
Received October 22, 2017, accepted December 19, 2017, date of publication January 1, 2018, date of current version March 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2788410

CodingBlind: Automated Cloud Services
Generation From Printed Forms and BPMN
HAN YU1, CONGCONG YE1, HONGMING CAI 1, (Senior Member, IEEE),
LIHONG JIANG1, CHENG XIE2, AND BOYI XU3
1School of Software, Shanghai Jiao Tong University, Shanghai 200240, China
2School of Software, Yunnan University, Kunming 650504, China
3College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200052, China

Corresponding author: Hongming Cai (hmcai@sjtu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61373030 and Grant 71171132.

ABSTRACT Cloud service is a new trend in constructing enterprise applications. However, implementing
cloud services is time consuming, costly, and error prone. Moreover, there are concerns about the isolation
and flexibility of multitenancy cloud services. To solve these problems, we propose a novel and easy
approach: CodingBlind, which automatically generates cloud services from the most commonly used printed
forms and graphical business process modeling notation (BPMN). CodingBlind provides a natural solution
for the deployment and migration of systems in clouds. First, printed forms are mapped onto entity-
relationship models (ER models) to generate data services. States of data and a finite state machine (FSM)
are constructed from the BPMN. Based on the FSM and the ERmodels, quadruple models for cloud services
are generated. Then, a complete system package is generated according to the quadruple model. Finally, all
of the components are packaged and deployed to a cloud. CodingBlind is easy to use because it only takes
printed forms and BPMNs as inputs. Self-defining data and business logic make the generated cloud services
flexible. Moreover, the business logic is strictly controlled by the FSM, which provides natural isolation for
cloud applications. Case studies and experiments are conducted to assess the proposed approach, and the
results show that it is feasible, convenient, and flexible.

INDEX TERMS Automated service generation, cloud service, multi-tenancy isolation, self-service,
model-driven development.

I. INTRODUCTION
In the era of the Internet, many enterprises have hoped to
migrate their information systems to clouds to provide busi-
ness services at a low cost and in a safe environment. Thus,
using cloud services has become a new trend in enterprise
application construction [1], [2] in fields such as manufac-
turing [3], [4], health [5], and education [6]. To help enter-
prises build their cloud applications, services in three levels
have been developed: Software-as-a-Service (SaaS) [7],
Platform-as-a-Service (PaaS) [8] and Infrastructure-as-a-
Service (IaaS) [8]. However, there are still some obstacles that
can prevent enterprises from constructing their own services.
(1) To that end, SaaS provides standard data interfaces and
fixed business processes for various enterprises. However,
unique requests, data or business processes are not satisfied
by these fixed services. Enterprises must either align or give
up their data and activities; otherwise, they must pay a large
amount of money to obtain self-defined services from service
providers over a long period of time. (2) PaaS and IaaS

only provide a cloud platform or servers for enterprises, and
more efforts are needed for enterprises to develop their own
cloud applications. Consequently, for Small and Medium-
sized Enterprises (SMEs), the ability to rapidly construct
cloud services is absent. (3) During the runtime of cloud
services, although the cloud platforms provide multi-tenancy
isolation measures [9], [10] such as virtual machines and
containers in the platform layer, isolation in the business layer
is difficult to guarantee.

To provide an easier and more economical way for SMEs
to quickly obtain their own cloud services, three goals must
be fulfilled by a new approach: (1) the approach needs to be
fully automated such that no manual work is needed during
the cloud-services-generation process to save time andmoney
for enterprises. (2) The new technique needs to provide flex-
ible self-service for enterprises that can process their self-
defined data and business processes. (3) The new technique
must be able to ensure isolation among multi-tenant cloud
services.

6630
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-0190-6907


H. Yu et al.: CodingBlind: Automated Cloud Services Generation

To automatically generate cloud services, the two critical
technical factors are data and functions [11]. The data are the
fundamental elements that represent every entity involved in a
system, and the functions are the interfaces that abstract busi-
ness processes and provide services for users. If we allegorize
the data as the blood of a system, the business processes
are the blood vessels that transport the data to every corner
of the system. Therefore, for a self-defined cloud service to
be constructed, the obtained data must be involved in the
enterprise’s processes and business activities.

Previously, research has been done on domain elements
extracted from a unified model [12], [13], and the specifica-
tions of the use cases were employed to obtain the metadata
used in a system [14]. However, these approaches still need
experts to design input models or detailed specifications,
which involves large amounts of time and manpower. For the
functions, there have been many attempts in business process
modeling and management [15] to build simple models to
identify functions [16] and drive systems to work [17]. For
example, Petri net [18] is a traditional system modeling lan-
guage, jBPM [19] is a development-oriented business process
management tool, and BPEL [20] is a formal business process
execution language that is generally used in web service
development. These languages and tools are not friendly to
users with little development experience for the complicated
rules. Hence, a technique with simple inputs that allows even
end users to design and implement cloud services is needed.

To solve the problem, note that the data in an enterprise
are fully stored in the format of printed forms even if they
have enterprise systems [21]. For example, purchase order
forms record the materials to buy and the suppliers to use, and
work orders record the tasks to do and the factories in which
the work is assigned. These forms have similar structures
and carry almost all of data in an enterprise. With templates
of various forms, the data involved in selecting the men,
machines and materials [22] can be easily extracted [23].
For the functions, using diagrams and notations, BPMN [24]
is a convenient bridge from process design to executable
code for stakeholders who raise requirements but lack coding
experience.

In this paper, we propose an automated approach to gen-
erate cloud services that we call CodingBlind. This approach
takes blank printed forms and BPMN from the standard busi-
ness process library or user designs as input and generates
self-defined cloud services in an independent package. First,
the property trees are extracted based on the structure of the
printed forms. Furthermore, ER models [25] are generated
from property trees. Then, a global ER model is constructed
by integrating the generated ER models. In addition, an
FSM is constructed from the BPMN, and the state transitions
of the entities are identified from this FSM. By matching
the entities with the data in the FSM, a stateful ER model is
generated. Next, a quadruple model is proposed to represent
the cloud services. The quadruple model combines the infor-
mation in the ER models and the FSM. Finally, based on the
Model-View-Controller (MVC) design pattern [26], a cloud

service system in an independent package that contains all of
the constructed components is generated. By deploying the
system package in the cloud, enterprises can easily access
their self-defined and safe cloud services. In conclusion, four
main contributions are made in this paper:
• An automated cloud-services-generation technique is
proposed. This approach takes printed forms and the
BPMN as inputs, which provides an easy way to develop
cloud services and a natural solution to deploy and
migrate cloud systems.

• Data self-service is implemented in the approach.
Different tenancies can use different data in printed
forms and business processes in BPMN to define their
own services, which provides convenient access to cloud
services.

• A natural isolation of the cloud service systems is guar-
anteed in the business layer by utilizing an independent
package of cloud services that includes data resources,
services, and views. This setup reduces the difficulty of
isolation in containers and virtual machines.

• A prototype tool and a series of experiments are
presented to demonstrate that the proposed approach
is a feasible way to generate an information system
automatically.

The rest of the paper is organized as follows. Section II
introduces the basic concepts and essential prerequisite for
the paper. Section III presents the detailed process and meth-
ods of our approach, and Section IV assesses the approach
with several case studies and experiments. Section V dis-
cusses the results of our work and related work in this field.
Finally, Section VI concludes the paper and illustrates the
future directions of this work.

II. PREREQUISITE
A. STRUCTURE OF BUSINESS FORMS
Before the work begins, we first analyze the structure of the
forms. According to our research on more than 500 business
forms from the results of Google Picture Search,1 we con-
clude that the skeletons of business forms all have a similar
structure composed of four parts, as shown in Figure 1:

1) TITLE
The title implies the entity that the form describes. As an
example, consider the form on the left in Figure 1. This
form includes the information from a piece of a sales order.
However, the title is optional in the form structure. In the form
on the right in Figure 1, if the detailed information contains
its own title, then we believe that the first title that appeared
in the header of the form is not the title.

2) RELATED INFORMATION
The related information contains the detailed information of
the related entities in the business process. These entities can

1http://www.google.com/search?site=imghp&tbm=isch&source=hp&
biw=1436&bih=780&q=business+form

VOLUME 6, 2018 6631



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

FIGURE 1. The structures of business forms with examples. The form on
the left has the standard four-part structure, and the form on the right
has a variant four-part structure.

have their own titles and extra information. If we take a sales
form as an example, the customer’s detailed information is
listed before the list of the order details. However, only the
customer ID is directly related to the order, and the detailed
information consists of the properties of the customers. The
related information is optional because it is possible that no
related entities are involved, but this occurrence is rare in
business processes.

3) DETAILED INFORMATION
The detailed information displays items with the same prop-
erty fields in a vertical table. In a sales form, the detailed
information contains the information of each sold product;
in a work form, this information contains the products to
produce or the work to do. For most transaction data, this
information is compulsory, but it can be omitted in certain
business forms, such as a paper information form in a paper
review system.

4) EXTRA INFORMATION
In this portion, all of the information except the detailed
information and the related information are placed, such as
the payment choice, delivery date and method of shipping.
This part contains the properties of the entity that the form
describes and is also an optional part of a business form.

B. RESTRICTIONS FOR THE BPMN
To obtain function-related information, some restrictions
have to be specified in the BPMN. First, the BPMN models
need to follow the BPMN Basic Rules and Clarifications.2

Next, the naming of the elements in BPMN should follow the
BPMNNaming Conventions Best Practices2. That is because
the names are the key tomatching the data and discovering the
function operations. With these two basic and simple restric-
tions, a usable BPMN can easily be constructed. In this paper,
we use examples in the BPMN official guide3 to demonstrate
the methods and experiments on BPMNs.

2http://www.bpmnquickguide.com/view-bpmn-quick-guide
3http://www.bpmn.org/#tabs-examples

III. PROPOSED APPROACH
Our approach, which we call CodingBlind, is an automated
cloud-services-generation process that consists of 5 central
procedures: ERModel Construction, FSMBuilding, Quadru-
ple Cloud Service Modeling, Independent Cloud Services
Generation, and Deployment and Execution. The inputs of
our approach are the various blank printed forms used in
the business process and a BPMN model that describes this
process. The schematic diagram is shown in Figure 2. Users
provide their own in-use business forms, and the ER Model
Construction component recognizes the forms and identifies
the domain elements from the printed forms. Furthermore,
users can choose the existing business process templates from
the standard process library or directly design their own pro-
cesses in the BPMN. The FSMBuilding component generates
an FSM from the BPMN to obtain the states of data and
the function operations. Then, the Cloud Service Modeling
component constructs a quadruple model of the services to
achieve better representations. Moreover, the process of Inde-
pendent Cloud Services Generation uses the quadruple model
to generate the instances of the cloud service package. Lastly,
the Deployment and Execution process flexibly deploys the
service package based on the MVC pattern in clouds.

A. ER MODEL CONSTRUCTION FROM PRINTED FORMS
In this phase, printed forms are first transformed into Property
Trees (PTs), which are mapped onto ER models via mapping
rules. These ER models are integrated into an entire ER
model as the basis of a complete data system. Data objects in
the BPMN are matched with entities to identify states from
the BPMN. Then, the state tables for the entities are added to
the integrated ERmodel. Finally, a stateful ER model is built.

1) STRUCTURE-BASED PROPERTY TREE ABSTRACTION
To extract property trees from business forms, we first use an
OCR engine 4 to transform the printed forms into metadata
files that provide a tuple containing the coordinates of every
character and line element. According to the relative positions
of the lines and characters, we decompose the forms into
tables and texts.

The four parts mentioned in Section II-A are labeled
according to Algorithm 1. First, detailed information is
located by detecting the table with a single filled property
row and multiple empty rows. Then, the title is identified by
the location and font size. If no title is found, an empty title
will be applied for further confirmation. The other blocks are
labeled as related information or extra information.

Inside some table blocks, there can be more than one
entity. For example, in Figure 1, BillTo and ShipTo are
in the same tables but are different entities. By detecting the
permutations of both filled cells and empty cells and similar
properties, the partition is completed. The filled cells in the
tables are the properties of the entities.

After labeling the areas in a form, a property tree (shown

4http://ocrsdk.com/

6632 VOLUME 6, 2018



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

FIGURE 2. Framework of the proposed approach.

in Figure 3) is built to model the form. The title that represents
the entity described by the form is the root of the property tree.
If no title is found, then the entity is temporarily named Root.
A related entity is a child node of the root, and its properties
are children of the entity. The other child nodes of the root

Algorithm 1 Area Partition
Input: Tables {Ta}, Texts {Te}
Output: Form F
1: for Ta ∈ {Ta} do
2: if Ta.rows = (textrow, (emptyrow)+) then
3: Put Ta in F .{Related}
4: end if
5: end for
6: Find the table Ta with the maximum height
7: Remove Ta from F .{Related}; F .{Detail} ← Ta
8: if text Te is directly above F .{Detail} then
9: F .Title← Te
10: else
11: Find the Tewith the maximum font size and above all

of the tables, F .Title← Te
12: end if
13: for (Te ∈ {Te})and(Te 6= F .Title) do
14: if Te is single-line and beyond Ta then
15: Ta.name← Te
16: else if Te is single-line and beyond Tem then
17: Put Tem in F .{Related},Tem.name← Te
18: else
19: Put Te in F .{Plus}
20: end if
21: end for
22: Put all Ta /∈ F .? in F .{Plus}
23: return F

FIGURE 3. The structure of the property tree extracted from the business
forms.

are the detailed information and the properties in the extra
information. The detailed information node is the parent of
all of the properties in the detail table. The properties in the
extra information area are direct children of the root.

2) PT-ERM MAPPING
In this step, the PTs are mapped to ER models to further
construct tables in the database. Three types of entities and the
relationships among them are generated according to Table 1.
In addition, an ER model is generated, as shown in Figure 4.

a: TRANSACTION ENTITIES
In a system, the transaction data record business activities
and are changed frequently. Sales orders, work orders and
shipping orders are common transaction data in a business.

VOLUME 6, 2018 6633



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

TABLE 1. The mapping rules for transforming a property tree into an ER
model.

FIGURE 4. The general ER model constructed based on individual forms.

Furthermore, customer information or paper information can
sometimes be transaction entities in processes such as cus-
tomer privilege approvals and paper reviews. These data are
always presented as sheets and forms for communication
across departments. Therefore, a property tree extracted from
a form can be directly mapped to a series of transaction
entities according to the mapping rules in Table 1. For a given
property tree, the title is transformed into ET .name, where
ET denotes the core transaction entity. The related informa-
tion is transformed into other entities, and only the primary
keys of these data are preserved in the core entity as foreign
key attributes, namely, ET .FK. The extra information is
directly mapped to ET .AT T R, which denotes the attributes
of the entity.

b: DETAIL ENTITIES
Detailed information are not stored in the core entity, but in
an independent entity ED, where ED.name = ET .name +
‘‘Detail ′′. ED takes the properties of the detailed information
as attributes and refers to the core entity by adding a for-
eign key attribute containing the core transaction entity id,
which is denoted as ED.AT T R = PT .DetailedInformation.
P + ET .PK . Correspondingly, the links from the title to the
detailed information are mapped to one-to-many relation-
ships from ET to ER.

c: RELATED ENTITIES
The related entities evolve from the related information in the
property tree. These entities are master data; these data are

FIGURE 5. The integrated ER model, which incorporates multiple
ER models.

shared between multiple systems or business processes and
are infrequently changed. The Client, Supplier and Customer
are typical instances of master data. In the forms, important
master data appear in the related information area. Sometimes
related entities are also transaction data, for example, a sales
order can be a related entity to a delivery order. However,
we can still recognize these related transaction data as master
data in this case because modifications of the core trans-
action entity never change the data in the related entities.
Because of the independence of the related entities, they can
be directly mapped to entities ER with the properties mapped
onto the attributes in ER.AT T R in the ER model. The links
from the title to the related information in property trees are
transformed into many-to-one relations from ET to ER, and
the foreign keys for every related entity are reserved in the
core transaction entity. A final generated ER model is shown
in Figure 4. All of the unique ID properties are generated in
the standard format instead of being derived from property
trees to ensure the existence and uniqueness of the ID fields.

3) INTEGRATION OF MULTIPLE ER MODELS
The next step is to integrate models from different forms
into an integrated ER model (shown in Figure 5) as the
basis of the data service. As we mentioned in Section III-A2,
a transaction entity can be a master datum of another transac-
tion entity; e.g., a sales order is a master datum for a delivery
order. Therefore, when the models integrate, there can be
more than one generated entity that represents the same real
entity. To resolve the duplication issue, the merging is to be
conducted as in Figure 6. By comparing the name strings of
the entities, the duplicated entities can be found. An entity
is a duplicate if and only if one or more entities with the
same name are found in all of the ER models. However,

6634 VOLUME 6, 2018



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

FIGURE 6. An example of merging a duplicate entity.

FIGURE 7. The final stateful ER model integrating multiple ER models.

the duplicates are not directly abandoned, as those entities
with the same name may have various attributes for different
usages. As a result, all of the attributes from entities with the
same name are merged. If an attribute appears for the first
time, it will be preserved; otherwise, it will be abandoned.
If one appearance of the attribute is a foreign key, then it
will be preserved as a foreign key to maintain the relationship
among the entities.

4) STATE COMPLEMENT
The state, which shows the data process in action, is an
important attribute of the transaction entities in an enterprise
system. Consider a sales order as an example: when it is cre-
ated by a sales employee, it may have the state submitted,
and when it is delivered by the shipping department, the state
may be changed to shipping. Although states continue to
change during the business process, no state information can
be found only from printed forms. Therefore, we introduce
the BPMN into the ER model when it is constructed to obtain
the states of the transaction entities in the business processes.
The methods used to identify the states of the entities are
introduced in Section III-B. As shown in Figure 7, for the
entities with multiple states, a state entity is built with the title
of {Title}State, and an attribute state is added to the
{Title} entity. Finally, a complete stateful ER model for
cloud services is built.

FIGURE 8. An example of the task mapping to FSM.

B. BUILDING AN FSM FROM BPMN
BPMN is an easy and convenient way for users to design busi-
ness processes. However, it is not formal enough to directly
control the process of a system, and the data states are not
all explicitly illustrated. Therefore, we transform the BPMN
into an FSM as the logic controlling module of the system.
An FSM is denoted as a quintuple (I,O,Q, q0, δ,F); the
notation is defined below.
• I is a finite set of input symbols,
• O is a finite set of output symbols,
• Q is a finite set of states,
• q0 is the initial state in Q,
• δ : Q×I → Q is a finite set of state transition functions,
• F : Q× I → O is a finite set of output functions.
In this phase, we first map the BPMN into a formal FSM.

Then, a semantic model is used to extract meaningful state
data. Finally. we identify the states of the entities to construct
a state table in an integrated ER model.

1) BPMN-FSM MAPPING
a: TASK
A task in BPMN is intended to accomplish a job. We define
a task in BPMN as below:

Task = [Name,Type, InFlow,OutFlow, InMessage,

OutMessage, InData,OutData,Lane,Pool] (1)

A task updates the state of a system.Therefore, a task is
mapped onto a state transition function δ and an output
function F in the FSM, as shown in Figure 8. δt takes the
input elements of Task t as I and advances q0 to the next
state q1. In addition, Ft takes the InData as I and the output
symbolsOutData andOutMessage asO. If the input or output
of the task is not declared, then F .I = ∗ or F .O = empty.
If the task has subprocesses, then the state transitions in these
subprocesses are between the two states of the task. The
mapping rules can be denoted as below:

δt := q0 × [t.InMessage, t.InFlow, t.InData]→ q1
Ft := q0 × t.InData→ [t.OutData, t.OutMessage] (2)

b: GATEWAY
Three basic gateways are supported to map into the FSM:
exclusive, parallel and inclusive gateways [27]. There are

VOLUME 6, 2018 6635



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

FIGURE 9. Mapping rules for diverging gateways.

two types of appearances of gateways: converging and diverg-
ing gateways. A gateway in BPMN is denoted as below:

Gateway = [Name,Type, InFlowSet,OutFlowSet,

Lane,Pool] (3)

According to the different types and appearances of gateways,
different rules are applied.

An exclusive gateway is a choice gateway where only one
branch is executable at a time. As shown in Figure 9, for a
diverging exclusive gateway structure, q0 is the start state of
the gateway, and the conditions of the gateway are the input
symbols of q0. According to the condition, the next element
xg.OutFlowi.to composes the output function F ixg and the
state transition function δixg. For the ith branch, the transfered
FSM process is denoted as below:

δixg := q0 × [xg.OutFlowi, xg.OutFlowi.to.InData]

→ qi
F ixg := q0 × xg.OutFlowi.to.InData

→ [xg.OutFlowi.to.OutData,

xg.OutFlowi.to.OutMessage] (4)

Take the instance in Figure 9 as an example, the Yes
branch is mapped onto a state transition function δ1xg := q0×
[Yes,Task1.InData] → q1 and an output function F1

xg :=

q0 × Task1.InData→ [Task1.OutData, Task1.OutMessage].
Likely, Task2 is mapped onto the output function of δ2xg.
Similar to the diverging gateways, a converging exclusive
gateway is a reverse structure such that Task1 and Task2 share
a single end state instead of a start state.

A parallel gateway is a gateway such that both of the
branches execute at the same time. Although the traditional
FSM does not support paralleling, a layer model can be used
in the FSM to support parallel activity. As shown in Figure 9,
for a diverging parallel gateway, q0 is the start state. All
of the input symbols are allowed and an empty action is
undertaken, which is omitted in the figure. Then, a new layer
is created to replace the end state. The new layer contains two

new independent FSMs, and each of them is an FSM starts
with the successor tasks of the gateway. The mapped FSMs
are formally represented by Formula 5 and Formula 6. The
structure indicates that two parallel FSMs have started. When
a converging gateway appears in the sequence, the FSMs in
the inner layer all reach the end and the outer layer continues.
Take the instance in the bottom of Figure 9 as an example,
the first layer is from q0 to qA. Inside the state qA, two new
FSM starts. The first inner layer FSM starts with state q1 and
output function Task1, while the second inner layer FSM start
with q3 and output function Task2. The converging parallel
gateway is similar; the only difference is that q0 becomes the
end state after the FSMs in the new layer have all stopped.

δag := q0 × ∗ → qA
Fag := q0 × ∗ → empty (5)

Inside state qA:

qi0 := q2i−1
δiag := q2i−1 × [ag.OutFlowi, ag.OutFlowi.to.InData]

→ q2i
F iag := q2i−1 × ag.OutFlowi.to.InData

→ [ag.OutFlowi.to.OutData,

ag.OutFlowi.to.OutMessage] (6)

An inclusive gateway is a gateway such that if the condi-
tion is satisfied, then two branches will both execute; other-
wise, the default branch will execute. Because an inclusive
gateway can be considered the combination of an exclusive
gateway and a parallel gateway, no newmapping rules need to
be declared for inclusive gateways. The mapped FSM can be
denoted as Formula 7 and Formula 7, where δtog denotes the
state transition function represents the condition is satisfied
and δfog derives from the default branch.

δfog := q0 × [og.OutFlowf , og.OutFlowf .to.InData]
→ qf

F fog := q0 × og.OutFlowf .to.InData
→ [og.OutFlowf .to.OutData,

og.OutFlowf .to.OutMessage]
δtog := q0 × ∗ → qT
F tog := q0 × ∗ → empty (7)

Inside state qT :

qt0 := qt0
δtog := qt0 × [og.OutFlowt , ag.OutFlowt .to.InData]
→ qt1

F tog := qt0 × og.OutFlowt .to.InData
→ [og.OutFlowt .to.OutData,

og.OutFlowt .to.OutMessage]

qf0 := qf0
δfog := qf0 × [og.OutFlowf , og.OutFlowf .to.InData]

→ qf1

6636 VOLUME 6, 2018



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

F fog := qf0 × og.OutFlowf .to.InData

→ [og.OutFlowf .to.OutData,

og.OutFlowf .to.OutMessage] (8)

c: EVENT

There are three types of event in BPMN: a start, end and
intermediate event. A event is defined as follow:

Event = [Name,Type, InFlow,OutFlow,

InMessage,OutMessage,Lane,Pool] (9)

A start event is mapped as below:

q0 := q0
δ0 := q0 × ∗ → q1
F0 := q0 × ∗ → empty (10)

An end event can be an end, a terminate or an abort event.
It updates the state of data. An end event can be transfered
into FSM elements as below:

δn := qn−1 × [event.InMessage, event.InFlow.OutData,

event.Name]→ qn
Fn := qn−1 × [event.InMessage, event.InFlow.OutData,

event.Type]→ event.Name (11)

For intermediate events (such as task mapping rules), a two-
state machine is built:

δe := q0 × [event.InMessage, event.InFlow.OutData,

event.Name]→ q1
Fe := q0 × [event.InMessage, event.InFlow.OutData,

event.Type]→ [event.OutMessage,

event.InFlow.OutData, event.Name] (12)

Based on the mapping rules, each element in BPMN can
be mapped onto a component of an FSM. By going through
the sequence flow, we connect all the components and build
an FSM. If subprocess exists, the whole subprocess will be
inserted into the sequence. For the semantic aspect, we have
F .name = element.name. Similarly, the Lane and Pool of the
elements in BPMN are also preserved in F . Next, we match
the states in the FSM with the entities we obtained from the
printed forms to build a stateful ER model.

2) IDENTIFY THE PHRASE STRUCTURE
In this step, WordNet [28] is introduced to discover the
semantic meaning of the functionsF to further extract mean-
ingful states and useful cloud services. First, for each function
F : qi × Ii→ Oi, we stop the words of F .name, and then the
parts of speech (POS) and the tags of all of the words and
phases in F .name are retrieved from WordNet to obtain the
POS pattern F .namepattern. Then, F .namepattern is matched to
a verb-object pattern to uncover the verb word F .operation.
Next, the past participle of F .operation is the name of the

end states qj of the corresponding state transition function
δ : qi × Ii→ qj.

3) IDENTIFY STATES FOR THE ENTITIES
F in an FSM takes the data as inputs and outputs. Moreover,
the corresponding state transition function δ transforms the
states of the system, which are also the representatives of
the states of the data. Therefore, by identifying the input and
output of F , the states of the entities become obvious.

First, we describe the constructed FSM. For an output
function F with certain inputs and outputs, nothing needs to
be done. However, ifF .I orF .O is empty, thenwe need to find
the inputs and outputs. If a function F .I = ∗, we backtrack
based on the outputs of the previous functions. If the output is
an entity that is related to F .O, then the output of the previous
function is given toF .I . If no such output exists, thenF .I = ∗
still holds. If F .O = empty, then the input is given as the
output of the task.

After we have determined all of the inputs and outputs
of the functions, the data related to the states need to be
identified by identifying the states for the entities. To record
the entity with the state, for all q in Q, an entity table is
preserved. For a state q, the functions reaching q are denoted
as Fq. First, all of the Fq.O are added to q.table. Furthermore,
all of the Fq.O are matched to the ER model to find the
corresponding entities. Then, for each entity, foreign keys are
retrieved to obtain the related entities. If a related entity has
appeared before q, then we consider the related entity to have
the state q and the entity is added to q.table. In this way,
the entity tables of the states are built. By processing all of
the tables, the states are recorded according to the entities in
the state tables. By adding the state tables to the integrated
ER model, the stateful model is constructed.

C. QUADRUPLE MODEL CONSTRUCTION FOR
SERVICE REPRESENTATION
To integrate all of the information retrieved from the printed
forms and BPMN models to derive an independent cloud
service package, a quadruple model is proposed. The model
is denoted as

〈URI , subject, predicate, object〉 (13)

Figure 10 shows an instance of this quadruple model for ser-
vice. There are four types of resources: Roles, Forms, Condi-
tions and Services; the quadruples show the relations among
them. Each service has three types of predicate: hasRole,
use and hasCondition. These predicates respectively
connect the services with the roles, forms and conditions.
A service can own multiple quadruples of the same type.
Each condition also has its predicates, as shown in Figure 10.
The conditions and functions are directly mapped from the
FSM built in the previous steps. In addition, the forms are
entities in the ER model, while the roles are derived from
the participants in the BPMN model. By using the service
quadruple model, an independent service package becomes
feasible.

VOLUME 6, 2018 6637



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

FIGURE 10. An example of a service quadruple model.

For an output function F , a Service instance is generated.
It is notable that the form resource contains all of the proper-
ties of the entity, and parts of the properties are actually used
in the Service. As a result, the single ER model is used to
retrieve the usable properties. For theuse relation, ifF .I 6= ∗
and the resource of F .I is in the ER model of the output
resource, the properties that appear in the representative entity
of F .I in the ER model are retrieved as the use resource.
Then, all of the entities and properties that appear in the
ER model of the output are organized as the resources that
have updated relations with the Service.

For a state q, a Condition instance is generated. The Con-
dition is connected with the Services that directly lead to
the state. The connection is a hasCondition relation.
By finding the corresponding state transition function δ after
q, the input of δ can be set as the State of the Condition,
which means that the condition is invoked in this state. Then,
the output function of δ becomes the postfix service of the
condition. For the entities in the entity table of q, the states of
the entities are connected with the Condition in relations of
update_s with the value of the new state name.

D. INDEPENDENT CLOUD SERVICES GENERATION
After the services are modeled as quadruples, the cloud ser-
vices are generated. Then, an MVC design pattern is applied.

1) MODEL
In this phase, the data services are generated on the basis
of the ER model. First, the metadata are generated from
the stateful ER model. Then, the RESTful data services in
the Web Application Description Language (WADL)5 are
generated with separated ER models.

a: DATA RESOURCES
According to the ER model, a database is built. Every table
stands for an entity in the ER model. Then, the RESTful data
resources are generated. The RESTful services retrieve and

5http://www.w3.org/Submission/wadl/

post the data resources in the format of XML. A template-
driven mapping is used to generate the data sources in the
XML format. For every table in the database, an XML file
is generated with the same name, and a SELECT * from
{Table} command is embedded into this file. A data trans-
formation middleware is used to deal with the templates.
When the file is handled by the middleware, the SELECT
sentence is replaced by the execution result, and the complete
resources are derived.

b: DATA SERVICES
After the data resources are generated, the data services can
be easily built on the basis of the data resources. The RESTful
services in the WADL are applied in our framework. For a
type of resource, basic GET/PUT/POST/DELETE operations
are defined on a group of resources and a single resource.
DELETE works on a single resource when the ID is provided
in the URI and a group of resources when no ID found.
GET methods have a group of parameters that come from
the resource properties to operate SELECT operations on
resources. POST and PUT provide modifications and addi-
tions interfaces whenever the POST method needs a resource
as an input and the the PUT method does not.

2) CONTROLLER
The controller implements the business logic in the system
according to the quadruple model. To provide cloud services,
the WADL is used to generate advanced web services that
implement the functions in the system.

a: WEB SERVICES
For an function F in the quadruple model, a web service is
generated. First, the function name is assigned to the name
of the service. Then, a GET operation is prepared to load the
Form resources used by F , and a PUT or DELETE operation
is employed for the Form resources updated by F . Then,
to identify the operation to perform, the name of the service
is analyzed by WordNet. If the name of the service con-
tains a synonym of delete or remove, then the DELETE
operation is applied. Otherwise, PUT is used. The resources
updated by F are loaded as the resources of the operation.

b: STATE UPDATE
The operations are done within a certain view, and the post
data are sent back to the controller to control the modifi-
cations of the model layer. By finding the corresponding
Condition in the quadruple model, the forms to update and
the next service to use are discovered. Then, the resources
are updated and the view jumps to the next view under the
control of the quadruple model.

3) VIEW
A view layer is composed of a group of pages that provide
an interactive interface for the end users. Three elements
of the metadata need to be determined in a view: the title,
request data and post data. The title is the name of the page.

6638 VOLUME 6, 2018



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

The request data stand for the required input data or the static
data shown on the page. Lastly, the post data refer to the data
to be sent back to the server after user operations have been
performed.

a: IDENTIFY METADATA
First, three types of metadata are identified from the web
services. For every web service, a page is built. The title
of the page is derived from the name of the service. The
resources in theGET operation are the request data. Similarly,
the resources of the other operations are considered as the
post data on the page.

b: TEMPLATE-BASED VIEW GENERATION
After the metadata are selected and form pages, the formats
of the pages will be determined. To ensure that there are fewer
distinctive formats for more of the pages, templates are used.
View pages are divided into two types: management views
and processing views.

TheManagement View is for those web services that need
input data. This view provides a table form showing every
accessible (with proper states) entry of the GET resources.
By providing a management view, users can select the entry
to process even if the process is interrupted. For every entry
of data, a button named after the function is provided. Once
the button is clicked, the view jumps to the process view of
the entry and passes over the unique id of the entry for further
processing.

The Processing View is the process page for the web
services to process a data entry. If the post operation in a web
service is PUT, a creating view is generated. By retrieving
the domains of the PUT resource, the properties to be filled
in are obtained and shown as the input boxes in the page. If a
GET operation exists in the web service, the instance of the
GET resource is obtained according to the unique id passed
by the management view and displayed in the input box of
the corresponding box. Once the submit button is clicked,
the web service is called. For the functions whose next state
has multiple branches, a choice view is applied for the user to
select the next state.

E. CLOUD SERVICES DEPLOYMENT AND EXECUTION
After independent cloud services are generated, the data
resources are in XML files, the data services and web ser-
vices are in WADL, and the view pages are in HTML. All
of the resource files of the three components are packed
in a single independent package. To deploy the generated
package on a cloud server, the container tool Docker6 is
applied for quick deployment and multi-tenancy guarantee.
By using Dockerfile commands, we define the system image,
required dependencies, necessary JDK and run commands
in a Dockerfile. Since the package is automated generated,
the runtime environment can be fixed. Then, the Dockerfile
is added into the service package. With the help of resource

6http://www.docker.com/

sharing tools, such as git and svn, the enterprises can directly
pull down and run the package on their cloud server, and at
this point, the end users can directly visit the cloud services
without any installation or deployment.

When the web service package is executed in the cloud,
isolation among the packages is ensured by the Docker in the
platform layer and by the generated package in the business
layer. First, Docker guarantees the isolation and reliability
in physic resource assignment using visualization. Next, our
service package provides the isolation and flexible resource
management beyond the platform layer by encapsulating all
related resources in the file format in the scope of a single
package, which is the isolation in the business layer. In this
way, we ensure that the web services from packages cannot
visit resources in other packages and multiple applications
do not interrupt each other in the runtime. Therefore, mul-
tiple packages can be deployed in a single server to utilize
their advantages. Moreover, different Service Level Agree-
ments (SLAs) [29] can be flexibly applied to packages to
control the utilization of resources.

IV. EXPERIMENTAL ASSESSMENT
In this section, we demonstrate our assessment of Coding-
Blind. First, case studies are introduced to demonstrate the
feasibility of the proposed approach. Then, we design an
experiment that invites domain experts to evaluate the correct-
ness and completeness of the systems generated according to
the cases.

A. CASE STUDIES
Three categories of real-world processes with various inten-
tions are used to assess CodingBlind. These cases contain
different business activities, execution sequences and data,
which include all of the basic elements in the BPMNs and
various table structures in the real world.
• Order Process Case Study describes the process of
handling orders in a factory from creating sales orders to
shipping until an order is completed. Ten case instances,
including a BPMNmodel and the corresponding printed
forms, are provided in this category.

• Medical Process Case Study shows the procedure from
registering to see a doctor and to finally purchasing
medicine. Here, 5 case instances including a BPMN
model and the corresponding printed forms are provided.

• Paper Review Case Study illustrates how a paper is
processed after submission. Only one form is attached
to this case, though multiple branches appear in the
process. Here, 5 case instances including aBPMNmodel
and the corresponding printed forms are provided.

The BPMN models are created according to the offi-
cial examples7 with some simple changes in the names of
the tasks. Moreover, we added some data associations. The
forms were taken from pictures in the related industries we
researched on Google as templates, and they were verified

7http://www.bpmn.org/#tabs-examples

VOLUME 6, 2018 6639



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

FIGURE 11. An example case and the generation result of CodingBlind.
(a) Input printed forms. (b) Input BPMN. (c) Cloud services generated
by CodingBlind.

by specialists in the corresponding industries. Based on the
above cases, the systems in clouds are generated by Coding-
Blind. An example input and output is shown in Figure 11.

B. EVALUATION
1) MATRICES
a: DATA CORRECTNESS (Dcr )
For every property in the data resource, TruePositive indi-
cates that the property is CORRECTLY transformed from
a property term in the printed forms; if it is a foreign key,
we verify that it refers to the CORRECT entity. For an entity
in the data resources, TruePositive denotes that the entity is
CORRECTLY transformed from an entity term in the printed
forms and that its properties are transformed from the prop-
erty terms belonging to the corresponding entity term in the
printed forms REGARDLESS of the human understanding
and spelling mistakes to avoid overlapping between two tal-
lies. Then, the data correctness is defined as follows, where
CorrectP and TruePositiveE , respectively, denote the number
of correct properties and entities and TotalDR denotes the total
number of terms (of the property or entity) in the generated

data resource:

Dcr =
TruePositiveP + TruePositiveE

TotalDR
(14)

b: DATA COMPLETENESS (Dcm)
For every term in the printed forms, Positive denotes that it
has a corresponding term in the data resources regardless of
the correctness of the transformation. Dcm denotes the rate
of Positive terms in the total terms in the printed forms that
should be transferred.

Dcm =
PositivePF
TotalPF

(15)

c: SYSTEM CORRECTNESS (Syscr )
For each page in a system, 3 criteria are measured: first,
whether the DATA entity displayed on the page is the required
one; second, whether the FUNCTION of the page satisfies
the corresponding task; third, whether the VIEW JUMPING
leads to the correct page following the BPMN. Each point
contributes 1 point to the score. Therefore, Syscr is defined as
follows, where Scorep denotes the score of a page and TotalP
denotes the total number of pages:

Syscr =

∑
Scorep

3 ∗ TotalP
(16)

d: SYSTEM COMPLETENESS (Syscm)
For every element (we refer to the tasks, events and divergent
exclusive gateways) in the BPMN, if a page is successfully
created for it, then it is considered as Positive. Syscm repre-
sents the proportion of Positive signs in all of the elements.

Syscm =
PositiveEBPMN
TotalEBPMN

(17)

2) PARTICIPANT SELECTION
Measuring the data and the system is a relatively challenging
work. We selected 60 volunteers to participate in the exper-
iment to evaluate 20 cases in 3 categories of case studies.
Among the 60 participants, 12 are software engineers, and
48 are senior and graduated students majoring in Software
Engineering. All of them have taken Software Engineering
courses and developed more than one web-based system.

3) EXPERIMENT
First, all of the required materials are assigned to the partici-
pants. 20 cases are randomly distributed to 60 participants to
ensure that every case has 3 evaluators. A piece of material
includes the printed forms and BPMN required in the case.
In addition, an instrument and a grading form are attached.
Then, the participants evaluate the system according to the
given materials and record the result on the grading form
under supervision. Finally, we collect all of the grading forms
and analyze them to produce the corresponding matrices.

4) RESULTS
We analyzed all 60 of the grading forms and produced the
statistics in Table 2. The first three rows of data in Table 2 are

6640 VOLUME 6, 2018



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

TABLE 2. The correctness and completeness of the data and the system
of 3 categories of cases.

the average results of the grading forms related to each case.
The final row shows the weighted average results of all of the
cases.

C. THREATS TO VALIDITY
1) THREATS TO INTERNAL VALIDITY
relates to the quality of the inputs in our work. For the data
part, the resolution of the form images decides the correctness
of the recognition and the following phases. Since OCR is
not the core process of the approach, we carefully choose the
mature OCR engine to minimize this error. Also, the reason-
able design of forms and BPMN is the fundamental of the cor-
rectness of the whole process. For example, if different data
entities or tasks are entitled to the same name, the correctness
of the generated service will decline.

2) THREATS TO EXTERNAL VALIDITY
corresponds to generalizing the result. Our approach is
domain-unrelated and can be applied in different disciplines.
However, there are some restrictions for the BPMN as men-
tioned, so we do not assert that we support all variants
of BPMN. And also there are some advanced or extensional
elements in BPMN are not supported in our approach.

3) THREATS TO CONSTRUCT VALIDITY
relates to the rationality of the experiments. We set 20 cases
in 3 unrelated categories as samples to ensure the generaliza-
tion of the experiment. The participants are of rich experience
in web system development. And the grading forms provides
no indications. Since there are no existing evaluation matri-
ces, we designed the matrices to evaluate the correctness of
the results, which can be a threat to construct validity.

V. DISCUSSION AND RELATED WORK
The case studies show that CodingBlind is a fully automated
cloud service generation method from the printed forms and
BPMNmodel. The results of the evaluation of the experiment
show that the generated cloud systems and related data are
correct and complete with scores greater than 0.95. There
are multiple reasons why our approach obtains high scores:
(1) the structure template is abstracted from copious real-
world business forms varying from contents to themes, which
leads to high correctness and completeness in the data extrac-
tion. (2) A full analysis of the BPMN produces high com-
pleteness of the data and systems. (3) A semantic model is
used to extract meaningful data in the data operation and

state extraction, which ensures the correctness of the systems’
functions. (4) An FSM is applied to control the logic in the
systems, which also contributes to their correctness. How-
ever, there are still some limitations to the proposed approach:
• The proposed method provides a structural template
to analyze printed forms. The template itself has been
widely adopted. However, the data inside each part can
be interpreted in various ways according to the semantic
meaning, which influences the structure of the property
tree and leads to a loss of data correctness.

• As mentioned in Section II-B, the BPMN models used
in the method have a set of restrictions, and limited ele-
ments are currently supported. Therefore, a prerequisite
of BPMN knowledge is required to apply this method.
At this time, a system is generated from a single BPMN
model. Multiple BPMN combinations are not currently
supported.

• The method obtains operations in systems singly from
BPMN models. Therefore, only basic functions that
involve retrieving, creating, modifying and deleting can
be extracted and established. Cases of advanced oper-
ations with complex logical interpretations, such as
sorting by or including a set of operations such as
buying including sorting, ordering, and paying, are not
currently supported.

• There is no automated verification of the approach.
To ensure or improve the correctness of the generated
models, the users need to verify them manually.

Previous studies have been done in automated cloud
services generation. Na-Lumpoon et al. [30] provided an
approach that reuses the composition and execution of ser-
vices to obtain new services. They obtained a service list
in the Web Service Description Language (WSDL) 8 and
composed it to build a BPMN model. Then, they used a
BPMN engine to run the new service. Na-Lumpoon’s work
requires predefined atomic services to generate new services.
However, to produce atomic services, enterprises must still
depend on third-party services or their own services, which
entails a large cost in money, time and manpower. Therefore,
their approach is useful for enterprises with basic services
who seek to offer new services.

Kwon and Tilevich [31] proposed an automatic approach to
migrate existing services to the cloud. Kwon’s approach [31]
is a helpful tool to programmers and enterprises that already
have local services. These authors transform local reposi-
tories into JAX-WS applications to produce web services
inWSDL. This approach solves the automation problem from
a local system to a cloud system. However, for an enterprise
using the system but not maintaining it, this approach does
not work.

There have also been automated systems that generate
local services, where the process is similar to generat-
ing cloud services. Basso et al. [32] presented a model-
driven web engineering approach to automatically design

8http://www.w3.org/TR/wsdl20-primer/

VOLUME 6, 2018 6641



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

TABLE 3. Comparison with related work.

a prototype information system. They extracted data and
function requirements from use cases and paper prototypes
and generated conceptual models to drive the system engi-
neering. It is notable that the logic types of their use cases
need to be predefined by the users, which is a strong challenge
for users without programming experience. Furthermore,
manual development is needed in the generation process for
certain use cases (which are labeled as manually developed).
Therefore, the approach is a semi-automated approach. How-
ever, because the development of artificial intelligence is
limited to fully automated services, their work is a mature
way to automatically design a local system instead of cloud
services.

Compared to the previous studies, the innovation of our
approach can be seen from three aspects as shown in Table 3.
The inputs of our approach are graphic so that it is use-
ful and friendly to users with no programming experience.
Moreover, our approach can directly help users to construct
a cloud application. But the other studies either need an
existing system or service as a foundation or only construct
local applications. Therefore our approach contributes to the
SMEs with few programmers to quickly obtain their cloud
applications.

VI. CONCLUSION
In this paper, an automated cloud-services-generation process
called CodingBlind is proposed. The process takes printed
forms and the BPMN model as inputs and ultimately gen-
erates an independent service package that can be directly
deployed in clouds. The generated cloud service system is
modeled by quadruple models and follows the MVC design
pattern. The model layer comes from the data services con-
structed according to the stateful ERmodel built from printed
forms with the assistance of BPMN. The controller layer is
composed of web services constructed on the basis of an
FSM generated from the BPMN. The view layer is generated
on the basis of the data services and web services that are
provided in the other layers. Our approach provides an easy
way to generate cloud services that is both time-saving and
economical. In addition, this approach is a natural solution for
the deployment and migration of cloud service systems. Fur-
thermore, the approach gives flexible access for an enterprise
to self-define its own cloud services, and the system provides

a new way to achieve multi-tenant isolation in the business
layer. A prototype tool and a set of experiments show that
the proposed technique is feasible, correct and complete for
widespread use.

In the future, we would like to improve the completeness
of the system by considering the entities of men and the
privileges in cloud services. We seek to improve the correct-
ness of the entity identification by introducing linked data
into the process. Moreover, we would work on the potential
extendability of the system, such as making data services and
cloud services plug and play at runtime.

REFERENCES
[1] S. Tai, J. Nimis, A. Lenk, and M. Klems, ‘‘Cloud service engineering,’’ in

Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng. (ICSE), vol. 2. New York,
NY, USA, May 2010, pp. 475–476.

[2] S. Sotiriadis and N. Bessis, ‘‘An inter-cloud bridge system for het-
erogeneous cloud platforms,’’ Future Generat. Comput. Syst., vol. 54,
pp. 180–194, Jan. 2016.

[3] F. Tao, Y. LaiLi, L. Xu, and L. Zhang, ‘‘FC-PACO-RM: A parallel method
for service composition optimal-selection in cloudmanufacturing system,’’
IEEE Trans. Ind. Informat., vol. 9, no. 4, pp. 2023–2033, Nov. 2013.

[4] Y. Lu, X. Xu, and J. Xu, ‘‘Development of a hybrid manufacturing cloud,’’
J. Manuf. Syst., vol. 33, no. 4, pp. 551–566, 2014.

[5] Y. Choh, K. Song, Y. Bai, and K. Levy, ‘‘Design and implementation of a
cloud-based cross-platformmobile health systemwith HTTP 2.0,’’ inProc.
IEEE Int. Conf. Distrib. Comput. Syst. Workshops, Jul. 2013, pp. 392–397.

[6] L. Xu, D. Huang, and W.-T. Tsai, ‘‘Cloud-based virtual laboratory
for network security education,’’ IEEE Trans. Edu., vol. 57, no. 3,
pp. 145–150, Aug. 2014.

[7] G. Laatikainen and A. Ojala, ‘‘SaaS architecture and pricing models,’’ in
Proc. IEEE Int. Conf. Services Comput., Jun./Jul. 2014, pp. 597–604.

[8] S. Kibe, S. Watanabe, K. Kunishima, R. Adachi, M. Yamagiwa, and
M. Uehara, ‘‘PaaS on IaaS,’’ in Proc. IEEE Int. Conf. Adv. Inf. Netw. Appl.,
Mar. 2013, pp. 362–367.

[9] M. Armbrust et al., ‘‘A view of cloud computing,’’Commun. ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[10] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J.Wilkes, ‘‘Large-scale cluster management at Google with borg,’’ in Proc.
ACM 10th Eur. Conf. Comput. Syst. (EuroSys), New York, NY, USA, 2015,
pp. 18:1–18:17.

[11] F. Basile, P. Chiacchio, and J. Coppola, ‘‘A hybrid model of complex
automated warehouse systems—Part I: Modeling and simulation,’’ IEEE
Trans. Autom. Sci. Eng., vol. 9, no. 4, pp. 640–653, Oct. 2012.

[12] T. N. Nguyen, ‘‘A unifiedmodel for product datamanagement and software
configuration management,’’ in Proc. 21st IEEE/ACM Int. Conf. Auto-
mated Softw. Eng. (ASE), Sep. 2006, pp. 269–272.

[13] V. B. R. V. Sagar and S. Abirami, ‘‘Conceptual modeling of natural
language functional requirements,’’ J. Syst. Softw., vol. 88, pp. 25–41,
Feb. 2014.

[14] J. S. Thakur and A. Gupta, ‘‘Identifying domain elements from textual
specifications,’’ in Proc. 31st IEEE/ACM Int. Conf. Automated Softw.
Eng. (ASE), Aug. 2016, pp. 566–577.

6642 VOLUME 6, 2018



H. Yu et al.: CodingBlind: Automated Cloud Services Generation

[15] Á. Rebuge and D. R. Ferreira, ‘‘Business process analysis in healthcare
environments: Amethodology based on processmining,’’ Inf. Syst., vol. 37,
no. 2, pp. 99–116, 2012.

[16] J. Liu, L. Shen, X. Peng, and W. Zhao, ‘‘A consistency detecting approach
towards domain requirement and business process,’’ Small Miro Comput.
Syst., vol. 34, no. 6, pp. 1270–1275, 2013.

[17] B. Wu, R. Lin, B. Wang, and J. Chen, ‘‘Automatic code generation for
business process system based on artifact,’’ in Proc. IEEE Int. Conf.
Services Comput., Jun./Jul. 2014, pp. 846–847.

[18] S. Meghzili, A. Chaoui, M. Strecker, and E. Kerkouche, ‘‘Transformation
and validation of BPMN models to Petri nets models using GROOVE,’’ in
Proc. Int. Conf. Adv. Aspects Softw. Eng. (ICAASE), Oct. 2016, pp. 22–29.

[19] X. Wang, J. Zhang, and W. Cui, ‘‘A process Web client interaction plug-in
design and development based on jBPM,’’ in Proc. Int. Conf. Ind. Control
Electron. Eng., Aug. 2012, pp. 738–741.

[20] S. Strobl, M. Zoffi, M. Bernhart, and T. Grechenig, ‘‘A tiered approach
towards an incremental BPEL to BPMN 2.0 migration,’’ in Proc. IEEE
Int. Conf. Softw. Maintenance Evol. (ICSME), Oct. 2016, pp. 563–567.

[21] J. Hirayama, H. Shinjo, T. Takahashi, and T. Nagasaki, ‘‘Development of
template-free form recognition system,’’ in Proc. IEEE Int. Conf. Docu-
ment Anal. Recognit. (ICDAR), Sep. 2011, pp. 237–241.

[22] R. Song, B. Z. Wu, Y. C. Wang, X. R. Nan, and J. X. Dong, ‘‘Research on
quality knowledge learning oriented to bearing manufacturing process,’’
Adv. Mater. Res., vol. 215, pp. 159–162, Mar. 2011.

[23] T. Kasar, T. K. Bhowmik, and A. Belaïd, ‘‘Table information extraction and
structure recognition using query patterns,’’ in Proc. IEEE 13th Int. Conf.
Document Anal. Recognit. (ICDAR), Aug. 2015, pp. 1086–1090.

[24] G.-U.-D. Bulbun and H. M. A. Shahzada, ‘‘BPMN process model
checking using traceability,’’ in Proc. 6th Int. Conf. Innov. Comput.
Technol. (INTECH), Aug. 2016, pp. 694–699.

[25] L. Yan and Z. M. Ma, ‘‘Formal translation from fuzzy EER model to fuzzy
XML model,’’ Expert Syst. Appl., vol. 41, no. 8, pp. 3615–3627, 2014.

[26] M. Aniche, G. Bavota, C. Treude, A. Van Deursen, and M. A. Gerosa,
‘‘A validated set of smells in model-view-controller architectures,’’ in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Oct. 2016,
pp. 233–243.

[27] P. Y. Wong and J. Gibbons, ‘‘A process semantics for BPMN,’’ in Proc.
Formal Methods Softw. Eng., Int. Conf. Formal Eng. Methods (ICFEM),
Kitakyushu-City, Japan, Oct. 2008, pp. 355–374.

[28] G. A. Miller, ‘‘WordNet: A lexical database for English,’’ Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[29] J. M. García, P. Fernández, C. Pedrinaci, M. Resinas, J. Cardoso, and
A. Ruiz-Cortés, ‘‘Modeling service level agreements with linked USDL
agreement,’’ IEEE Trans. Serv. Comput., vol. 10, no. 1, pp. 52–65,
Jan./Feb. 2017.

[30] P. Na-Lumpoon, M.-C. Fauvet, and A. Lbath, ‘‘Toward a framework for
automated service composition and execution,’’ in Proc. Int. Conf. Softw.,
Knowl., Inf. Manage. Appl., Dec. 2014, pp. 1–8.

[31] Y.-W. Kwon and E. Tilevich, ‘‘Cloud refactoring: Automated transition-
ing to cloud-based services,’’ Automated Softw. Eng., vol. 21, no. 3,
pp. 345–372, 2014.

[32] F. P. Basso, R. M. Pillat, T. C. Oliveira, F. Roos-Frantz, and R. Z. Frantz,
‘‘Automated design of multi-layered Web information systems,’’ J. Syst.
Softw., vol. 117, pp. 612–637, Jul. 2016.

HAN YU received the B.S. degree in software
engineering from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2016. She is currently a
Postgraduate Student at the School of Software,
Shanghai Jiao Tong University. Her research
interests are in the areas of data recognition and
analysis, data integration, Web services, and infor-
mation systems. She received the Outstanding
Thesis Paper Award from the School of Electronic
Information and Electrical Engineering, Shanghai
Jiao Tong University, in 2016.

CONGCONG YE received the B.S. degree in soft-
ware engineering from Central South University
in 2016. She received excellent grades andwas rec-
ommended to Shanghai Jiao Tong University. She
is currently a Postgraduate Student at the School
of Software, Shanghai Jiao Tong University. Her
research interests are in the areas of data mining,
blockchains, and information systems.

HONGMING CAI (M’08–SM’15) received the
B.S., M.S., and Ph.D. degrees from Northwestern
Polytechnical University, China, in 1996, 1999,
and 2002, respectively. He is currently a Professor
at the School of Software, Shanghai Jiao Tong
University, China. He received a reward for being a
National Outstanding Scientific and Technological
Worker by the China Association for Science and
Technology in 2012. He is the Standing Director
of the China Graphics Society, a Senior Member

of ACM, and a Senior Member of the China Computer Federation.

LIHONG JIANG received the B.S., M.S., and
Ph.D. degrees from Tianjin University, China,
in 1989, 1992, and 1996, respectively. During
1992–1993, she was an Assistant Professor at
the Department of Computer Science, Qingdao
Ocean University, China. During 1996–1998, she
was a Postdoctoral Research Fellow at the School
of Management, Fudan University, China. She
is currently an Associate Professor at the Soft-
ware School, Shanghai Jiao Tong University,
China.

CHENG XIE received the B.S. degree fromMinzu
University, Beijing, China, in 2009 and the M.S.
and Ph.D. degrees from Shanghai Jiaotong Univer-
sity, Shanghai, China, in 2012 and 2017, respec-
tively. During 2015–2016, he was a Visiting
Scholar in the Data and Web Science Group,
University of Mannheim, Germany. The Visit-
ing Scholarship was appointed and sponsored by
Deutscher Akademischer Austausch Dienst and
Shanghai Jiao Tong University. He is currently a

Lecturer at the School of Software, Yunnan University, China. His research
interests include semantic technologies, linked open data, Web of ontology,
and data science.

BOYI XU was born in Yantai, China in 1966. He
received the B.S. degree in industrial automation
and the Ph.D. degree in management science from
Tianjin University, Tianjin, China, in 1987 and
1996, respectively. He is currently an Associate
Professor at the College of Economics and Man-
agement, Shanghai Jiao Tong University, China.
His research interests include enterprise informa-
tion systems, electronic commerce, and business
intelligence.

VOLUME 6, 2018 6643


	INTRODUCTION
	PREREQUISITE
	STRUCTURE OF BUSINESS FORMS
	TITLE
	RELATED INFORMATION
	DETAILED INFORMATION
	EXTRA INFORMATION

	RESTRICTIONS FOR THE BPMN

	PROPOSED APPROACH
	ER MODEL CONSTRUCTION FROM PRINTED FORMS
	STRUCTURE-BASED PROPERTY TREE ABSTRACTION
	PT-ERM MAPPING
	INTEGRATION OF MULTIPLE ER MODELS
	STATE COMPLEMENT

	BUILDING AN FSM FROM BPMN
	BPMN-FSM MAPPING
	IDENTIFY THE PHRASE STRUCTURE
	IDENTIFY STATES FOR THE ENTITIES

	QUADRUPLE MODEL CONSTRUCTION FOR SERVICE REPRESENTATION
	INDEPENDENT CLOUD SERVICES GENERATION
	MODEL
	CONTROLLER
	VIEW

	CLOUD SERVICES DEPLOYMENT AND EXECUTION

	EXPERIMENTAL ASSESSMENT
	CASE STUDIES
	EVALUATION
	MATRICES
	PARTICIPANT SELECTION
	EXPERIMENT
	RESULTS

	THREATS TO VALIDITY
	THREATS TO INTERNAL VALIDITY
	THREATS TO EXTERNAL VALIDITY
	THREATS TO CONSTRUCT VALIDITY


	DISCUSSION AND RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	HAN YU
	CONGCONG YE
	HONGMING CAI
	LIHONG JIANG
	CHENG XIE
	BOYI XU


