
SPECIAL SECTION ON LEARNING SYSTEMS BASED CONTROL AND OPTIMIZATION
OF COMPLEX NONLINEAR SYSTEMS

Received November 30, 2017, accepted December 24, 2017, date of publication January 1, 2018, date of current version March 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2788400

Modeling and Self-Learning Soft-Grasp Control
for Free-Floating Space Manipulator During
Target Capturing Using Variable Stiffness Method
MING CHU AND XINGYU WU
Automation School, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Xingyu Wu (wuxingyu1012@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 51305039.

ABSTRACT During target capturing operation, the changes in the dynamics parameters of a free-floating
space manipulator degrade the performance of the base attitude stabilization. This paper presents a new
self-learning soft-grasp control algorithm based on the variable stiffness technology. First, the dynamic
model of variable stiffness joint space manipulator system is established. Simultaneously, the detailed
dynamic analysis of pre-impact and post-impact stages is carried out. Second, a new soft-grasp control strat-
egy utilizing cellular differential evolution algorithm combined opposition-based learning with orthogonal
crossover is employed to minimize the base angular momentum. Its principle is to solve the optimal stiffness
value of the variable stiffness joint to realize desired buffering. Thereafter, we put forward an adaptive
backstepping sliding mode control method to track the actual joint stiffness. Finally, the proposed method is
applied to a two-degree of freedom planar free-floating space manipulator and the simulation results verify
the effectiveness.

INDEX TERMS Coupling angular momentum, post-impact control, variable stiffness, cellular differential
evolution, adaptive backstepping.

I. INTRODUCTION
Space robotics is considered one of the most promising
approaches for on-orbit servicing missions such as docking,
berthing, repairing, upgrading, transporting, rescuing, and
orbital debris removal [1]. When space robots accomplish
above tasks, they need to capture the resting or moving tar-
gets. The main difference between the space robot and the
ground robot is that the space robot base is not fixed and there
exists the kinematics and dynamics coupling between the
manipulator and the base. As a result, it is more difficult for
space robots to capture targets. Apart from this, the impulse
will influence the momentum of the system, introduce the
additional angular momentum to the base, which may lead
to the whole system rolling over. At this moment, the distur-
bance may cause the reaction wheel saturation or seriously
affect the quality of communication [2].

Therefore, many scholars have studied on how to reduce
the disturbance of the base attitude. Generally, a captur-
ing task consists of three specific phases: the pre-impact
phase, the impact phase and the post-impact phase. The
impulse brought by the impact phase makes the first
phase and the third phase discontinuous. For this problem,

Yoshida et al.[3] first proposed the Extended Generalized
Inertia Tensor (Ex-GIT) and virtual mass concepts. Based
on the concepts, they formulated the basic collision dynam-
ics for the free-floating multi-body system regardless of the
changes of collision force, but considering the momentum
conservation law. Subsequently, they put forward the concept
Extended Inversed Inertia Tensor (Ex-IIT) [4] and applied
which to impulse minimization. Though they minimized the
impulse by means of the concept, it related to the collision
direction and link postures, which was hard to control. Also
from the viewpoint of the force impulse generated during the
contact, a gradient projection algorithm that achieved both
trajectory tracking and impulse minimization was proposed
by Wee and Walker [5].

From the view of the angular momentum, reac-
tion null-space control and impedance matching control
are introduced by Nenchev and Yoshida [6], [7] and
Yoshida and Nakanishi [8] to reduce the attitude disturbance
to the base body. They also found that preferable directions
of the force impulse exist, such that the impact would not
change the angular momentum of the space robot. Based on
this idea, a straight arm capture concept introduced in [9],
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namely all centroids of the links and the base were on the
same line, and the force impulse direction was along that
line. The posture was so special that it was difficult for space
robot to achieve. By using the reaction null space, Dimitrov
and Yoshida [10] put forward the method of preloading bias
angular momentum in the chaser’s base and manipulator
arm. They focused on the momentum distribution in the
chaser satellite during approaching and post-impact phase
and applied distributed momentum control [11] and reaction
null space control on the system after impact. But it needs to
estimate the angular momentum of the target. On the basis
of bias momentum approach, a concept of zero disturbance
direction was raised in [12]. In [13], under the condition
that the maximum racemization damping force is limited,
the theory of optimal control and Pontryagin’s principle are
applied to bring the tumbling non-cooperative satellite to
rest in minimum time while ensuring that the magnitude of
the interaction torque between the manipulator and target
remains below a prescribed value. Considering detumbling
operation along an arbitrary arm motion, Oki et al. [14]
proposed a time-optimal control of a free-floating space robot
to stabilize a tumbling target satellite. However, these control
methods are still built on the basis of hard-docking, which
will inevitably have the following constraints: position and
attitude measurement, tracking and maintenance meet the
high accuracy requirements.

In [15], the computed torque control method is used
to design active controller to suppress the spacecraft drift
caused by the impact. In order to alleviate the impact vibra-
tion resulting from objects grasping, the kinematics redun-
dancy of a flexible redundant manipulator is employed by
Xu and Yue [16]. Larouche and Zhu [17] proposed motion
predictive control scheme for the autonomous capturing task.
McCourt and de Silva [18] investigates the use of model-
based predictive control for the capture of a multi-degrees-
of-freedom object that moves in a somewhat predictable
manner. Zhang et al. [19] put forward a scheme of pre-impact
trajectory planning for minimizing the disturbance of base
attitude caused by impact according to reaction null space
method and particle swarm optimization algorithm. Due to
the inevitable existence of model errors and operational accu-
racy, it is impossible to fundamentally avoid the impact and
disturbance introduced by the capture process, and it is dif-
ficult to suppress the unstable vibration of the complex after
the docking.

The variable stiffness technology [20] is developed to
build passively compliant, robust, and dexterous robots.
When interacting with the environment, the stiffness of
the robot can vary according to the load change, which
is very meaningful. The stiffness characteristics of vari-
able stiffness joints plays an important role in the stability,
safety and efficiency of the robot in all kinds of com-
plex operations. They are mainly implemented in humanoid
robots for many different applications. Such as joints are
used in the service type robots to physically interact with
humans [21]–[23]. It can also be used in humanoid robots for

walking, hopping, or throwing [24]–[26]. In this paper, it is
used in the manipulator to reduce the impulse brought by the
impact.

This paper is organized as follows. In Section II, we intro-
duce the dynamics of variable stiffness joint free-floating
space manipulator especially at the pre-imapct and post-
impact stages. In Section III, a self-learning soft-grasp control
strategy based on cellular differential evolution algorithm
for minimizing the angular momentum of the base is pre-
sented. Then in Section IV, according to the desired stiff-
ness value, an adaptive backstepping sliding mode control
method is applied on the adjustmentmotor to track the desired
joint stiffness. Simulation results are discussed in Section V.
Finally, Section VI gives some conclusions.

FIGURE 1. Principle of variable stiffness. (a) The variable stiffness joint.
(b) The elastic mechanism schematic.

II. DYANMIC MODELING OF VARIABLE STIFFNESS JOINT
FREE-FLOATING SPACE MANIPULATOR
The variable stiffness joint is shown in Fig.1(a), and its work-
ing principle is that the joint rotation is controlled by the main
motor and the joint stiffness is regulated by the adjustment
motor. The elastic mechanism schematic is shown in Fig.1(b),
the antagonistic spring is fixed at the lever end, the external
force is applied at the other end and the position is fixed.
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The lever arm ratio is changed by moving the pivot position,
while the pivot position is controlled by the adjustment motor.
When the pivot moves towards the end of the spring, the stiff-
ness becomes smaller, on the contrary, the stiffness becomes
larger when moving towards the other end. When the space
manipulator accomplishes positioning and trajectory tracking
tasks, the joint stiffness is fixed to keep high stiffness. When
interacting with the environment, the joint stiffness can be
regulated by the adjustment motor as the load changes. This
method has no special requirements for the position and
attitude of the manipulator before collision.

FIGURE 2. A general model of free-floating space manipulator.

We assume that the variable stiffness joint free-floating
space manipulator system is composed of a free-floating base
and rigid links in series, which are connected with variable
stiffness joints as shown in Fig. 2, where

∑
I is the inertial

frame;
∑

i (i = 1, 2, . . . , n) is the ith body frame and
∑

0 is
the base frame. rog is the vector from origin of the mass center
of the base to the mass center of the system. According to
the geometry of the system, the vectors of the centroid ri,
the velocities vi and angular velocities ωi of each body with
respect to the inertial frame are represented as follows:

ri = r0 + l0 +
i−1∑
k=1

(ak + bk)+ ai (1)

vi = ṙi = v0 + ω0×(ri − r0)+
i∑

k=1

[
ξ k×

(
rk−pk

)]
q̇k (2)

ωi = ω0 +

i∑
k=1

ξ k q̇k (3)

where l0 is a vector pointing from center of the base to
the centroid of the first joint. r0, v0, ω0 are the position
vector of the centroid of the base, the velocity and angular
velocity of the base respectively. ai is a vector pointing from
center of the ith joint to the centroid of the ith body and bi
is a vector pointing from the centroid of the ith body to the

center of the (i+ 1)th joint. ξ i is the unit vector representing
the rotation direction of the ith joint. qi and q̇i are the position
and motion rate of the ith joint, respectively.
Assuming the initial linear momentum and angular

momentum are zero, due to the conservation of linear
momentum and angular momentum, the total momentum of
the system is

P =
n∑
j=0

mjṙj = O (4)

L =
n∑
j=0

(
Jjωj + rj × mjṙj

)
= O (5)

where mj is the mass of each part; Jj is the moment of inertia
of each part. Considering the angular momentum of the whole
system relative to the satellite’s mass center, presented by L0,
then

L = L0 + r0 × P (6)

There is L = P = O, so

L0 =
n∑
j=0

(
Jjωj +

(
rj − r0

)
× mjṙj

)
= O (7)

Substituting (2) into (4) yields

P =
[
ME Mr̃T0g

] [ v0
ω0

]
+Hvφ q̇ = O (8)

where M is the total mass of the system; E is an identity

matrix; if r0g =
[
x y z

]T, then r̃0g =
 0 −z y

z 0 −x
−y x 0

; Hvφ

is the linear coupling inertial matrice.
Substituting (2) and (3) into (7) yields

L0 =
[
Mr̃0g Hω

] [ v0
ω0

]
+Hωφ q̇ = O (9)

where Hω is the angular velocity inertial matrix of the base.
Hωφ are the angular coupling inertial matrice.
The total kinetic energy of the system contains two parts:

the kinetic energy of the base and rigid links and the kinetic
energy of each motor rotor. Because the motor rotor mass is
negligible, the rotor kinetic energy ismainly rotational kinetic
energy of its own.

TL =
1
2

n∑
j=0

(
mj · ṙTj · ṙj +

1
2
ωT
j · Jj · ωj

)
(10)

TM =
1
2

n∑
i=1

(
Jdiθ̇

2
di + Jriθ̇

2
ri

)
(11)

where Jdi and Jri are the moments of inertia of main motor
rotor and adjustment motor rotor, respectively; θdi and θ ri are
the angular vectors of the main motor and adjustment motor,
respectively.
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The total potential energy of the system is only elastic
deformation potential energy generated by the adjustment
mechanism, namely

V =
1
2

n∑
i=1

(
kiθ2si

)
(12)

where ki represents the stiffness of the elastic mechanism.
θ si =

(
qi − θdi/Ni

)
is the deformation owing to the elastic

mechanism. The Lagrange equation is expressed as the fol-
lowing form[
Hb Hbm

HT
bm Hm

][
ẍb
q̈

]
+

[
cb
cm

]
+K

[
O6×1

qi − θdi/Ni

]
=

[
Fb
On×1

]
Jdiθ̈di −

1
Ni
ki
(
qi − θdi/Ni

)
= τ di

Jriθ̈ ri= τ ri (13)

where Hb is the inertial matrix of the base. Hm is the manip-
ulator inertial matrix. Hbm is the coupling inertial matrix

of base and manipulator. ẍb =
[
v̇0
ω̇0

]
denotes the base

accelerations, with v̇0 and ω̇0 linear and angular accelerations
of the base. q̈ = [q̈1, q̈2, . . . , q̈n] describes the accelerations
of the joints. cb = [ cbv cbω ]T is non-linear terms of the base
with cbv and cbω the linear and angular velocity-dependent
nonlinear terms of the base. cm is non-linear terms of the

manipulator. K =
[
O6×6

ki/Ni

]
is the stiffness matrix,

with ki the ith joint stiffness; Fb =
[
f b, τ b

]
denotes the

forces acting on the base by reaction wheels or jet thrusters;
τ di and τ ri are respectively the driving moment of the main
motor and the adjustment motor; Ni represents the reduction
ratio of each joint.

Take friction and damping into account, the dynamic equa-
tion of the motor can be written as

Jdiθ̈di + φdiθ̇di −
1
Ni
ki
(
qi − θdi/Ni

)
= τ di

Jriθ̈ ri + φriθ̇ ri = τ ri (14)

where φdi and φri are the damping terms of the main motor
and adjustment motor, respectively.

Eliminate the base velocity acceleration term v̇0 to obtain[
H̃ω H̃ωφ

H̃
T
ωφ H̃m

][
ω̇0
q̈

]
+

[
c̃bω
c̃m

]
+ K̃

[
O3×1

qi − θdi/Ni

]
=

[
τ̃ b
τ

]
(15)

where

H̃ω = Hω +Mr̃0gr̃0g, H̃ωφ = Hωφ − r̃0gHvφ,

H̃m = Hm −HT
vφHvφ/M,

c̃bω = cbω − r̃0gcbv, c̃m = cm −Hvφcbv/M,

τ̃ b = τ b − r̃0gf b, τ=−HT
vφf b/M, K̃=

[
O3×3

ki/Ni

]
.

In the pre-impact stage, the space manipulator approaches
the target in the free floating state. The reaction wheel and jet

thruster are closed. At the same time, the base position and
attitude are not controlled. So the base driving torque is zero.
The main motor works, while the adjustment motor does not
work. The dynamic equation is rewritten as

[
H̃ω H̃ωφ

H̃
T
ωφ H̃m

][
ω̇0
q̈

]
+

[
c̃ω
c̃m

]
+K̃

[
O3×1

qi−θdi/Ni

]
=

−r̃0gf b
−
HT
vφ

M
f b


Jdiθ̈di + φdiθ̇di −

1
Ni
ki
(
qi − θdi/Ni

)
= τ di (16)

In the post-impact stage, the main motor brakes for reduc-
ing the system stiffness and buffering the impact momentum,
and the adjustment motor works to regulate the joint stiffness.
The dynamic equation is rewritten as[

H̃ω H̃ωφ

H̃
T
ωφ H̃φ

][
ω̇0
q̈

]
+

[
c̃ω
c̃m

]
+ K̃ ′

[
O3×1

qi − θDi/Ni

]

=

 −r̃0gf b
−
HT
vφ

M
f b

+
 J̃Tbω
J̃
T
m

Fe
Jriθ̈ ri + φriθ̇ ri
= τ ri − τRi (17)

where θDi is the terminate angle of the main motor before
contact. Fe is the external force applied on the end-effector.
J̃
T
bω = JTbω − r̃0gJTbv, J̃

T
m = JTm − HvφJTbv/M . Jbv and Jbω

are the linear and angular velocity Jacobian matrices of the
base, respectively. Jm is the Jacobian matrix of the manip-
ulator. τRi is the resistance torque on the adjustment motor.

K̃ ′ =
[
O3×3

k̃i

]
is the stiffness matrix after impact, with k̃i

the ith variable joint stiffness.
Remark 1: Eq.(16) and Eq.(17) show the pre-impact and

post-impact stage dynamics characteristics, respectively. The
joint stiffness are a constant value in Eq.(16) and a variable
value in Eq.(17).

III. SELF-LEARNING SOFT-GRASP CONTROL FOR
MINIMIZING BASE ANGULAR MOMENTUM
In the post-impact stage, the main problem is how to
reduce the angular momentum introduced by the impulse.
For a free-floating space manipulator, the base and the
manipulator is coupled. As a result, it is multi-objective
optimization for minimizing the base angular momentum.
At present, self-learning feedback control based on neu-
ral network is an effective method to solve the problem
of complex system optimization [27]–[29]. In this paper,
a novel hybrid on-line algorithm cellular differential evo-
lution combined opposition-based learning with orthogonal
crossover (CDEOLOC) is used to solve the desired joint
stiffness to realize the self-learning soft-grasp control strategy
of free-floating space manipulator.
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A. CDEOLOC
Differential Evolution algorithm (DE) originally developed
by Storn and Price [30] is an evolutionary computation tech-
nique mainly used for solving global optimization prob-
lems. The process of solving DE is basically the same as
genetic algorithms, including mutation, crossover and selec-
tion. An important symbol different from genetic algorithm
is DE through the differential strategy to achieve individual
variation, which can keep diversity in population to explore
the local search. The main structure of DE is given as follows:

Generate initial population randomly:

XG
i = [xGi,1, x

G
i,2, · · · , x

G
i,j], j=1, 2, · · · , d, i=1, 2, · · · ,NP

(18)

xGi,j= aj + rand · (bj − aj) (19)

where G = 0, 1, 2, · · · ,Gmax represents the evolution gener-
ation andGmax is the maximum generation. NP is the number
of population and d is the dimension of each population.
XG
i is ith individual of G generation with xGi,j representing

jth dimension of ith individual of G generation. bj and aj
are upper and lower bounds of individual xGi,j, respectively.
rand is uniformly distributed random number in [0,1].

The standard mutation operation of DE is usually to gen-
erate a new individual by selecting two different individuals
from the parent population randomly and adding their differ-
ence vector to another parent individual as in the form:

VG
i = XG

r1 + F · (X
G
r2 − X

G
r3) (20)

where i 6= r1 6= r2 6= r3, r1, r2 and r3 are three distinct
random integers in [1,NP]. F is the scale factor to control
the search step.

In order to ensure the validity of the generated mutation
individual, it is necessary to judge whether the individual
dimensions of the generated test individuals are in the search
space of the problem. The individuals who satisfy the con-
dition are retained, and the individuals who are not satisfied
with the condition are generated by the initialization of the
population.

VG
i,j=

{
aj + rand ·

(
bj − aj

)
if VG

i,j < aj or VG
i,j > bj

VG
i,j otherwise

(21)

The basic idea of crossover operation is that mutation
individual and the original individual are chosen to cross to
increase the diversity of the population. In general, the cross
pattern includes exponential cross and binomial cross.
Usually we choose the binomial cross pattern as following

uGi,j =

V
G
i,j if (rand ≤ Cr )or j = jrand

xGi,j otherwise
(22)

where jrand is uniformly distributed random number
in [1, d]. Cr is crossover factor. The cross pattern can ensure
that at least one dimension of the test individualUG

i is derived
from the mutation individual VG

i , thus avoiding the same as
the parent individuals XG

i .

The selection operation determines the evolutionary direc-
tion of the entire population. After the generation of the
offspring by mutation and crossover, the offspring in the new
population is compared with the corresponding parent by a
one-to-one greedy choice. The choice of the winner to be
saved to the next generation and the selection process is as
follows

XG+1
i =

{
UG
i , if f

(
UG
i

)
≤ f

(
XG
i

)
XG
i , otherwise

(23)

As with genetic algorithms, DE algorithm has a strong
global convergence ability and robustness. Besides, DE algo-
rithm has less parameter and only two main parameters need
to be adjusted. While the same as other evolution algorithms,
DE is easy to get into local optimum and get premature
convergence optimal control problems.
Cellular automata has the characteristics of parallel evo-

lution, which can be used to balance the exploration ability
and development ability of the differential evolution algo-
rithm. The cellular differential evolution (CDE) is proposed
by Nasimul and Hitoshi [31].
The basic components of cellular automata are cellular, cel-

lular space, neighbor and rule four parts. A = (Lu, S,N , f ),
where A represents a CA system. Lu is cellular space with
u a positive integer. S is a finite and discrete set of states
of cell. N is a collection of cells in all domains, including
a space vector of h different cellular states, expressed as
N = (s1, s2, . . . , sh), where si ∈ S, i ∈ {1, 2, . . . , h}.
f is local mapping or local rule. The common neighborhood
structure has four kinds, we utilize the C9 neighborhood
structure (see Fig. 3).

FIGURE 3. C9 neighborhood structure.

Basic evolution rule is as following,

if ST = 1, then ST+1 =

1, S ∈ S1

0, S /∈ S1
(24)

if ST = 0, then ST+1 =

{
1, S ∈ S2

0, S /∈ S2
(25)

where ST and ST+1 are the cellular states after the evolu-
tion T and (T + 1) steps, with S1 expressing the number of
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live neighbors required to maintain live cells’ states and S2
expressing the number of live neighbors required to resur-
rect the dead cells. C9 neighborhood structure has the best
performance and adopts following three rules to simulate the
stability, cycle and complexity of three states of life system,
respectively.

Rule1


if ST = 1, then ST+1 =

{
1, S = 2, 3
0, S 6= 2, 3

if ST = 0, then ST+1 =

{
1, S = 3
0, S 6= 3

(26)

Rule2


if ST = 1, then ST+1 =

{
1, S = 1, 2, 3, 4
0, S 6= 1, 2, 3, 4

if ST = 0, then ST+1 =

{
1, S = 4, 5, 6, 7
0, S 6= 4, 5, 6, 7

(27)

Rule3


if ST = 1, then ST+1 =

{
1, S = 2, 4, 6, 8
0, S 6= 2, 4, 6, 8

if ST = 0, then ST+1 =

{
1, S = 1, 3, 5, 7
0, S 6= 1, 3, 5, 7

(28)

When without prior knowledge, using opposition-based
learning to initialize the population can improve the quality
of the initial solution of evolution algorithm and make the
search process faster.

Generate initial population randomly as Eq.(19). Then
solve the opposite individuals (see Eq.(29)) of the initial pop-
ulation individuals and add them into the initial population.
Finally, the individual with high adaptability is chosen to
form a new initial population.

xG
′

i,j = aj + bj − xGi,j (29)

The purpose of crossover operation is that next generation
chromosomes inherit the good genes of the parent chromo-
somes. However, the classical differential evolution algorithm
uses a bit of crossover operation, so the above-mentioned pur-
pose can not be achieved in most cases. The use of multiple-
point crossover operation can avoid this problem. However,
the multiple-point crossover operation has many possibilities
because of the cross combination, so the combination will
show explosive growth.

Orthogonal design is to arrange the multi-factor exper-
iment rationally by using the prepared orthogonal table,
in order to obtain the satisfactory result through a small
number of experiment times. Compared with the binomial
crossover algorithm, orthogonal crossover operator provides
the repeated test of high-dimensional and multiple elements,
so that the proposed CDEOLOC is easier to find the optimal
offspring and keep the population diversity.

The orthogonal table used in DE algorithm of this paper
is presented as LQ

(
2d
)
[32], where Q is the total number of

experiments and d is also the dimension of each population.
The number 2 indicates that all of factors has two levels,
namely represents whether the certain dimension of test

individual is selected from the mutation individual or the
original individual, respectively.

The CDEOLOC steps are as follows:
a) Initialization

ai) Set the population size NP and the generation G = 0,
initialize shrink factor F , and determine algorithm termina-
tion conditions.

aii) Generate NP = np × np initial individuals xGi,j and

their opposite individuals xG
′

i,j in the search space randomly.
Evaluate all individuals to obtain NP = np × np better
individuals x̃Gi,j according to fitness function.
aiii) In cellular automata, each cell state is randomly initial-

ized, corresponding to each individual’s state of existence.
aiiii) Generate the orthogonal crossover table.

b) Live individuals evolve by iteration. If there is no live
individual, skip to step c).

bi) Individual chooses candidates from neighbor cells to
mutate.

bii) Adjust the shrink factor F adaptively then perform the
mutation and deal with the boundary conditions.

biii) Perform crossover operations following orthogonal
design.

biiii) Evaluate individuals according to fitness function and
renew the next population.
c) Cellular automata evolves in accordance with evolution-
ary rule to determine the new generation of cells’ existence
conditions and G = G+ 1.
d) Determine whether the termination condition is satisfied.
If true, the iteration is terminated and the optimal individ-
ual at this moment is output. Otherwise, continue to the
b) step.

The steps for implementing CDEOLOC are simply shown
in Fig. 4

B. OBJECTIVE FUNCTION AND SELF-LEARNING
SOFT-GRASP CONTROL FLOW
For the manipulator structure mentioned in the second
section, after the contact, the impact force will make the
system momentum alter. Meanwhile, the base momentum
will occur large change. The control objective of the flexible
arm is to weak the base angular velocity. But for free-floating
space manipulator, the base is coupled with the manipulator
and the disturbance of the joints will also influence the base.
So, we set up the objective function as follow

F = min
(
η0 ‖ω0‖ + η1

∥∥q̇1∥∥+ η2 ∥∥q̇2∥∥+ . . .+ ηn ∥∥q̇n∥∥)
(30)

where η0, η1, η2 . . . ηn are weighting coefficients which sat-
isfy η0 + η1 + η2 . . . + ηn = 1. Owing to the coupling
between the base and themanipulator, the angular momentum
will all be transferred to the base. So the objective function
can not reach zero. The final weights are determined by the
test.

In order to minimize the base angular momentum,
we present the control strategy flow as follows:
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FIGURE 4. CDEOLOC steps.

Step 1) After the contact, the motion sensor detects the
rotation angles and angular velocities x (t) of each joint and
base at time t .
Step 2) Substitute x (t) and the stiffness value after

crossover into the fitness function of CDEOLOC which calls
Lagrange dynamics equation, then through the CDEOLOC to
calculate the desired joint stiffness values at time t .
Step3) Through adjusting the stiffness adjustment motor,

output desired joint stiffness value at time t . The sensor
detects the rotation angles and angular velocities x (t + 1) of
the joint and the base at time t + 1.
Step 4) Repeat step 2) and calculate the desired joint stiff-

ness value at time t + 1. Keep repeating until the terminate
time.

FIGURE 5. Real motor rotation solving process.

IV. SOLVING THE REAL JOINT STIFFNESS
Due to the stiffness of joint has a non-linear function with the
angle of the adjustment motor, the stiffness of joint can not
be directly controlled. If the desired stiffness value is known,
the real stiffness value can be obtained through the motor
rotation control. The control structure is shown in Fig.5.

A. ADAPTIVE BACKSTEPPING SLIDING MODE
CONTROL ALGORITHM
The dynamic equation of adjustment motor is defined as
the second equation in Eq. (17). The resistance torque on the
adjustment motor τR is expressed as

τR = f (θr , θs) (31)

Considering that the change of θs related to the load and
characteristic of the elastic mechanism has uncertainty, it is
regarded as external interference signal. In addition, the vari-
ation of the external load will cause the change of the motor
inertia and other parameters in the system. Thus, the dynamic
equation of adjustment motor can be changed into

Ĵr θ̈r + φ̂r θ̇r = τ + ρ
(
θr , θ̇r , θ̈r

)
(32)

where Ĵr and φ̂r are the estimate values of Jr and φr , respec-
tively. So

Jr = Ĵr +1Jr
φr = φ̂r +1φr (33)

1Jr and1φr are uncertainty of Jr andφr , respectively. The
overall uncertainty of the system ρ

(
θr , θ̇r , θ̈r

)
is expressed as

ρ
(
θr , θ̇r , θ̈r

)
= −1Jr θ̈r −1φr θ̇r − τR (34)

Assuming that ρ
(
θr , θ̇r , θ̈r

)
satisfies the following

condition ∣∣ρ (θr , θ̇r , θ̈r)∣∣ ≤ ρ∗ (35)

Eq.(32) can be rewritten as

θ̈r = Ĵ−1r

(
−φ̂−1r θ̇r + τ + ρ

(
θr , θ̇r , θ̈r

))
(36)

The dynamic equation of the adjustment motor is a second-
order nonlinear system, so we utilize the backstepping design
method. The basic idea of the backstepping design method is
to decompose the complex nonlinear system into subsystems
not exceeding the order of the system, and then design the
Lyapunov function and the intermediate virtual control vari-
able for each subsystem. Keep ‘‘back’’ until the whole control
law is designed. Apart from this, designing the intermediate
virtual control variable through the sliding mode thought can
simplify the system. Because of the external disturbance and
uncertain system parameters, it is difficult to obtain the exact
upper bound ρ∗ of ρ

(
θr , θ̇r , θ̈r

)
actually. Adaptive control is

adopted to realize the adaptive estimation of upper bound ρ∗

of ρ
(
θr , θ̇r , θ̈r

)
.

Therefore, an adaptive backstepping sliding mode con-
troller is designed by combining the backstepping design,
sliding mode control and adaptive control. Assume that the
motor desired trajectory is θrd . θ̇rd and θ̈rd are corresponding
desired velocity and acceleration. The position and velocity
tracking error are defined as

e = θr − θrd (37)

ė = θ̇r − θ̇rd (38)
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The Lyapunov function candidate is defined as

V1 =
1
2
e2 (39)

Furthermore, define intermediate virtual control variable η
as

η = ė+ c1e = θ̇r − θ̇rd + c1e (40)

where c1 is a positive constant.
Differentiating (39) and utilizing (40) yields

V̇1 = eė = e (η − c1e) = eη − c1e2 (41)

where if η = 0, V̇1 ≤ 0.
Define the sliding surface as

σ = k1e+ η (42)

where k1 is a positive constant. Then the Lyapunov function
candidate is defined as

V2 = V1 +
1
2
σ 2
+

1
2λ
ρ2 (43)

where λ is a positive constant, ρ = ρ∗ − ρ̂, ρ̂ is the upper
estimated value of total uncertainty ρ.
Differentiating (43), setting B = σ Ĵ−1r and W = |B|,

combining (36) and (42) we have

V̇2 = V̇1 + σ σ̇ −
1
λ
ρρ̇

= eη − c1e2 + σ
(
k1ė− Ĵ−1r φ̂rθr

+ Ĵ−1r τ + Ĵ−1r ρ − θ̈rd + c1ė
)
−

1
λ
ρρ̇

≤ eη − c1e2 + σ
(
k1ė− Ĵ−1r φ̂rθr

+ Ĵ−1r τ + Ĵ−1r ρ − θ̈rd + c1ė
)
+Wρ∗ −

1
λ
ρρ̇

= eη − c1e2 + σ
[
k1 (η − c1e)−Ĵ−1r φ̂r

(
η+θ̇rd − c1e

)
+ Ĵ−1r τ − θ̈rd+c1ė

]
+W ρ̂ −

1
λ
ρ
(
˙̂ρ−λW

)
(44)

The adaptive backstepping sliding mode controller is
designed as

τ = Ĵr
[
−k1 (η − c1e)+ Ĵ−1r φ̂r

(
η + θ̇rd − c1e

)
+ θ̈rd − c1ė− βσ

]
− ρ̂sgn (σ ) (45)

where β is a positive constant. Simultaneously, the adaptive
control law is defined as

˙̂ρ = λW (46)

FIGURE 6. Base and joints angle. (a) The base angle. (b) The first joint
angle. (c) The second joint angle.

Substituting (45) and (46) into (44) yields

V̇2 ≤ eη − c1e2 − βσ 2 (47)

Set

Y =

 c1 + βk21 βk1 −
1
2

βk1 −
1
2

β

 (48)
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FIGURE 7. Base and joints angular velocities. (a) The base angular
velocity. (b) The first joint angular velocity. (c) The second joint
angular velocity.

Owing to

[
e η

] c1 + βk21 βk1 −
1
2

βk1 −
1
2

β

[ e
η

]
= c1e2 + βk21e

2
+ 2ηβk1e+ βη2 − ηe

= c1e2 + βσ 2
− ηe (49)

TABLE 1. Key parameters.

set S = [e η]T. Then Eq. (47) can be written as

V̇2 ≤ −sTYs (50)

Remark 2: Select proper positive constant c1, k1 and β
to ensure that Y is a symmetric positive definite matrix.
Hence V̇2 ≤ 0. The design of the adaptive backstepping slid-
ing mode controller makes the system satisfy the Lyapunov
stability.

V. SIMULATION
A. CDEOLOC CONTROL FOR MINIMIZING BASE
ANGULAR MOMENTUM
In order to verify the validity of the method in this paper,
use the model of a planar two-DOF free-floating space robot
described in the second section as an example of numerical
simulation. The system parameters and algorithm parameters
are shown in Table 1.
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FIGURE 8. Stiffness variation of the joints. (a) Stiffness variation of the
first joint. (b) Stiffness variation of the second joint.

Besides, the manipulator starts from v0 = 0rad,
ω0 = 0rad/s, q = [0, 0] rad, q̇ = [0, 0]rad/s. Stiffness
adjustment range is [500, 3000]Nm/rad and impact force is
F = [30, 40]N. Simulation time is 5s and the simulation step
size is 0.01s. The impact occurs at t = 2s and lasts for 0.1s.
Fig. 6 shows that the angles of joints are approaching

the angles before the impact gradually after two seconds
under optimization control. The base angle still changes over
time under the control. From Fig. 7, we can see that after
impact, both of the base and the joints angular velocities
occur obvious vibration and they are significantly weakened
when using CDEOLOC control strategy. Fig. 7(a) shows that
the amplitude of the base angular velocity is weakened by
40 percent and Fig. 7(b) and Fig. 7(c) shows that the joint
angular velocity is weakened to zero. Though the base does
not stop rotating, the instantaneous impact brought to it is
decreased and the residual vibration is obviously suppressed,
which means the optimization is valid. Fig. 8 proves that the
changes of joint stiffness are within the adjustment range.

B. ADAPTIVE BACKSTEPPING SLIDING MODE CONTROL
In the simulation process, the involved parameters are Jr =
0.106kgm2, φr = 0.5Nms/rad, and Ĵr = 0.8Jr , φ̂r = 0.8φr .
The corresponding parameters of backstepping sliding mode
controller are selected as c1 = 3, k1 = 2, β = 3, and λ = 0.5.

FIGURE 9. Adaptive backstepping sliding mode control results.
(a) Position tracking of the adjustment motor. (b) Position tracking error
of the adjustment motor. (c) Output torque of the controller.

From the Fig.9, one can see that the adjustment motor can
accurately track the desired trajectory, and both the tracking
error and the output torque are bounded. The adaptive back-
stepping sliding mode control scheme designed in this paper
can effectively eliminate the influence of the system inertia
parameter uncertainty and external disturbance on the motor
system.

VI. CONCLUSIONS
With the development of the space robotics, the free-
floating space manipulator plays an important role in space
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capturing operation. But the base attitude is easily disturbed
by impact due to the coupling between the base and the
manipulator. This paper summarizes the main methods to
reduce the base attitude angular momentum and proposes
a new strategy on the basis of variable stiffness method.
When the space manipulator suffered from external impact,
the stiffness of joint can be regulated to reduce the impact
and guarantee the angular momentum does not exceed the
limit, which is clearly verified with the desired joint stiffness
control method based on CDEOLOC. The simulation results
show that improving the flexibility of the space manipulator
by changing the joint stiffness can buffer the impulse intro-
duced by collision effectively.
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