching a dis-
tinct weight to each vector in the penalty function (29).
The slight difference between adjacent values of z is neg-
ligible because of the large size of M; thus, another
weighted penalty function can be defined according to (29) as
follows:

W = diag(wT ) = diag([w1,w2, · · · ,w2P−L]T ) (41)

where

0 ≤ w1,w2, · · · ,w2P−L ≤ 1,

and

w1 + w2 + · · · + w2P−L = 1.
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Substituting the penalty function into function (29):

w1(z(−P+ L)+ z(−P+ L − 1)cL−1 + · · ·
+ z(−P+ 1)c1 + z(−P)c0) = 0
w2(z(−P+ L + 1)+ z(−P+ L)cL−1 + · · ·
+ z(−P+ 2)c1 + z(−P+ 1)c0) = 0
...

w2P−L(z(P)+ z(P− 1)cL−1 + · · ·
+ z(P− L + 1)c1 + z(P− L)c0) = 0

(42)

Function (42) can be expressed as follows:

diag(w1,w2, · · · ,w2P−L)

×


z(−P) z(−P+ 1) · · · z(−P+ L − 1)

z(−P+ 1) z(−P+ 2) · · · z(−P+ L)
...

...
. . .

...

z(P− L) z(P− L + 1) · · · z(P− 1)



×


c0
c1
...

cL−1

 = −

w1z(−P+ L)
w2z(−P+ L + 1)
...

w2P−Lz(P)

 . (43)

Because the value of the weighted coefficientW is associ-
ated with the precision of the high-order cumulant vector z,
the higher the precision of z is, the larger the weighted coef-
ficient ωi will be.

First, we will introduce the number of the elements used
to construct the high-order cumulant vector z. There is
only one element used to construct the high-order cumulant
vectors z2 and z3. However, several elements are used to
construct the high-order cumulant vector z1. The specific
distribution is given in Figure 2.

FIGURE 2. Number of elements used to construct the high-order
cumulant vector z .

The high-order cumulant vector z consists of three different
types of vectors: z1, z2 and z3. Each element is composed dif-
ferently and will have a higher precision where there arewith
more elements. This principle is used to distribute the weight
coefficients; the number of elements used in each equation is

proportional to the weight coefficient. For example, the num-
ber of the elements that construct the high-order cumulant
element is H; therefore, the weighted coefficient wi is also H.
The specific distribution is given as follows:

wi = L1 ≤ i ≤ M (2N + 1)− L + 1

wi = (2N + 1)M − i+
1+ L + i− (2N + 1)M

2
× (L + i− (2N + 1)M )
M (2N + 1)− L + 1 < i ≤ (2N + 1)M

wi = (i− (2N + 1)M )L +
1+ L
2

L

(2N + 1)M < i ≤ P− L + 1

wi = d
4N + 2− L

2
L + L − 1

P− L + 1 < i ≤ P

wi =
4N + 2− L

2
L − L(2N + 1− i+ P)

P < i ≤ P+ 2N − L

wi =
1+ (P+ 2N − i)

2
(P+ 2N − i)

+ (L − P− 2N + i)
P+ 2N − L < i ≤ P+ 2N
wi = LP+ 2N ≤ i ≤ 2P+ 1− L.

(44)

Because the weighted coefficientW must meet the condi-
tion w1+w2+ · · ·+w2P−L = 1, it requires normalization to
obtain the normalized weighted coefficient

_

WSLS :

_

WSLS =
W

sum(ωi, i = 1, 2 · · · 2P− L)
. (45)

The weighted least squares (WLS) estimation of the equa-
tion coefficients can be obtained by substituting the weighted
coefficient

_

WSLS into (29) and solving the least squares prob-
lem:

C = (WSLSZ)†(WSLSb). (46)

The signal DOA can then be estimated following the steps
given in Section 3.

V. PERFORMANCE ANALYSIS OF
THE PROPOSED ALGORITHM
A. ANALYSIS OF THE MAXIMUM NUMBER
OF ESTIMATED SOURCES
The values of the maximum number of sources estimated by
the proposed algorithm, the two-stage MUSIC (TSMUSIC)
algorithm and the mixed-order MUSIC (MOMUSIC) algo-
rithm are considered. Assuming that there are Q sensors,
which include 2N+1 sensors in sub-sensor1, M arrays in sub-
sensor 2 andM arrays in sub-sensor 3, the proposed algorithm
can localize (2N+1)+(2N+1)M sources, the TSMUSIC
algorithm can localize Q-1 sources, and theMOMUSIC algo-
rithm can localize M+N+MN sources. The analysis above
shows that the proposed algorithm can estimate a much larger
number of sources than the other two algorithms. If the
number of arrays is fixed, then the array aperture of the
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TSMUSIC algorithm will not change, whereas the number
of sub-sensors will change the number of sources estimated
by the proposed algorithm and the TSMUSIC algorithm.
A certain combination exists that will maximize the num-
ber of sources estimated by the proposed algorithm and the
TSMUSIC algorithm.

B. ANALYSIS OF THE COMPUTATIONAL COMPLEXITY
In contrast with far-field source estimation, near-field sources
must estimate two parameters: angle information and range
information. Therefore, we analyze the computational com-
plexity from two aspects. The number of the angle space
spectra is assumed to be J1, and the number of the range space
spectra is assumed to be J2. The computational complexity
of the proposed algorithm, the TSMUSIC algorithm and the
MOMUSIC algorithm are analyzed for the same number of
the sensors.

To analyze the computational complexity, the main con-
tributors are considered to be the multiplications involved in
the cumulant matrix construction, the EVD implementation,
and the MUSIC spectral search.

The computational complexity of the TSMUSIC algorithm
is therefore:

CTSMUSIC
= CD−TSMUSIC + CR−TSMUSIC
= (4(M + N )+ 1)2(15K )+ 2(4(M + N )+ 1)2(L + 2)

+ (2(M + N )+ 1)2(15K )+ (2(M + N )+ 1)2(L + 2)

+ J1(2(M + N )+ 1− L)(2(M + N )+ 2).

The computational complexity of the MOMUSIC algo-
rithm is:

CMOMUSIC
= CR−MOMUSIC + CD−MOMUSIC
= (2(M + N )+ 1)2(L + 2)

+ J2(2(M + N )+ 1− L)(2(M + N )+ 2)

+ (2(M + 1)(N + 1)+ 1)(15K )

+ ((M + 1)(N + 1)+ 1)2(L + 2)

+ J1((M+1)(N+1)+1− L)((M + 1)(N + 1)+ 1+ 2).

The computational complexity of the proposed algorithm is:

C = CD + CR
= (2M (2N + 1)+ N 2)(15K )+ 2(2N + 1)2(L + 2).

To demonstrate the computational complexity of the three
algorithms, we use the same values for the three algorithms:
the number of arrays is 23 (M = 3, N = 8), the number
of snapshots is K = 100, the angle search step is 0.5◦

(J1 = 360), and the range search step is 0.1λ(J2 = 150).
The computational complexity of the proposed algorithm,
the TSMUSIC algorithm and the MOMUSIC algorithm are
shown in Table 1 (A, B and C represent the computation time
for the proposed algorithm, the TSMUSIC algorithm and the
MOMUSIC algorithm, respectively).

TABLE 1. Comparison of the complexity of various algorithms.

It can be seen that the computational complexity of
the proposed algorithm is much lower than that of the
other two algorithms, in agreement with the analysis above
from Table 1.

VI. SIMULATION
This section describes some simulations that are conducted
to assess the proposed algorithm. We consider a 23-element
(M = 3, N = 8) sensor with element spacing of dmin = λ/4.
In all, 200 Monte-Carlo runs are performed to obtain the
experimental results; the root mean square error (RMSE) of
the results is expressed as:

RMSE =

√√√√ L∑
k=1

M∑
n=1

(α̂k − αk )2/ML

where α̂k and αk represent the estimation value and the true
value, respectively, of the DOA θk or the range rk .

In the first experiment, we consider two signals. The two
near-field sources are located at (30◦, 4λ) and (35◦, 2λ). The
experiment is based on the same conditions as above.

1) RMSE versus SNR: the number of snapshots is fixed
at 300, while the SNR varies from 0 to 30 dB. The RMSE
of the azimuth DOA and the range estimations are shown
in Figure 3 and Figure 4, respectively. It can be seen that
the proposed algorithm outperforms the methods described in
references [7] and [9] in estimation accuracy of the azimuth
DOA and the range for all values of the SNR. The novel
array model adopted by the proposed algorithm can thus
greatly extend the array aperture. Additionally, the proposed
algorithm combines CEM methods to improve the precision
of the parameter estimation. Because a spectral search is not
required, the performance of the proposed algorithm will not
be affected by the value of the spectrum search step.

2) RMSE versus the number of snapshots: the SNR is
fixed at 10 dB, while the number of snapshots varies from
100 to 500. The RMSE values of the azimuth DOA and range
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FIGURE 3. Relationship between the RMSE of the angle and the SNR.

FIGURE 4. Relationship between the RMSE of the range and the SNR.

FIGURE 5. Relationship between the RMSE of the angle and the
snapshots.

estimations are shown in Figure 5 and Figure 6, respectively.
It can be seen that the proposed algorithm outperforms the
methods described in references [10] and [12] in terms of
the estimation accuracy of the azimuth DOA and the range
for all values of the number of snapshots. The proposed
algorithm adopts the novel array model that can extend the
array aperture greatly. Moreover, combining the proposed
algorithm with CEM methods can improve the precision of

FIGURE 6. Relationship between the RMSE of the range and the
snapshots.

the parameter estimation. The proposed algorithm does not
require the spectrum search; therefore, the performance of the
proposed algorithm would not be affected by the step of the
spectrum search.

In the second experiment, two signals are considered.
The two near-field sources are located at (30◦, 4λ) and
(35◦, 2λ). The number of snapshots is fixed at 300, the SNR
is fixed at 20 dB and the number of arrays is varied
from 11 to 21. The statistical simulation times are shown
in Table 2 (A, B and C represent the computation times of
the proposed algorithm, the TSMUSIC algorithm and the
MOMUSIC algorithm, respectively).

TABLE 2. Computation times for different numbers of sensors.

It is clear that the proposed algorithm has a much lower
running time than the other two algorithms. Because the
TSMUSIC algorithm and the MOMUSIC algorithm both
require eigenvalue decomposition and spectrum search, they
are influenced by the number of arrays. Both algorithms
will have a longer running time if there are more arrays.
However, the proposed algorithm does not require eigenvalue
decomposition and a spectrum search, and thus the running
time is not influenced by the number of arrays. The increase
in performance of the proposed algorithm is more evident as
the number of arrays is increased.

For the third experiment, twelve signals are con-
sidered. The twelve near-field sources are located at
(60◦, 5λ), (50◦, 6λ), (40◦, 4λ), (30◦, 5λ), (20◦, 5λ), (10◦, 6λ),
(−60◦, 6λ), (−50◦, 4λ), (−40◦, 5λ), (−30◦, 3λ), (−20◦, 5λ)
and (−10◦, 3λ). The number of arrays is 13 (N = 4, M = 2),
the SNR is fixed at 20dB and the number of snapshots is
fixed at 300. The proposed algorithm adopts the spectrum

VOLUME 6, 2018 21039



X. Li et al.: Fast Location Algorithm Based on an Extended Symmetry Nested Sensor Model

FIGURE 7. Spatial spectrum of the proposed algorithm.

FIGURE 8. Spatial spectrum of the TSMUSIC algorithm.

search instead of getting the roots of the polynomial in
order to demonstrate the performance of the array aperture
extension of the proposed algorithm. The spectrum of the
proposed algorithm is shown in Figure 7. The spectrum of
the TSMUSIC algorithm is shown in Figure 8.

The proposed algorithm can estimate the twelve signals
successfully, while the TSMUSIC algorithm is unsuccessful.
This is because the proposed algorithm adopts a special novel
sensor model and combines the high-order cumulant vec-
tor. Compared with the TSMUSIC algorithm, the proposed
algorithm has the ability to extend the sensor aperture. The
simulation results are consistent with the analysis above.

In the fourth experiment, some simulations are conducted
to assess the proposed algorithm and the improved algorithm.
Since the improved algorithm only optimizes the angle esti-
mation, only the RMSE of the angle estimation is considered
in this simulation. This experiment has the same conditions
as the experiments above.

RMSE versus SNR: The two near-field sources are located
at (30◦, 4λ) and (35◦, 2λ). The number of snapshots is fixed
at 300, and the SNR is varied from 0 to 30dB. The RMSE of
the azimuth DOA estimation is shown in Figure 9. It can be
seen that the improved algorithm outperforms the proposed

FIGURE 9. Relationship between RMSE of the angle and SNR.

algorithm in terms of the estimation accuracy of the azimuth
DOA for all values of the SNR. The improved algorithm
adopts to weighted coefficient matrix that can improve the
accuracy of the vehicle positioning.

VII. CONCLUSION
In this paper, a novel sensor model was presented to locate
a vehicle. The proposed algorithm introduces a new sen-
sor model combined with a high-order cumulant matrix
to extend the array aperture. Additionally, the proposed
algorithm adopts the CEM method, which can decrease the
computational complexity. To improve the accuracy of the
vehicle positioning, the algorithm was improved by introduc-
tion of a weighted coefficient matrix. The simulation results
showed that the proposed algorithm has a lower computa-
tional complexity and a higher utilization of sensors; in addi-
tion, the proposed algorithm also avoids two-dimensional
parameter matching, and the improved algorithm has a higher
precision for the vehicle positioning.
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