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ABSTRACT As the number of inverters increases in the power grid, the stability of grid-tied inverters
becomes an important concern for the power industry. In particular, a weak grid can lead to voltage
fluctuations at the inverter terminals and consequently cause inverter instability. In this paper, impacts of
circuit and control parameters on the stability of voltage source inverters are studied using a small-signal
state-space model in the synchronously rotating dq-frame of reference. The full-order state-space model
developed in this paper is directly extracted from the pulsewidth modulation switching pattern and enables
the stability analysis of concurrent variations in the three-phase circuit and control parameters. This paper
demonstrates that the full-order model of a grid-tied active (P) and reactive (Q) power (PQ)-controlled
voltage source inverter (VSI) can be significantly reduced to a second-order model, preserving the overall
system stability in the case of grid impedance variations. This paper also shows that a decrease in the grid
inductance does not necessarily improve the stability of grid-tied VSIs. The system stability is a function of
both the grid R/X ratio and grid inductance. Despite the grid-side inductor of the LCL filter is in series with
the grid impedance, they have different impacts on the stability of a grid-tied PQ-controlled VSI, i.e., an
increase in the filter inductance may improve the system stability in a weak grid. These findings are verified
through simulated and experimentally obtained data.

INDEX TERMS Grid-tied voltage-source inverter, weak grids, microgrids, active (P) and reactive (Q) power
(PQ)-controlled inverters, stability analysis, reduced-order model.

I. INTRODUCTION
The drive towards renewable resources is shifting energy
production to distributed nodes, making the pulsewidth
modulated (PWM) voltage source inverter (VSI) a widely
used interface circuit between renewable sources and the
grid [1], [2]. The widespread utilization of PWM inverters in
the power grid makes the stability analysis of grid-tied VSIs
a primary concern for power engineers. Several studies show
that the stability of grid-tied VSIs is affected by the control
and filter parameters [3]–[9]. Besides the filter and control
parameters, a weak grid can adversely affect the stability of
grid-tied VSIs [10]–[15]. A weak grid is commonly defined
as a power grid with a low short-circuit ratio (SCR), i.e. high
impedance, and a low inertia constant (H), which are typical
features of microgrids. As a result, the voltage and frequency
can be distorted in weak grids. Furthermore, the grid-tied VSI
may become unstable if the voltage at the point of common
coupling (PCC) has a harmonic component at the natural
frequency of the LCL filter [10], [11]. The situation will
be complicated even further if a voltage feedforward path

is used to reduce the response time of the closed-loop sys-
tem. Similarly, the coupling paths in the control scheme can
drive the system towards instability in a grid with current
harmonics [14], [15]. Hence, the stability analysis of inverters
in weak grids is a complicated problem, requiring detailed
dynamic models. The root-locus state-space and Nyquist
impedance-based techniques have been reported for the sta-
bility analysis of grid-tied VSIs [9]–[19]. The impedance-
based technique uses lumped equivalent circuits, and thus,
the impact of individual circuit and control parameters on
the system stability cannot be simply studied. In the dynamic
analysis of grid-tied VSIs via state-space methods, a sim-
plified model is typically considered either for the plant
(circuit) or for the controller. This simplification makes the
stability analysis of the overall system difficult if one needs
to study the effect of concurrent variations in the circuit and
control parameters.

In this paper, impacts of the grid, control scheme, and
filter parameters on the stability of active (P) and reactive (Q)
power (PQ)-controlled grid-tied VSIs are studied using a
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twelfth-order state-space model. Also, a reduced-order model
for grid-tied VSIs is developed using the balanced trunca-
tion technique. The reduced-order model will ease the com-
putational complexity of microgrids with a large share of
VSI-based generation units while preserving the stability
feature of the full-order model [20]–[22]. The main findings
of this paper are highlighted below:
• The full-order model of grid-tied closed-loop VSIs can
be reduced to a second-order model, preserving the
overall system stability.

• A decrease in the grid inductance does not necessarily
improve the stability of grid-tied VSIs. The system sta-
bility is a function of both the grid R/X ratio and grid
inductance.

• A decrease in the inductance of the grid-side LCL filter
leads to instability even though the filter inductance is in
series with the grid impedance, assuming that the current
feedback sensor is located at the PCC.

The remainder of this paper is organized as follows.
In Section II, the full-order closed-loop model of a
PQ-controlled grid-tied VSI is derived, comprising the grid,
filter, and control scheme dynamics. The root locus analysis
is performed in Section III to investigate the effect of sys-
tem parameters on system stability under weak grid condi-
tions. Moreover, several scenarios discussed in Section III are
experimentally verified in Section IV. In SectionV, a reduced-
order model of the grid-tied VSI is presented and also veri-
fied through time-domain simulation and eigenvalue analysis.
Finally, a summary of findings is given in Section VI.

II. STATE-SPACE MODEL OF GRID-TIED VSI
In this section, the state-space model of the closed-loop grid-
tied PQ-controlled VSI, which is shown in Fig. 1 is derived.
While several state-space models for open-loop grid-tied
VSIs can be found in literature, for the purpose of continuity
and reproducibility of the work presented in this section,
the open-loop model in [23] is concisely reconstructed and
verified in Appendix A. Notice that the open-loop model for
grid-tied VSIs is derived from the PWM switching pattern.
The small-signal open-loop model is

d
dt

 ĩinvṽc
ĩg

 =
A11 A12 A13
A21 A22 A23
A31 A32 A33

 ĩinvṽc
ĩg


+

 0 B12 b1
0 0 b2
B31 0 b3

 ṽpccũ
ω̃

 (1)

where, ĩinv =
[
ĩq ĩd

]T
is the inverter output current per-

turbation, ṽc =
[
ṽq ṽd

]T is the filter capacitor voltage,

ĩg =
[
ĩgq ĩgd

]T
is the grid current, and ṽpcc =

[
ṽpccq ṽpccd

]T is

the voltage at the PCC. Furthermore, ũ =
[
m̃ ψ̃

]T
, where m̃

is the modulaion index and ψ̃ is the angle between Phase-A of
the inverter’s output voltage and the q-axis, see Fig. 2. Also,
ω̃ represents the grid’s frequency variation. Again, further

FIGURE 1. Control block diagram of a PQ-controlled grid-tied VSI.

FIGURE 2. The inverter voltage plotted at dq axis.

details on the open-loop model are provided in Appendix A,
and the block matrices introduced in (1) are all given
in Appendix B.

For grid-tied VSIs, the PQ-control scheme is themost com-
monly implemented control strategy and hereby employed in
this paper, whereas other control schemes might be required
in an islanded mode to directly regulate the voltage at the
PCC [24]–[26]. As illustrated in Fig. 1, the grid-side line-
to-line voltages and line currents are sensed at the PCC and
transformed to the dq-frame that are then used as inputs to the
PQ-control schemes. The P and Q control loops are cascaded
with q- and d- current control loops to independently control
the active and reactive power, see Fig. 1. Accordingly, four
new state variables, yP, yiq, yQ, and yid , must be added to the
open-loop model in (1) with respect to the integrator blocks
in the four PI controllers shown in Fig. 1. The state variables
are then described by

ẏP = KI1
(
P∗ − P

)
, (2)

ẏiq = KI2
(
yP + KP1

(
P∗ − P

)
− iqL

)
, (3)

ẏQ = KI3
(
Q∗ − Q

)
, (4)

ẏid = KI4
(
yQ + KP3

(
Q∗ − Q

)
− idL

)
. (5)
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Here, P∗ and Q∗ are the desired values of the active and
reactive power supplied to the grid, respectively. Also, at the
PCC, the active and reactive power can be expressed in terms
of the measured quantities as

P =
1
2
vpccq iqL +

1
2
vpccd idL , (6)

Q =
1
2
vpccq idL −

1
2
vpccd iqL . (7)

Using (2) through (7) and linearizing them around an operat-
ing point, the new state variables can be expressed in a matrix
form as

d
dt

[
ỹ1
ỹ2

]
=

[
A43 0 0
A53 A54 0

] ĩgLỹ1
ỹ2

+ [B41 B43
B51 B53

] [
ṽpcc
R̃∗

]
,

(8)

where, ỹ1 =
[
ỹP ỹQ

]T
, ỹ2 =

[
ỹiq ỹid

]T and R̃∗ =[
P̃∗ Q̃∗

]T
. The two new input variables are the desired

active and reactive power of the system. The block matrices
introduced in (8) are included in Appendix B. Also, using
Fig. 1, the controller output equations are written as

vrq = vpccq +KP2
(
yP + KP1

(
P∗ − P

)
− iqL

)
+ ωLidL + yiq,

(9)

vrd = vpccd +KP4
(
yQ + KP3

(
Q∗ − Q

)
− idL

)
− ωLiqL + yid .

(10)

Notice that the controller has been expressed in terms of
line-to-line voltages and iqL and idL , which are the dq-frame
of reference counterparts of the virtual line-to-line currents,
defining as iab = ia − ib, ibc = ib − ic and ica = ic − ia.
The line currents can be expressed with respect to the virtual
line-to-line currents in the dq-frame as

[
igq
igd

]
=


1
2

−1

2
√
3

1

2
√
3

1
2

[ iqLidL
]

(11)

It should be emphasized that the controller equations will
remain unchanged if one chooses to use phase voltages and
line currents instead of line-to-line voltages and virtual line-
to-line currents. Therefore, the model derived in this section
will be directly applicable for grid-tied VSIs with controllers
using phase voltage and line current variables.

In the open-loop model, the voltage at the PCC was
assumed as the input. To study the effect of the weak grid
on the system stability, the grid circuit has to be included in
the state-space model. To that end, the voltage at the PCC is
expressed in terms of grid voltages as

vpccq = RgiqL + Lg
diqL
dt
+ ωLgidL + vgq, (12)

vpccd = RgidL + Lg
didL
dt
− ωLgiqL + v

g
d . (13)

Here, Lg and Rg are the grid inductance and resistance,
respectively. The grid voltages can also be written in block
matrix form as

vpcc = G1igL + G2
digL
dt
+ vg. (14)

whereG1 andG2 are defined inAppendix B. To insert the grid
impedance into the system, the digL/dt term must be written
in terms of state variables using (1) and (11), which yields

vpcc =
(
I − G2BL31

)−1 (
G2AL31iinv + G2AL32vc

+

(
G1 + G2AL33

)
igL + G2bL3ω + vg

)
(15)

The modified block matrices are presented in Appendix B.
A time delay in the controller can affect the stability of

grid-tied inverters [27], [28], thus, the delay should be added
to the state-space model. A simple way to implement the
delay is through the following differential equations.

v̇invq =
1
Td

(
vrq − v

inv
q

)
(16)

v̇invd =
1
Td

(
vrd − v

inv
d

)
(17)

where, Td is the control delay [27], [28], see Fig. 1. Substi-
tuting and linearizing vrq and vrd from (9) and (10) into (16)
and (17) yields:

d
dt
ṽinv = A63 ĩgL + A64ỹ1 + A65ỹ2 + A66ṽinv

+B61ṽpcc + B63R̃∗ (18)

where, ṽinv =
[
ṽinvq ṽinvd

]T
. The block matrices introduced

can be found in Appendix B. On the other hand, from Fig. 2,
vinvq and vinvd can be written in terms of m and ψ as

vinvq = mvdc cos (ψ), (19)

vinvd = −mvdc sin (ψ). (20)

After linearizing (19) and (20), ũ =
[
m̃ ψ̃

]T
can be

expressed as ũ = M−1ṽinv. Merging (1), (8) and (18), and
substituting ṽpcc from (15) and ũ = M−1ṽinv, equation (21),
as shown at the bottom of the next page, provides the closed-
loop model of the grid-tied VSI system, where the associated
block matrices are given in Appendix B. The model output
equation is derived using (6), (7) and (15) and is also included
in Appendix B. The eigenvalue analysis is performed in
the next section based on the matrix given in (21) for the
closed-loop VSI. Moreover, a phase detector (the so-called
instantaneous PLL) can be used to obtain the reference angle
at the PCC as defined below [24], [25]:

θ = tan−1
(
vab + 2vbc
√
3vab

)
(22)

where dθ/dt = ω is the angular frequency of the grid.
If a conventional PLL is used, PLL dynamics must be
inserted into the model, where θ and ω become the new state
variables [11]–[13].
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TABLE 1. Simulation and experimental parameters.

III. ROOT LOCUS ANALYSIS OF GRID-TIED CLOSED-LOOP
VOLTAGE-SOURCE INVERTERS (VSIs)
In this section, the stability of the closed-loop grid-tied VSI is
analyzed using the model developed in the previous section.
In particular, impacts of a weak grid on the VSI stability are
examined using eigenvalue analysis, when variations of the
control time delay, Td , passive damping, Rf , LCL filer and
PQ-control parameters are taken into account. For the results
presented in this section, the initial values of the hardware
parameters are given in Table 1. Also, the control time delay
is set to 0.3 ms and the coupling path gain is kept constant,
ωL = 0.565 �, see Fig. 1. Also, the PI controller gains
in Fig. 4 are primarily set to Kp1 = Kp3 = 0.01,
Kp2 = Kp4 = 0.5, Ki1 = Ki3 = 2 − 10, and
Ki2 = Ki4 = 5 − 10. Herein, Kp values are chosen based
on the initial system parameters, deliberately with a slight
margin from unstable region for the root locus study. The
LCL passive damping is initially assumed to be zero but the
equivalent series resistance (ESR) of the 30µF film capacitor
is modeled by setting Rf = 0.008 � for the frequency range
of the case study.

In low-voltage distribution systems, the Xg/Rg ratio is
around one. In Fig. 3, the root locus of the system’s poles
(eigenvalues) is shown as Xg/Rg ratio is gradually increased
from 0.5 to 5 by increasing Lg from 0.16 mH to 1.6 mH ,
when Rg = 0.12 �. As shown in Fig. 3, increasing Lg drives
a pair of poles, (λ3, λ4), toward unstable region, while the
other poles stay stable. The system becomes unstable for
Lg > 1.12 mH , i.e. Xg/Rg > 3.5, and SCR < 40. If the
Xg/Rg ratio is gradually increased from 0.5 to 5 by decreasing
Rg from 0.12� to 0.012�,where Lg = 0.16mH , the system
becomes stable for Rg > 0.064 �, as shown in Fig. 4.
Therefore, both Lg and Rg determine the weakness of a low-
voltage grid.

For the control scheme shown in Fig. 1, increasing the time
delay of feedback control paths or adding a series resistor

FIGURE 3. The root locus of the grid-tied closed-loop VSI system when
Lg varies from 0.16 to 1.6 mH and Rg = 0.12� is kept constant (left), with
a zoomed-in plot of the dominant poles (right).

FIGURE 4. The stable and unstable regions with respect to the grid
resistance and inductance values for the given system parameters.

to each capacitor in the LCL filter have similar effects on
the stability of grid-tied VSIs. To demonstrate their impacts,
the root loci of a dominant pole, λ3, are plotted in Fig. 5 for
two different scenarios; initially the grid inductance increases
from 0.16 to 1.6 mH , as shown also in Fig. 3, followed by an
increase in Td or Rf . In the left side of Fig. 5, a time delay is
added, where the system becomes stable for Td > 0.33 ms,
while in the right side, a passive damping is added to the LCL
filter to make the system stable for Rf > 0.36 �. However,
adding a resistive element adversely affects the performance
of the LCL filter, so it cannot be increased without a restraint.
Therefore, the control and hardware designs should concur-
rently be done to achieve an efficient and robust system.

d
dt


iinv
vc
igL
y1
y2
vinv

 =



A11 A12 AL13 0 0 AC16
A21 A22 AL23 0 0 0

AC31 AC32 AC33 0 0 0

AC41 AC42 AC43 0 0 0

AC51 AC52 AC53 A54 0 0

AC61 AC62 AC63 A64 A65 A66




iinv
vc
igL
y1
y2
vinv

+



0 b1 0

0 b2 0

BC31 bC3 0

BC41 bC4 B43

BC51 bC5 B53

BC61 bC6 B63


 vg
ω

R∗

 (21)
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FIGURE 5. The root loci of λ3 of the grid-tied closed-loop VSI system
when initially Lg increases from 0.16 to 1.6 mH , followed by an increase
in Td from 0.3 to 0.4 ms (left), an increase in Rf from 0.008 to 2� (right).

It should be noted that if the L1 current or inverter side current
instead of the grid current was employed in the PQ control
block diagram in Fig. 1, an increase in Td would make the
system unstable [28].

FIGURE 6. The root loci of λ3 of the grid-tied closed-loop VSI system
when initially Lg increases from 0.16 to 1.6 mH , followed by a decrease in
Kp1 from 0.01 to 0.001 (left), a decrease in Kp2 from 0.5 to 0.05 (right).

The system stability is normally tuned by the control gains.
As shown in the control schemes in Fig. 1, four Kps and four
Kis are implemented in the control block diagram. However,
for a relatively wide range of variations in each Ki, all poles
stay stable where indeed the dynamics performance, e.g.
settling-time and steady-state error, is affected by Ki values.
Moreover, the root loci of the system obtained from variations
of the proportional coefficients, Kps, show similar behaviors.
With these remarks in mind, Fig. 6 demonstrates the system
root loci for a decrease in Kp1 from 0.01 to 0.001 (in left),

and similarly a decrease in Kp2 from 0.5 to 0.05. As can
be seen, for Kp1 < 0.0044 or Kp2 < 0.339, the dominant
pole, λ3, moves back to stable region. This means that the
system can be kept stable in a weak grid by decreasing the Kp
gains. However, if the grid inductance becomes significantly
large, adjusting the control parameters may not effectively
prevent instability in the system. Furthermore, low Kp values
can adversely affect the performance of the controller.

FIGURE 7. The root loci of λ3 of the grid-tied closed-loop VSI system
when initially Lg increases from 0.16 to 1.6 mH , followed by an increase
in L1 from 1 to 5 mH (left), an increase in L2 from 0.5 to 5 mH (right).

Under stiff grid conditions, the LCL filter might be
designed regardless of the grid impedance, but the same
cannot be done for VSIs connected to a weak grid. The
impacts of LCL filter parameters on the system stability are
demonstrated in Fig. 7. In this figure, the system root loci
are shown for two scenarios, again after the grid inductance
is elevated from 0.16 to 1.6 mH . In the first scenario shown
in Fig. 7 (left), L1 increases from its initial value of 1 to 5mH .
In the second scenario shown in Fig. 7 (right), L2 increases
from its initial value of 0.5 to 5 mH . Notice, increasing
L2(> 0.92 mH ) moves the system poles back to the left-side
(stable) plane. Although L2 is in series with Lg, remarkably
an increase in L2 benefits for the system stability. This is true
only for grid-tied VSIs in which the voltage at the PCC is fed
back to the controller either indirectly through the calculated
active power and/or directly via the feedforward path shown
in Fig. 1.

It can be observed from the eigenvalue analysis that one
pair of poles, i.e. λ3 and by association its complex conju-
gate pair λ4, dominates the stability of a grid-tied inverter,
thus based on the developed model, a second-order model is
presented in a later section to make the stability analysis of
microgrids less complicated.

IV. EXPERIMENTAL VERIFICATIONS
In this section, some of the findings discussed in the pre-
vious section are verified through laboratory experiments.
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FIGURE 8. Line current injected to the grid while a 5mH inductor is
added per phase to the grid impedance at 0.1 second.

FIGURE 9. Line current flowing from the VSI to the grid with a grid
impedance of 5mH added at 0.1s followed by inserting a 2.5mH inductor
to L2 at about 0.33 second (top), and inserting a Rf = 10� at about
0.29 second (bottom).

The hardware and control schemes described in the previous
sections were used for these experiments. The initial filter
values chosen for the setup were L1 = 1 mH , L2 = 0.5 mH ,
Cf = 30 µF , Rf = 0 �, when the closed-loop proportional
gains were Kp1 = Kp3 = 0.01, and Kp2 = Kp4 = 0.5 for a
stiff grid condition. However, the integral gains, Kis, were set
to be small to prevent overshoots at the price of increasing the
settling time. The first test scenario was designed to examine
the impact of weak grid on the system stability. In this test,
5 mH inductors were inserted to the circuit right after the
measurement points at the PCC, where they were intially
bypassed through a three-phase switch. Fig. 8 shows the
phase current injected to the grid when the system becomes
unstable after adding the three line inductors. This experiment
demonstrates how the VSI becomes unstable under a weak
grid condition. Fig. 9 shows two different test scenarios when
intially the system was stable (Point A in Fig. 10), then the

FIGURE 10. System root locus of the dominant eigenvalue, λ3, when the
grid inductance increases to 5 mH at point C, followed by two different
scenarios (i ) an increase in L2 up to 3 mH at point D, and (ii ) an increase
Rf up to 10� at point E.

FIGURE 11. Experimental setup and scope display for the case study
demonstrated in Fig. 9 (bottom).

line inductors were added to the grid impedance at t = 0.1s to
make the system unstable (Point C in Fig. 10). In Fig. 9 (top),
the system becomes stable at t = 0.33 s by inserting a 2.5mH
line inductor to the system that increases the value L2 to 3mH
(representing Point D in Fig. 10). This is in agreement with
the eigenvalue analysis discussed in the previous section as
well as the model root locus of the dominant pole in Fig. 10.
Notice that the magnitude of the current is initially smaller
than its original value, after recovering at t = 0.33 s, while the
controller is slowly restoring the current to its original value.
In Fig. 9 (bottom), the system becomes stable at t = 0.29 s by
inserting an Rf of 10 �, as also expected from the root locus
plot at Point E in Fig. 10. In Fig. 11, the scope screen and
the test setup for the second scenario is shown. These tests
further confirm the practicality of employing the developed
model in (21) for the design and dynamic behavior analysis
of grid-tied VSIs.

4432 VOLUME 6, 2018



A. Adib et al.: On Stability of Voltage Source Inverters in Weak Grids

V. REDUCED-ORDER MODEL
The twelfth-order model developed in (21) is suitable for the
design and stability analysis of single grid-tied inverters as
demonstrated and verified in the previous sections. However,
the use of a comprehensive model might become cumber-
some for microgrids with a large share of inverter-based dis-
tributed generation units. Hence, a lower-ordermodel through
model-order reduction techniques is necessary that preserves
the stability of the system for concurrent variations in circuit
and control parameters. Various techniques exist in literature
to reduce the order of large dynamic systems. In power sys-
tems, the singular perturbation and Krylov subspace methods
have been widely used [20], [21], [29]. In these two methods,
a reduced-order model is derived to preserve the dynamic
behavior of all slow poles, [20], [21], [29]. However, from
the analysis presented in Section III, the dominant poles,
i.e., λ3 and λ4, are only a subset of system’s slow dynamics.
Therefore, the aforementionedmethodsmight not be themost
suitable ones in obtaining a second-order model for the sys-
tem presented in (21). A technique called balanced truncation
method can identify the minimum state variables needed to
preserve the dynamics behavior of the system regardless of
their corresponding response time constants [30]. Notice that
the balanced truncation method does not preserve the original
state-space variables. In this section, the balanced truncation
method is therefore applied to derive a second-order model
for the grid-tied PQ-controlled VSIs, as shown in Fig. 1.

The first step in the balanced truncation technique is to
transform the system to a so-called balanced form. This
is achieved by applying a mathematical transformation,
i.e., x̂ = Tx, where x and x̂ are vectors of the original and
new state variables, respectively, and T is the transformation
matrix. The full-order state-space model in balanced form is
then given by

˙̂x = TAT−1x̂ + TBv and y = CT−1x̂ + Dv (23)

where, A, B,C andD are the corresponding state-space matri-
ces of the full-order model. Also, v and y represent the input
and output vectors of full-order model. The transformation
matrix, T , must be selected such that the controllability and
observability Gramians of (23) become equal and diago-
nal, i.e.,

P̂ = TPT
′

= Q̂ = T ′−1QT−1 = H (24)

where P and P̂ are the controllability Gramians of the full-
order model before and after the balancing transformation,
respectively, and similarly, Q and Q̂ are defined as the
observability Gramians. Herein,H is a diagonal matrix where
the diagonal elements are the Hankel singular values [30].
By definition, a Hankel singular value indicates the contribu-
tion of each new state to the system input/output behavior.
The states with the smaller Hankel singular values are the
least controllable and observable, and therefore can be trun-
cated without affecting system input/output response. The
normalized Hankel singular values of the full-order model
in (21) for the operating point specified in Section III are

FIGURE 12. Normalized Hankel singular values versus the system order
for a full-order grid-tied VSI.

shown in Fig. 12. As one can see from Fig. 12, two of the
states have significantly higher singular values and contain
most of the system information compared to the rest of the
states. This means a second-order model can represent the
stability behavior of grid-tied VSIs that is also in agreement
with the observations presented in Section III.

By partitioning the system into two groups according to
their Hankel singular values, the balanced state-space model
in (23) can be expressed as[

˙̂xg
˙̂xz

]
=

[
Âg Âgz
Âzg Âz

] [
x̂g
x̂z

]
+

[
B̂g
B̂z

]
v

and y =
[
Ĉg Ĉz

] [ x̂g
x̂z

]
+ D̂v (25)

Now, trimming the states with smaller Hankel singular val-
ues [30], i.e. x̂z, the second-order model of the grid-tied PQ-
controlled VSI can be reduced to

˙̂xg = Âgx̂g + B̂gv, and y = Ĉgx̂g + D̂v. (26)

For example, the Âg, B̂g, Ĉg and D̂ matrices of the reduced-
order model of the system specified in Section III can be
obtained as

Âg =
[
−34.83 4429.11
−4407.75 −28.05

]
,

B̂g =
[
−32.29 207.67 −4.42 0.09 0.50
−198.48 −28.60 −16.80 −0.51 0.08

]
,

Ĉg =
[

34.97 455.74
−442.39 94.19

]
,

D̂ =
[
−1.59 21.61 −0.31 1.01 0.05
−20.59 1.68 −1.76 −0.05 1.02

]
.

This reduced-order model can be verified through time-
domain circuit simulations in MATLAB/Simulink platform
making use of the SimPowerSystems toolbox. To compare
the dynamic behavior of the twelfth-order model with the
second-order model, a step change on the desired active
power is implemented followed by a step change in the
desired reactive power, as shown in Fig. 13. It can be seen
from Fig. 13 that the output of the reduced-order model is
in good agreement with both the simulation values and the
full-order model. Notice that only impacts of high-frequency
modes, λ3 and λ4, are seen in this 2nd-order model. To prove
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FIGURE 13. Time domain verification of the reduced-order model for a
change in desired active power from 4 to 2.5 kW at t = 0.48s, followed
by a change in desired reactive power from 0 to 500VAR at t = 0.52s.

FIGURE 14. System root locus of the full-order dominant eigenvalue,
λ3 and reduced-order eigenvalue, λr1, when initially Lg increases from
0.16 mH to 1.6 mH followed by an increase in Rf from 0.008 � to 2 �.

the validity of the reduced-order approach for different oper-
ating points, the root locus of one of the dominant eigenval-
ues is compared against the root locus of the eigenvalue of
the reduced-order model in Fig. 14 for the scenario shown
in Fig. 5(right). It can be seen from Fig. 14 that eigenvalues of
the full-order and reduced-order models completely overlap
with each other in an unstable region and even in the stable
region close to the imaginary axis. Two such points, point A
and point B, are highlighted in Fig. 14 and it can be seen that
the eigenvalues, λ3 and λr1, of these models have the same
trajectory due the circuit parameter changes. The eigenvalues
of the two models are not exactly equal as the dominant
eigenvalues move further into the stability region and in the
neighborhood of other eigenvalues. However, the reduced-
order model is able to predict the system stability with full
accuracy, and therefore, provides a reliable indicator for the
stability analysis of the grid-tied VSIs. Hence, the derived
reduced-order model will be useful for the stability analysis

of microgrids with a high share of inverter-based distributed
generation units.

VI. CONCLUSION
In this paper, the stability of grid-tied PQ-controlled VSIs
has been studied under weak grid conditions using a small-
signal state-space model in the synchronously rotating dq ref-
erence frame. The model of the closed-loop system has been
derived replacing the open-loop control inputs by the closed
loop control inputs, which are the desired active and reactive
power, and integrating state variables associated with the con-
troller. The small-signal model has been used to analyze the
system stability through eigenvalue trajectories. A number
of scenarios have been investigated to understand impacts
of circuit and control parameter variations on the grid-tied
VSI stability. It has been demonstrated in this paper that how
the inverter system moves to stable or unstable region as the
grid impedance increases depending on the grid R/X ratio.
It has been further demonstrated that an unstable grid-tied
VSI under weak grid conditions can be made stable through
an increase in grid-side LCL filter, controller time delay,
passive damping resistance or a decrease in proportional
controller parameters. In addition, the findings obtained from
the developed model concerning the stability of grid-tied
inverters in weak grids have been experimentally verified in
this paper. Furthermore, it has been demonstrated that a pair
of poles of the closed-loop system dominate the stability of
the overall system. Following that analysis, a second-order
model of the grid-tied VSI system has been derived using the
balanced truncation method. The reduced-order model has
been verified through simulation studies in the time domain.
The developed second-order model will be useful for stability
analysis of VSIs in weak grids. The technique presented in
Section II and Appendix A, can be applied for any type
of inverter and different control schemes, e.g., proportional
resonant (PR) controllers, etc.

APPENDIX A
In this appendix, the state-space representation of an open-
loop grid-tied VSI is derived. This is included only for the
purpose of continuity and reproducibility of the work pre-
sented in this paper. The model is obtained in three steps.
First, the state-space equations for the circuits correspond-
ing to each switching state are derived. Notice while the
space vector pulse width modulation (SVPWM) switching
technique is used to derive the averaged state-space model,
the resulting model is also valid for the sinusoidal plus
third harmonic PWM (SPWM+3rdH) technique [31]. In the
SVPWM technique, six sectors are defined containing six
active {(100) , (110) , (010) , (011) , (001) , (101)} and two
zero {(111) , (000)} switching states. Notice that the status of
the top three switches is sufficient to show the switching state
of a two-level inverter since at any instant only one switch
from each leg is ON in order to prevent dc-bus short circuits.
For example, the (100) switching state means the top switch
connected to Phase-A and the bottom switches connected to
Phase-B and -C are ON, while the other switches stay OFF.
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TABLE 2. State-space model derivation steps for sector I of SVPWM in abc frame of reference.

In each sector, the inverter switching circuit alternates
between a zero and two active switching states [31]. The
three switching states of each sector result in three circuits,
and thus, three distinct state-space equations. The circuit

diagrams corresponding to the three switching states
of Sector I, i.e. {(111) or (000)}, (100) and (110), are
shown from left to right in Table 2. In the second step,
these equations are averaged over the switching interval,

d
dt



iq
id
vq
vd
igq
igd

 =



−3R1 − Rf
3L1

−ω
−1
2L1

√
3

6L1

Rf
3L1

0

ω
−3R1 − Rf

3L1

−
√
3

6L1

−1
2L1

0
Rf
3L1

1
2Cf

√
3

6Cf
0 −ω

−1
2Cf

−
√
3

6Cf
−
√
3

6Cf

1
2Cf

ω 0

√
3

6Cf

−1
2Cf

Rf
3L2

0
1
2L2

−
√
3

6L2

−3R2 − Rf
3L2

−ω

0
Rf
3L2

√
3

6L2

1
2L2

ω
−3R2 − Rf

3L2





iq
id
vq
vd
igq
igd



+



√
3mcos (ψ)
3L1

0 0

−
√
3msin (ψ)
3L1

0 0

0 0 0
0 0 0

0
−1
2L2

√
3

6L2

0
−
√
3

6L2

−1
2L2



 vdcvpccq

vpccd

 (A1)
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FIGURE 15. Three-phase two-level VSI model verification through
simulation under a change in modulation index, m, from 0.8 to 0.9 at
0.45 second.

Ts to obtain a time-invariant state-space model [32], [33].
In these equations, d0(d0 = t0/Ts), d1(d1 = t1/Ts), and
d2(d2 = t2/Ts) are the duty cycles for the zero switching
state and the two active switching states, respectively, where
t0 + t1 + t2 = Ts. The derived state-space representa-
tion is only for Sector I. Following the same mathematical
procedure, state-space representations of all six sectors are
obtained. Finally, transferring all six state-space equations
to the synchronously rotating reference frame, i.e. Park’s
transformation xdq0 = Pxabc [34], [35], remarkably results
in a single dynamic model for all six sectors that is given in
(A1), as shown at the bottom of the previous page. As shown
in (A1), the state-space matrix contains m and ψ as con-
stant parameters which are control parameters (directly in
the SPWM or indirectly in SVPWM technique), and there-
fore, vary by control signals of the system rather than being
constant quantities, and thus, the time-invariant state-space
model presented in (A1) actually describes a nonlinear sys-
tem. Furthermore, it is expected that the fundamental fre-
quency of the system is also an input rather than being a
constant quantity. Thus, to obtain the small-signal model of
the system, (A1) must be linearized around a steady-state
operating point. The A matrix of the small-signal model is
the same as that of the large-signal model. However, the B
matrix in the small-signal model has three additional columns
associated with the new inputs, m̃ and ψ̃ , where m = m̃+M ,
ψ = ψ̃ + 9 and ω = ω̃ + �. The steady-state values,

FIGURE 16. Three-phase two-level VSI model verification through
experiment in the abc frame of reference.

M and 9, can be calculated for any given operating point
using the active and reactive power generated by the inverter.
Therefore, the new input vector is

[
ṽpccq ṽpccd m̃ ψ̃ ω̃

]T
with

the state variables replaced by their small-signal counterparts,
e.g. x̃ =

[
ĩq ĩd ṽq ṽd ĩgq ĩgd

]T
. Notice that, vdc has been

considered as a constant voltage source, hence ṽdc = 0.
This constant dc voltage can be assumed when the inverter
is in PQ-controlled mode, for example, in grid-tied battery
energy storage systems. The resulting small-signal model can
be expressed as

d
dt

 ĩinvṽc
ĩg

 =
A11 A12 A13
A21 A22 A23
A31 A32 A33

 ĩinvṽc
ĩg


+

 0 B12 b1
0 0 b2
B31 0 b3

 ṽpccũ
ω̃

 (A2)

where, ĩinv =
[
ĩq ĩd

]T
; ṽc =

[
ṽq ‘ṽd

]T ĩg =[
ĩgq ĩgd

]T
ṽpcc =

[
ṽpccq ṽpccd

]T and ũ =
[
m̃ ψ̃

]T
. The

block matrices used in (A2) can be found in Appendix B. The
developed open-loop small-signal model for grid-tied VSIs
in (A2) can be used to incorporate any control scheme or grid
structure.

Now, the state-space model in (A2) is verified using both
simulated and experimentally obtained data. In the case of
open-loop studies, the grid circuit can be merged into (A2)
via replacing R2 and L2 by R2+Rg and L2+ Lg respectively,
as well as replacing ṽpcc by vg. The circuit simulation is
performed in the MATLAB platform making use of circuit
components from the SimPowerSystem toolbox. The results
in Fig. 15 show that the state-space variables obtained from
solving (A2) match the circuit simulation results over a step
change in themodulation index,m, from 0.8 to 0.9 at 0.45 sec-
ond. In solving (A2),M was fixed at 0.8 when m̃ had a 0.1 step
change, other circuit parameters are given in Section III.

The dynamic model given in (A2) is also verified against
the experimental results, as shown in Fig. 16. The state
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variables representing the voltage across the filter capacitor
and the line currents being injected to the grid is transformed
to the abc frame of reference from the dq frame model
in (A2) and plotted against the experimentally obtained data
obtained in the abc frame. It can be seen from Fig. 16 that
the developed model impressively represents the actual lab-
oratory test results under both steady-state operation and a
sudden change in the modulation index from 0.83 to 0.93 at
0.4 second. In addition, the power board of an Allen-Bradly
drive, Powerflex 755, was used while the switching signals
were generated by an FPGA board and the grid measured
signals were fed back through a measurement board and a
dSpace 1103 [36].

APPENDIX B
In this appendix, the block matrix elements introduced in the
main body of the paper as well as in Appendix A are provided
in details. The block matrices of (1) are

A11 =

−
3R1 + Rf

3L1
−�

� −
3R1 + Rf

3L1

;

A12 =

−
1
2L1

√
3

6L1

−

√
3

6L1
−

1
2L1

;

A13 =


Rf
3L1

0

0
Rf
3L1

; A21 =


1

2Cf

√
3

6Cf

−

√
3

6Cf

1
2Cf

;

A22 =
[
0 −�

� 0

]
; A23 =


−

1
2Cf

−

√
3

6Cf√
3

6Cf
−

1
2Cf

;

A31 =


Rf
3L2

0

0
Rf
3L2

; A32 =


1
2L2

−

√
3

6L2√
3

6L2

1
2L2

;

A33 =

−
3R2 + Rf

3L2
−�

� −
3R2 + Rf

3L2

;

B12 =


Vdc cos (9)
√
3L1

−MVdc sin (9)
√
3L1

−Vdc sin (9)
√
3L1

−MVdc cos (9)
√
3L1

;

B31 =

−
1
2L2

√
3

6L2

−

√
3

6L2
−

1
2L2


The block matrices modified due to change in state variables

from ĩg =
[
ĩgq ĩgd

]T
to ĩgL =

[
ĩgLq ĩgLd

]T
are given as AL13 =

A13TL , AL23 = A23TL , AL31 = T−1L A31, AL32 = T−1L A32, BL31 =
T−1L B31, bL3 = T−1L b3, and AL33 = T−1L A33TL , where

TL =


1
2

−
√
3

6√
3
6

1
2


The block matrixM , which was introduced in Section II after
equation (20), is given below

M =
[
Vdc cos (9) −MVdc sin (9)
−Vdc sin (9) −MVdc cos (9)

]
;

The following block matrices were first introduced in (18).

B61 =
1
Td

 1−
Kp1Kp2IqL

2
−Kp1Kp2IdL

2
−K p3Kp4IdL

2
1+

Kp3Kp4IqL
2

;
A64 =

1
Td

[
Kp2 0
0 Kp4

]
; B63 =

1
Td

[
Kp1Kp2 0

0 Kp3Kp4

]
;

A63 =
1
Td

−K p2 −
Kp1Kp2V

pcc
q

2
ωL

−ωL −K p4 −
Kp3Kp4V

pcc
q

2

;
A65 = −A66 =

1
Td

[
1 0
0 1

]
; B43 =

[
Ki1 0
0 Ki3

]
;

G1 =

[
Rg ωLg
−ωLg Rg

]
; G2 = Lg;

The block matrices of (8) are given below

B41 =

−Ki1IqL2
−
Ki1IdL

2
−
Ki3IdL

2
Ki3IqL

2

;
B53 =

[
Kp1Ki2 0

0 Kp3Ki4

]
;

A43 =

−Ki1V
pcc
q

2
0

0 −
Ki3V

pcc
q

2

;

B51 =


−Kp1Ki2IqL

2
−Kp1Ki2IdL

2
−Kp3Ki4IdL

2
Kp3Ki4IqL

2

;
A54 =

[
Ki2 0
0 Ki4

]
;

A53 =

−K i2 −
Kp1Ki2V

pcc
q

2
0

0 −K i4 −
Kp3Ki4V

pcc
q

2

.
Also, the block matrices first encountered in (21) are

AC16 = B12M−1

AC31 = AL31 + B
L
31(I − G2BL31)

−1
G2AL31

ACn1 = Bn1(I − G2BL31)
−1
G2AL31, n = 4, 5, 6
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AC32 = AL32 + B
L
31(I − G2BL31)

−1
G2AL32

ACn1 = Bn1(I − G2BL31)
−1
G2AL32, n = 4, 5, 6

ACn3 = An3 + Bn1(I − G2BL31)
−1
(
G1 + G2AL33

)
,

n = 3, 4, 5, 6

C13 =

 V pcc
q

2
0

0
V pcc
q

2

; D11 =

 IqL
2

IdL
2

IdL
2

−
IqL
2

;
Finally, the output, Z =

[
P Q

]T , equation of the full-order
system is given by

Z =
[
C1 C2 C3 0 0 0

]

iinv
vc
igL
y1
y2
vinv

+
[
D1 D2 0

] vg
ω

R∗

;

Cn = D11(I − G2BL31)
−1
G2AL3n, n = 1, 2

C3 = C13 + D11(I − G2BL31)
−1
(
G1 + G2AL33

)
D1 = D11(I − G2BL31)

−1

D2 = D11(I − G2BL31)
−1
G2bC3

The equations matrices provided in details in this appendix,
enable one to duplicate the work presented in this paper.
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