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ABSTRACT A chaotic oscillator utilizing a flux-controlled memristor to produce a signal that grows in
amplitude and frequency over time is introduced in this paper. It was found that the initial condition can be
used to change the starting oscillation as well as the amplitude and frequency. From this, a new regime of
homogenous multistability was found, where various attractors with different initial conditions are of the
same type but have different amplitudes and frequencies.

INDEX TERMS Homogenous multistability, increasing amplitude and frequency, memristive chaotic

oscillator.

I. INTRODUCTION

Chaotic signals have great potential in engineering appli-
cations, including secure communication [1]-[3], image
encryption [4]-[6], or weak signal detecting [7], [8].Chaotic
signals with a controllable amplitude [9]-[11] or fre-
quency [12], [13] especially have promising applications
since they do not need an extra peripheral to provide pre-
modulation. Many chaotic circuits use memristors, a two-
terminal electronic device, which was postulated in [14]
and [15] and has potential applications in the next generation
computers and powerful intelligent devices [16], [17]. In this
paper we investigate whether a memristor can be utilized
to control the amplitude or even the frequency of a chaotic
signal. We further investigate the property of multistability in
this system, which has attracted great interest in the field of
complex problems, such as the phenomenon of conditional
symmetric attractors in an asymmetric system [18]-[20]
or infinitely many attractors [21], [22] in a periodically offset-
boostable system that has not been investigated before. In a
pinched hysteresis loop (the finger print of a memristor),
it is common to see multistability in memristive chaotic sys-
tems, where different attractors [23]-[26] or even extremely
multistable attractors are found [27]-[29]. Multistability with
the same class of attractors can be called ‘“homogenous

multistability” in contrast to ‘“‘heterogeneous multistability™.
Memristive dynamical systems have abundant multistable
attractors, but the regime of homogenous multistability was
rarely reported.

When a chaotic system is equipped with a memristor
for amplitude-frequency control, the memristive system will
have two unusual properties: a chaotic signal with growing
amplitude/frequency and infinitely many homogenous attrac-
tors. In Sec. 2, a model of the new memristive chaotic system
is proposed. In Sec.3, the properties of the memristive system
are demonstrated. In Sec.4, the system was implemented
as a chaotic circuit with the experimental results showing
agreement with the predicted simulation. The conclusion and
discussion is given in the last section.

1l. MODEL DESCRIPTION
A new memristive chaotic system is described as,

x =Wy +yz,
Yy =yz—axz,

1
z=bz* —y?, )
u=y.

where the flux-controlled memductance in the first dimension
is W (u) = k(|lu| — c¢) is introduced in the first dimension.
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FIGURE 1. Projections of the chaotic attractor from System (1) with initial
condition [1, 0, —1, 1] when @ = 5.5, b = 0.55, k = 0.05, ¢ = 1 and the
time duration is 600.
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FIGURE 2. Chaotic oscillation and the internal state from System (1) with
initial condition [1, 0, —1, 1] when @ = 5.5, b = 0.55, k = 0.05, ¢ = 1 and
the time duration is 600.

Whena =5.5,b =0.55,k =0.05, c = 1, System (1) has a
chaotic attractor with Lyapunov exponents (0.1375, 0.0068,
—0.0086, —2.2962) with initial conditions (1, 0, —1, 1)
and increases in amplitude and frequency over a duration
of 600, as shown in Fig.1. The internal state u is determined
by the integration of the memristor input variable y. As
shown in Fig.2, the increasing value of the control variable u
increases the frequency of signals x, y and z. Here the internal
state of u is continuously growing which is different from
some of other memrister models because the variable y grows
with the memductance W (u) and give a positive feedback to
the internal state.

System (1) retains the rotational symmetry with a rate of
hypervolume contraction given by the Lie derivative, VV =
g—f + % + g—i + % = (2b+ 1)z. In contrast to other memristive
systems, the above system has an infinite plane of equilibria
(x, 0,0, u) with eigenvalues (0, 0, 0, 0).

Here the flux-controlled memristor is defined as,

i= W)y,
W(u) = 0.05|u| — 0.05, 2)
u=y.

The flux-controlled memductance is a function of internal
state of u, and is associated with the voltage y,
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FIGURE 3. The memductance and pinched hysteresis loop.
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FIGURE 4. Chaotic signal of System (1) with k = 0.05, ¢ = 1 and initial
conditions [1, 0, —1, 1] over a time duration of 600.

where Wo = 0.05(|/" . yds| — |f; vds|). The memduc-
tance and the theoretical pinched hysteresis loop are shown
in Fig.3.

IIl. UNIQUE DYNAMICAL BEHAVIOR

A. AMPLITUDE AND FREQUENCY BOOSTING OVER TIME
The original system without a memristor has two coefficients
to control the amplitude of the signal [12],

X =ny+yz,
y =yz — axz, 4
z=bz* — my>.

where parameter n controls the amplitude and frequency of all
the signals x, y and z, while m controls the amplitude of x and
y. In System (1), the added memristor can control the ampli-
tude and frequency. As the internal state # and consequently
the memductance increases over time, so does the ampli-
tude and frequency. As predicted, the chaotic signals in the
time domain are modulated by the memristor with increasing
amplitude and frequency, as shown in Fig.4. The phase trajec-
tories over time are shown in Fig.5, clearly showing chaotic
signals increasing in amplitude and frequency. The frequency
spectra of the chaotic signals are shown in Fig. 6. As a com-
parison, we list the typical information including the aver-
age amplitude (AA) and Largest Lyapunov exponent (LLE)
(corresponding to a boosted frequency) in Table.1. Here the
increasing amplitude is indicated by the growing average
value of the absolute values of corresponding chaotic signals
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FIGURE 5. Different phase trajectories of System (1) with k = 0.05,c =1
and various durations of time under the same initial condition
[1,0,-1,1].
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FIGURE 6. Frequency spectra of the chaotic signals from System (1) with
k = 0.05, ¢ = 1 and initial condition [1, 0, —1, 1] when the run time is
prolonged.

while the increasing frequency is proven by the increasing
largest Lyapunov exponent based on the Wolf algorithm.

B. HOMOGENOUS MULTISTABILITY:
INITIAL-CONDITION-TRIGGERED AMPLITUDE AND
FREQUENCY BOOSTING

When a dynamical system has coexisting attractors of the
same shape but with different positions, amplitude or even
frequency, the regime of multistability can be defined as
homogenous multistability. Here in System (1), we find
a new regime of homogenous multistability, where differ-
ent initial condition can trigger the same oscillation but
with different amplitudes and frequency. In fact, the initial
condition determines the start amplitude and frequency of
the oscillation process. For example, fix the initial state as
(x0, Y0, z0) = (1, 0, —1) and the time duration 500, revise the
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TABLE 1. Average amplitude (AA) of chaotic signal of System (1) with
k = 0.05, c = 1 and the initial condition [1, 0, —1, 1] and largest Lyapunov
exponent (LEE).

T AA: (mean(|x|, LLE
Cases Wi, Izl Ju])

Al 200 | (0.0449,0.1443, | 0.0398
0.2208, 5.8607)

Bl 400 | (0.1212,0.4327, | 0.0701
0.6578, 14.8009)

Cl1 600 | (0.2465,0.8837, | 0.1526
1.3491, 29.2505)

Dl 800 | (0.3837,1.3842, | 0.2348
2.1138, 44.8955)

El 1000 | (0.5265,1.8868, | 0.3418
2.8919, 61.1531)

F1 1200 | (0.6748,2.4159, | 0.4492
3.7028, 77.7349)

TABLE 2. Average amplitude of chaotic signal of System (1) with
k = 0.05, c = 1 and the initial condition [1, 0, —1, ug] and largest
Lyapunov exponent when T = 1000.

Cases | uy | AA: (mean(|x|, |y], LLE
|21, [u])

A2 0.5 | (0.3212,1.1674, | 0.2063
1.7779, 37.7247)

B2 1 (0.5265, 1.8868, | 0.3202
2.8919, 61.1531)

C2 2 (0.6698,2.4210, | 0.5137
3.6921, 76.8133)

D2 4 (0.8422,3.0538, | 0.5862
4.6563, 96.4674)

E2 8 (0.7143,2.5771, | 0.6646
3.9379, 82.1217)

F2 16 | (1.1997,4.3158, | 0.7262
6.5991, 136.4677)

initial value of the internal state ug, chaotic signals stand dif-
ferent stages of amplitude and frequency. As shown in Fig. 7,
when the initial state ug is 0.5, the amplitude and frequency
are both in small scale. The same trend can be seen in the
average value and the largest Lyapunov exponent, as shown
in Table.2. As shown in Fig.8, when the initial condition uq
varies in [0, 8], the average of the state variable u revise
positively and dramatically, while the average of the variable
x, y, and z will increase accordingly. The increasing frequency
can be identified by the slowly climbing slope of the largest
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FIGURE 7. Phase trajectories of System (1) with k = 0.05, c = 1 and
initial conditions (1, 0, —1, ug) under the same time (T = 500).
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FIGURE 8. The average value of the chaotic signals and the corresponding
Lyapunov exponents of System (1) with k = 0.05, ¢ = 1 and the initial
conditions (1, 0, —1, ug), ug varies in [-8, 8]. Here the run time of T is
1000.

Lyapunov exponent. In the other direction when the internal
state ug varies in [—8, 0], the amplitude and frequency evo-
lution shows the same regularity as in the positive direction
since flux-controlled memductance is an absolute function of
the internal state. Frequency spectra in Fig. 9 show the same
characteristic in oscillation. Typical information including
the average amplitude and the Largest Lyapunov exponent
(corresponds to a boosted frequency) is listed in Table.2.

Moreover, a crisis in amplitude control still exists [12]. The
boosting of the amplitude and frequency may encounter a
risk since some initial conditions can lead to a direct death
of oscillation. For example, when (xo, yo, zo, #0) = (—1, 0,
-1, 0.5), (1, 5, —1, 0.5), (1, 0, 5, 0.5), (1, 0, —1, —0.5),
the oscillation is stopped by the initial condition and System
(1) converges to a fixed point. Note that some initial condi-
tions will result in a state of suspended animation, such as in
(—20, 0, —1, 0.5), System (1) comes back to the oscillation
until the time is about over 850, as shown in Fig.10. The initial
condition in the x dimension can also adjust the amplitude
and frequency in a way which is not a positive correlation
and different from the u dimension, as shown in Fig. 11. All
the coexisting attractors as shown in Fig.7 and Fig.11 indicate
the special regime of homogenous multistability.
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FIGURE 9. Frequency spectra of the chaotic signals of System (1) with
k = 0.05, c = 1 and initial conditions (1, 0, —1, ug). Here the run time of T
is 1000.
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FIGURE 10. Suspended animation in System (1) with k = 0.05, c = 1 and
initial conditions [-20, 0, —1, 0.5] under the time duration 1100.

IV. CIRCUIT IMPLEMENTATION

From Eq. (1), we design the analog circuit shown in Fig. 12
where the circuit equations in terms of the circuit parameters
are

1
P=—W ,
X c (wy + Rlclyz
1 1
V= ——y7 — —— X2, 5
y R2C2yz R3C2xz (5)
1 1
_ 2 .
R4C3 RsC3

where memristor W (u) in Fig. 13 and its state is defined as,

i = W)y,
Ry Ry
W) = —IMI —Vad, (6)
R,
_ 1
T RC

The system was rescaled by u — 10u to delay the satura-
tion time of the circuit. The circuit consists of four channels
to realize the integration, addition, and subtraction of state
variables x, y, z and u. The operational amplifier TL084 per-
forms the addition, inversion, and integration, and the analog
multiplier AD633/AD performs the nonlinear product oper-
ation. The circuit is powered by £15V. The state variables
x, y, and z in Eq. (1) correspond to the state voltages of the
three channels, while u corresponds to the internal state of
the memristor. For the system parameters a = 5.5, b = 0.55,
k = 0.05, ¢ = 1, the circuit element values are C; = Cr =
C3 = 1uF, Ry =R, = Rs = Rg = R7 = R = Ry = 1kQ,

VOLUME 6, 2018
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FIGURE 11. Phase trajectories of System (1) with k = 0.05, c = 1 and
initial conditions [xg, 0, —1, 0.5] under the same time (T = 500).
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FIGURE 13. Equivalent circuit of the flux-controlled memristor.

Rz = 180k and R4 = 1.8kQ2. The memristor circuit is
shown in Fig. 13 and has the following parameter values,
Cs = 1uF, R, = 100k, R, = 470Q, R, = 4702,
Ry = 2kQ, R, = 300k, Rf = 1k and R, = 1kQ. The
time scale is set at 1000 to observe the increase in frequency
and amplitude before saturation. Figure 14 shows a plot of
the experimental memductance and pinched hysteresis loop,
while Figure 15 shows the time evolvement of the chaotic sig-
nal with increasing amplitude and frequency. Figure 16 shows
the phase portraits observed in the oscilloscope.
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FIGURE 14. Plot of experimental memductance and pinched hysteresis

loop (CH1: u, CH2: W(u) for the left and CH1: input voltage, CH2: the
current for the right).
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FIGURE 15. Time evolvement of the chaotic signal with increasing
amplitude and frequency (CH1: x, CH2: u).

FIGURE 16. Phase trajectory of System (6) from oscilloscope (a) x-y
(b) x-z (c) y-z.

V. CONCLUSIONS AND DISCUSSION

When a memristor was introduced into a chaotic system for
amplitude-frequency control, a new chaotic oscillator was
generated where the output chaotic signals increase in ampli-
tude and frequency over time. The initial conditions can be
used to extract chaotic signals with different amplitudes and
frequencies, corresponding to a new regime of homogenous
multistability which was found and demonstrated. Chaotic
signals with increasing amplitude and frequency meet the
broad requirement in application engineering. Regarding the
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physical implementation, the memristor is utilized as a power
element to control the amplitude and frequency, whereas the
amplitude is typically controlled by resistor and the frequency
is controlled by capacitor.
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