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ABSTRACT In this paper, a differential-evolution-based approach implementing a global search strategy to
find a near-optimal axis-parallel decision tree is introduced. In this paper, the internal nodes of a decision
tree are encoded in a real-valued chromosome, and a population of them evolves using the training accuracy
of each one as its fitness value. The height of a complete binary decision tree whose number of internal
nodes is not less than the number of attributes in the training set is used to compute the chromosome
size, and a procedure to map a feasible axis-parallel decision tree from one chromosome is applied, which
uses both the smallest-position-value rule and the training instances. The best decision tree in the final
population is refined replacing some leaf nodes with sub-trees to improve its accuracy. The differential
evolution algorithm has been successfully applied in conjunction with several supervised learning methods
to solve numerous classification problems, due to it exhibiting a good tradeoff between its exploitation and
exploration skills, and to the best of our knowledge, it has not been utilized to build axis-parallel decision
trees. To obtain reliable estimates of the predictive performance of this approach and to compare its results
with those achieved by other methods, a repeated stratified ten-fold cross-validation procedure is applied in
the experimental study. A statistical analysis of these results suggests that our approach is better as a decision
tree induction method as compared with other supervised learning methods. Also our results are comparable
to those obtained with random forest and one multilayer-perceptron-based classifier.

INDEX TERMS Decision trees, differential evolution, metaheuristics, smallest-position-value rule, super-
vised learning.

I. INTRODUCTION
Machine learning techniques to build models from known
data have gained importance over the past few years due to
the growing demand for data analysis in disciplines such as
data science, business intelligence, and big data. Decision
trees, artificial neural networks, and support vector machines,
as well as clustering methods, have been widely-used to build
predictive models. Many real-world problems such as the
prediction of high-impact weather events [1], the analysis of
traffic situations [2], the study of customer feedbacks [3],
and the evaluation of credit risks [4], among other diverse
applications, have benefited with such models.

The use of one particular machine learning technique
to build a model from a specific set of training instances
depends on the required level of interpretability, scalability,

and robustness of the model produced. In particular, decision
trees (DTs) are classification models characterized by their
high levels of interpretability and robustness. Knowledge
learned via a DT is understandable due to its graphical rep-
resentation [5], and also DTs can handle noise or data with
missing values and to make correct predictions [6].

Although it is known that one greedy criterion does
not guarantee to find an optimal solution [7], DTs are
ordinarily constructed through a recursive partition strat-
egy that searches an optimal local split of the training
set at each stage of their induction process. On the other
hand, algorithms implementing a global search strategy are
capable of finding near-optimal DTs, but they are com-
putationally expensive [8], and a way of coping with this
disadvantage is the use of metaheuristics (MHs) such as
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evolutionary algorithms (EAs) and swarm intelligence (SI)
methods.

In this paper, a Differential-Evolution-based approach
implementing a global search strategy to find a near-
optimal axis-parallel DT is described. In this method, named
DE-ADTSPV, the internal nodes of a DT are encoded in
a vector of real-valued parameters, and a population of
them evolves using the training accuracy of each DT as
its fitness value. The size of the real-valued vector is esti-
mated a priori according to the characteristics of the dataset
whose classification model is constructed, and a scheme
to map a feasible axis-parallel DT from this vector is
applied, using both the Smallest-Position-Value (SPV) rule
and the training instances. The SPV rule [9] has been imple-
mented with several MHs such as Particle Swarm Opti-
mization (PSO) [10] and Differential Evolution (DE) [11]
to solve combinatorial optimization problems but, to the
best of our knowledge, it has not been used to build a DT.
A statistical analysis of the results obtained by the
DE-ADTSPV method suggests that our approach shows a
better performance as a DT induction (DTI) method in
comparison with other proposed methods. Also our results
are comparable to those obtained with random forest and
one multilayer-perceptron-based classifier. The DE-ADTSPV
method is publicly available to the community interested in
the use of MHs for DTI. It can be freely obtained from the
Github site https://github.com/rafaelriveralopez/DE-ADT.

The rest of this document is structured as follows:
Section 2 provides a set of basic definitions about DTs,
as well as a description of its implemented induction strate-
gies, with emphasis on the use of MHs for this purpose, and
on the representation of candidate solutions. The details of the
DE algorithm are given in Section 3, and in Section 4 a brief
review of existing literature related to MH-based approaches
for DTI encoding their candidate solutions as a sequence
of values is introduced. Section 5 presents the description
of the elements included in the DE-ADTSPV method, and
the experimental results are discussed in Section 6. Finally,
Section 7 holds the conclusions and the future work of this
proposal.

II. INDUCTION OF DECISION TREES THROUGH
METAHEURISTICS
A DT is a white-box classification model representing its
decisions through a tree-like structure composed of a set of
nodes containing both test conditions (internal nodes) and
class labels (leaf nodes). These nodes are joined by arcs
simbolizing the possible outcomes of each test condition in
the tree. A DT is a rooted directed tree T =

(
G(V ,E), v1

)
,

where V is the set of nodes, E is the set of edges joining pairs
of nodes in V , and v1 is its root node [12]. In particular, if V
has m nodes, for any j =

{
1, . . . ,m

}
, the set of successor

nodes of vj ∈ V is defined as follows:

N+(vj) =
{
vk ∈ V : k =

{
1, . . . ,m

}
∧k 6= j ∧ (vj, vk ) ∈ E

}
. (1)

Furthermore, a DT is a data-driven classification model
first induced using a training set and then applied to predict
the class membership of new unclassified instances. A train-
ing set is a group of pre-classified instances described by a
vector a =

(
a1, a2, . . . , ad

)
of d attributes representing the

variables of one problem and by a vector c =
(
c1, . . . , cs

)
of s class labels used to identify the membership of each
instance. Each training instance is composed of a collection
of attributes values and one class label. Each k-th attribute
in the training set has associated a set of possible values
known as its domain D(ak ). The domain of a categorical
attribute is a collection of unordered values and is a set of
real numbers or integers for a numerical attribute [13].

DTs stand out for their simplicity and their high level
of interpretability, and since a DTI process determines the
importance of the attributes when builds the test conditions,
DTs provide an embedded feature selection mechanism [14].
These characteristics along with its predictive power allow
placing to DT as one of the most widely used classifiers.
DTs have been applied in several domains of science and
engineering such as cellular biology [15], pharmaceutical
research [16], public health [17], electrical energy consump-
tion [18], and transport studies [19], among others.

The structure of the test conditions in a DT can be used
to determine its type: if a single attribute is evaluated in
each test condition, it is known as a univariate DT. Since
efficient induction methods such as CART [20] and C4.5 [21]
generate univariate DTs, it is the most known type of DTs.
Univariate DTs are also called axis-parallel DTs due to their
test conditions represent axis-parallel hyperplanes dividing
the instance space into several disjoint regions. On the other
hand, multivariate DTs use a combination of attributes in
their test conditions. Two types of multivariate DTs can
be distinguished: 1) oblique DTs that use a linear com-
bination of attributes, and 2) non-linear DTs having test
conditions with non-linear combinations of attributes. Mul-
tivariate DTs commonly show better performance, and they
are smaller than univariate DTs, but they are less expres-
sive and might require more computational effort to induce
them.

Most of DTI methods described in the existing literature
apply a recursive partitioning strategy implementing some
splitting criterion to separate the training instances. This plan
is usually complementedwith a pruning procedure to improve
the performance of the classifier. Several studies point out
that this strategy has three fundamental problems: overfit-
ting [22], selection bias towards multi-valued attributes [23]
and instability to small changes in the training set [24].
On the other hand, algorithms implementing a global search
strategy can ensure an efficient exploration of the solution
space although it is known that building optimal DTs is
NP-Hard [25]. In particular, the implementation ofMH-based
approaches for DTI allows constructing DTs that are more
accurate than those inducing with traditional methods due
to they use intelligent search procedures combining their
exploration and exploitation skills, thus providing a better
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way to discover the relationships between the attributes used
in the training set.

MHs have been previously applied to construct DTs, and
several surveys in existing literature describe their implemen-
tations [8], [26]–[28]. Some MH-based approaches imple-
ment a recursive partitioning strategy in which an MH
searches for a near-optimal test condition at each tree internal
node; however, the most commonly used technique is to carry
out a global search in the solution space applying anMHwith
the aim of finding near-optimal DTs.

Candidate solutions in MH-based approaches for DTI
have been encoded either as sequences of values or as tree
structures. Linear representation of candidate solutions is
the encoding scheme most commonly used by genetic algo-
rithms (GA), gene expression programming (GEP), gram-
matical evolution (GE), DE, and PSO, among other MHs.
If this representation is used for DTI, a scheme to map the
sequence of values into a DT must be applied [29], [30].
Nevertheless, since almost every MH use a fixed-length rep-
resentation of its candidate solutions, a prior definition of this
length is mandatory, which could affect the performance of
the induced DTs. On the other hand, tree structures have been
used to represent candidate solutions by MHs such as genetic
programming (GP) and co-evolutionary algorithms (CEAs).
In this case, a set of particular perturbation operators must
be defined to generate only feasible solutions or to repair
infeasible solutions [31], [32]. An advantage of applying this
representation is that DTs with different sizes can be con-
structed, but it is known that some perturbation operators have
a destructive effect on the new candidate solutions created by
the MH [33].

It is important to note that to find near-optimal trees,
the encoding scheme used in an MH-based approach for DTI
must correctly represent the symbolic elements of a DT: test
conditions and class labels. The representation schemes used
by several MHs such as GA, GE, GP, and GEP are capable
of encoding these elements, and they have been commonly
applied for DTI implementing a global search strategy. How-
ever, this is a challenge for other MHs such as DE and PSO,
which have proven to be very efficient in solving complex
problems, but they have been designed to handle real-valued
representations. This work describes a DE-based approach to
induce univariate DTs, encouraged by the fact that DE has
demonstrated to be a very competitive and successful method
to solve complex problems in comparison with other MH-
based approaches.

III. DIFFERENTIAL EVOLUTION
DE is an effective EA designed to solve optimization prob-
lems with real-valued parameters. DE evolves a population
X =

{(
1, x1

)
,
(
2, x2

)
, . . . ,

(
NP, xNP

)}
of NP chromosomes

by applying mutation, crossover, and selection operators with
the aim to reach a near-optimal solution. To build a new
chromosome, instead of implementing traditional crossover
and mutation operators, DE applies a linear combination
of several chromosomes randomly chosen from the current

population. Each chromosome in the population is encoded
by one real-valued vector x =

(
x1, x2, . . . , xn

)
of n parame-

ters representing a candidate solution. The evolutionary pro-
cess on DE is guided by a fitness function f : Rn

→ R
determining the quality value of each chromosome in the
population.

In this paper, the standard DE algorithm [34], named
DE/rand/1/bin in agreement with the nomenclature adopted
to refer DE variants, is used as a procedure to find a near-
optimal axis-parallel DT. DE can be considered a three-step
process including an initialization phase, the evolutionary
process, and the final step determining the result obtained.

The initialization phase involves the selection of a set of
uniformly distributed random chromosomes from a finite
search space � ⊆ Rn to build the initial DE population,
known as X0. If for each j ∈

{
1, . . . , n

}
, xmin

j and xmax
j are

the minimum and the maximum values of the j-th parameter
in �, respectively, the j-th value of the chromosome x i in the
initial population is calculated as follows:

x ij = xmin
j + r

(
xmax
j − xmin

j
)
, (2)

where r ∈ [0, 1] is a uniformly distributed random number.
The evolutionary process implements an iterative scheme

to evolve the initial population. At each iteration of this
process, known as a generation, a new population of chro-
mosomes is generated from the previous one. For each i ∈{
1, . . . ,NP

}
in the g-th generation, x i is taken from the Xg−1

population, and it is used to build a new vector ui by applying
the mutation and crossover operators. Vectors x i and ui are
known as the target vector and the trial vector, respectively.
These vectors are evaluated by the selection operator to
update a new population Xg. In particular, the DE/rand/1/bin
algorithm uses the following evolutionary operators:

• Mutation: Three randomly chosen candidate solutions
from Xg−1 (xr1 , xr2 and xr3 ) are linearly combined to
yield a mutated vector, as follows:

vi = xr1 + F
(
xr2 − xr3

)
, (3)

where F is a user-specified value representing a scale
factor applied to control the differential variation.

• Crossover: The mutated vector is recombined with the
target vector to build the trial vector. For each j ∈{
1, . . . , n

}
, either x ij or v

i
j is selected based on a com-

parison between a uniformly distributed random number
r ∈ [0, 1] and the crossover rate CR. This operator
also uses a randomly chosen index l ∈ {1, . . . , n} to
ensure that ui gets at least one parameter value from vi,
as follows:

uij =

{
vij if r ≤ CR or j = l,

x ij otherwise.
(4)

• Selection: A one-to-one tournament is applied to deter-
mine which vector, between x i and ui, is selected as a
member of the new population Xg.
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In the final step, when a stop condition is fulfilled,
DE returns the best chromosome in the current popula-
tion. The Algorithm 1 shows the structure of the classical
DE/rand/1/bin method.

Algorithm 1 Classical DE algorithm introduced in [34]
function DIFFERENTIAL EVOLUTION (CR, F, NP)

Input: The crossover rate (CR), the scale factor (F), and
the population size (NP).

Output: The best chromosome in current population
(xbest).

g← 0
Xg← ∅
for each i ∈

{
1, . . . ,NP

}
do

for each j ∈
{
1, . . . , n

}
do

x ij ← A randomly generated parameter using (2)
end for
Xg← Xg ∪

{(
i, x i

)}
end for
while stop condition is not fullfilled do
g← g+ 1
Xg← ∅
for each i ∈

{
1, . . . ,NP

}
do

x i← Target vector from Xg−1
vi←Mutated vector generated using (3)
ui← Trial vector constructed using (4)

Xg← Xg ∪

{{
(i, ui)

}
if f (ui) is better than f (x i){

(i, x i)
}

otherwise
end for

end while
xbest← The best chromosome in Xg
return xbest

DE has several advantages in comparison with other MHs
such as the simplicity of its implementation, its ability to
produce better results than those obtained by the others,
and its low space complexity [35]. DE exhibits a good
trade-off between its exploitation and exploration skills,
i.e., it is more explorative at the beginning, but it is more
exploitative as the evolutionary process progresses [36]. On
the other hand, although DE requires the definition of a
smaller number of parameters compared to other MHs, its
performance is sensitive to the values selected for CR, F,
and NP.

DE has been utilized to implement classification methods
in conjunction with support vector machines [37], artificial
neural networks [38], Bayesian classifiers [39] and instance-
based classifiers [40]. In the case of its use with DTs, DE is
applied in the DEMO (DE for multi-objective optimization)
algorithm [41] to find the most suitable parameters so that the
J48method [42] yields more accurate and small DTs. DE also
is used in the PDT (Perceptron Decision Tree) algorithm [43]
to find a near-optimal oblique DT. Each chromosome in the
PDT method encodes the coefficients of all possible hyper-
planes of one fixed-height oblique DT.

IV. LINEAR REPRESENTATION OF CANDIDATE
SOLUTIONS IN METAHEURISTICS
Linear representation of candidate solutions has been used
with MH-based approaches implementing either a recursive
partitioning strategy to build a DT or to perform a global
search in the solution space with the aim of finding near-
optimal DTs. In the first case, this representation is com-
monly applied to build multivariate DTs, and when it is used
with MH-based algorithms implementing a global search,
the sequence of values can encode both univariate and multi-
variate DTs.

A. RECURSIVE PARTITIONING STRATEGY TO BUILD A
DECISION TREE
In this strategy, a candidate solution representing a test con-
dition of a DT is altered with some perturbation operator to
construct a new test condition. Single-solution-based MHs
such as Simulated Annealing (SA), Tabu Search (TS) and the
Greedy Randomized Adaptive Search Procedure (GRASP)
have been used to induce DTs through a recursive partitioning
strategy. SA is applied to find a near-optimal hyperplane used
as test condition of an oblique DT in two approaches: alter-
ing one randomly chosen hyperplane coefficient in the SA
for DT (SADT) method [44], and perturbing simultaneously
several of them in the OC1-SA method [45]. Furthermore,
TS also has been utilized for the same purpose in the LDTS
(Linear Discriminant and TS) method [46] applying a linear
discriminant analysis [47] with several subsets of attributes
provided by TS. It also has been used in the Linear Discrete
Support vector DT (LDSDTTS ) method [48] by combining a
discrete support vector machine with TS. Finally, a GRASP-
based method [49] finds near-optimal test conditions of an
axis-parallel DT. In each iteration, instead of choosing the
attribute with the maximum information gain (IG), GRASP
randomly chooses one attribute from a subset of attributes
with the highest IG values.

On the other hand, EAs such as Evolutionary Strate-
gies (ES) and GA have been applied to build an oblique DT
through this strategy. The OC1-ES algorithm [45] and the
Multimembered ES Oblique DT (MESODT) method [50]
obtain a near-optimal hyperplane using the (1 + 1)-ES and
the (µ, λ)-ES, respectively. Furthermore, GA evolves a popu-
lation of hyperplanes encoded: 1) with a binary chromosome
in the Binary Tree-GA (BTGA) algorithm [51], and in the
HereBoy for DT (HBDT) method [52], and 2) with a real-
valued chromosome in the OC1-GA algorithm [45] and in
the procedures described by Krȩtowski [53] and Pangilinan
and Janssens [54].

B. GLOBAL SEARCH STRATEGY TO FIND NEAR-OPTIMAL
DECISION TREES
Linear representation of candidate solutions also has been
used to encode a DT when a global search strategy is
applied. Several MH-based approaches for DTI implement-
ing this strategy have been described in the existing literature:
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Caltrop [29] is a GA-based approach evolving a popula-
tion of complete DTs represented as a set of sub-trees.
Each sub-tree with three nodes (a caltrop) is encoded as
a sequence of integer values referring to binary attributes
used as test conditions. Furthermore, in other GA-based
approaches, the chromosome encodes either the nodes of a
complete DT, or the elements used to build them: attributes,
threshold values of the numerical attributes, and class
labels.

In the first case, Cha and Tappert [55] encode both test
conditions and leaf nodes in an integer-valued chromosome.
Each test condition evaluates a binary attribute represented
by the index of its location in an ordered list of attributes.
Furthermore, in the method described by Bandar et al. [56],
each test condition is represented by an index identifying
the attribute, either categorical or numerical, used in it. In
this algorithm, both the threshold values used in the inter-
nal nodes and the class labels assigned to the leaf nodes
of the DT are determined by evaluating the training set.
Finally, in the Evolutionary Classifier with Cost Optimiza-
tion (ECCO) method [57] a binary chromosome encodes the
set of test conditions of a complete DT through an index
identifying each possible test condition.

On the other case, the Evolutionary Algorithm for
DTI (EVO-Tree) method [30] and the work of Smith [58]
implement two similar approaches. Both construct two arrays
to encode the elements used by the nodes of a binary DT:
one identifying both attributes and class labels, and the other
storing the threshold values.

Other EA-based approaches using a linear representa-
tion of candidate solutions have been applied for DTI.
A grammar to map axis-parallel DTs from binary chromo-
somes is defined in the Grammatical Evolution DTs (GEDT)
method [59]. Furthermore, several GEP-based approaches
such as the GEPDT method [60], and those described by
Ferreira [61] and Wang et al. [62] have been implemented
to yield axis-parallel DTs. In these methods the linear chro-
mosome encodes the attributes, the threshold values and the
class labels used to build a DT.

Finally, two PSO-based approaches have been
implemented to find near-optimal DTs: the Tree Swarm
Optimization (TSO) method [63] and a multi-objective
PSO-based approach for DTI [64]. In these algorithms,
a particle moving in the continuous space represents the
symbols used in both test conditions and leaf nodes of a
complete DT.

Except for the GEDT method [59] in which the candidate
solutions are encoded using a variable-length linear chromo-
some, the other MH-based approaches for DTI require a prior
definition of the size of the sequence of values. Almost all of
them use the tree height h to define this size, either as an user-
specified value [30] or as a value previously established in the
algorithm [55]–[57], [63], [64]. Only the method described
by Smith [58] determines the tree height in function of the
number of attributes in the training set used to induce the
DT (h = d + 1).

FIGURE 1. The structure of a chromosome to encode a sequence of
attributes and a sequence of threshold values.

V. GLOBAL SEARCH OF AXIS-PARALLEL DECISION TREES
THROUGH DIFFERENTIAL EVOLUTION
In this work, a Differential-Evolution-based approach to
build Axis-parallel Decision Trees using the SPV rule (DE-
ADTSPV) is described. The estimated height of a binary DT
whose number of internal nodes is not less than the number
of attributes in the training set is used to define the size
of the chromosomes in population and, although this size
is based on a binary DT, the DE-ADTSPV method is used
to build general DTs. The best DT in population is refined
by replacing some leaf nodes with sub-trees to improve its
accuracy. A detailed description of the DE-ADTSPV elements
is provided in the following paragraphs.

A. LINEAR ENCODING SCHEME OF CANDIDATE
SOLUTIONS
Each test condition of an axis-parallel DT evaluates only one
attribute to divide the training set. If a categorical attribute
is evaluated, the training set is split into as many subsets as
values there are in the domain of the attribute. On the other
hand, if the evaluated attribute has numerical values, a thresh-
old value is used to split the training set into two subsets, and
the DTI method must determine a suitable threshold value
optimizing some splitting criterion.

The linear encoding scheme proposed in this work asso-
ciates each parameter of a chromosome with each attribute
and with each threshold value used in the test conditions of
an axis-parallel DT. Therefore, if the vectors yi and zi are
used to represent the sequence of attributes and the sequence
of threshold values, respectively, a chromosome x i in the
population is the concatenation of yi followed by zi, i.e., x i =
yi_zi, as is shown in Fig. 1. Furthermore, if ny and nz are the
numbers of elements in yi and zi, respectively, the size of x i

is n = ny + nz.
Considering that the size of a DT is related to the structure

of the training set used to induce it, in the DE-ADTSPV
method the height of a complete binary DT is estimated based
on the number of attributes and the number of class labels in
the training set. This height is used to compute the size of x i.
To ensure that each attribute can be evaluated at least by one
test condition and that also each class label is present on at
least one leaf node, d and smust be used as lower bounds for
the number of internal nodes and the number of leaf nodes,
respectively. Since the number of internal nodes of a complete
binaryDTwith height h is 2h−1, and the number of leaf nodes
of the same DT is 2h, two heights can be obtained as follows:

hi =
⌈
log2 (d + 1)

⌉
, (5)
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FIGURE 2. Three stages procedure to map an axis-parallel DT from x i .

and

hl =
⌈
log2 (s)

⌉
. (6)

The estimated height of a complete binary DT in which
each attribute and each class label of the training set can be
used at least once is defined as he = max{hi, hl} + 1. The
DE-ADTSPV method applies this estimated height to calcu-
late the size of yi as follows:

ny = 2he − 1. (7)

Since ny is not less than d , each attribute in the training
set is associated with one or more elements of yi through an
auxiliary vector p. For each j ∈

{
1, . . . , ny

}
, the location of

each attribute in the vector a is stored in p as follows:

pj = j mod d . (8)

On the other hand, as zi identifies the threshold values of
the numerical attributes associated with yi, its size depends
on the size of yi. If the number of numerical attributes in the
training set is computed as follows:

dr =

∣∣∣∣{k ∈ {1, . . . , d} : D(ak ) ⊆ R
}∣∣∣∣, (9)

nz is obtained using the following equation:

nz = dr
⌊ny
d

⌋
+

∣∣∣∣{k ∈ {1, . . . , d} : D(ak ) ⊆ R

∧d
⌊ny
d

⌋
+ k ≤ ny

}∣∣∣∣. (10)

The first term of (10) refers the amount of numerical
attributes used when a is entirely associated with yi, and

the second one represents the number of these attributes used
when a is partially associated with yi.
Once the size of x i is calculated using the structure of the

training set, DE evolves a population of chromosomes using
the training accuracy of the constructed DTs as their fitness
values.

B. INDUCTION OF FEASIBLE AXIS-PARALLEL
DECISION TREES
The DE-ADTSPV method implements a three-stages proce-
dure to map an axis-parallel DT from a chromosome of the
population. First, x i is used to build the vector wi which
encodes a sequence of candidate nodes of a DT. Next, wi is
utilized to create a partial DT pT i composed only of internal
nodes. Finally, to complete the DT, a set of leaf nodes are
added in pT i using the training set. This procedure allows
inducing feasible axis-parallel DTs with a different number
of nodes, although they are represented using a fixed-length
parameters vector. Fig. 2 shows a graphical representation of
this procedure.

1) NODES VECTOR CONSTRUCTION
The DE-ADTSPV method uses the SPV rule to build an
ordered sequence of attributes from x i. This rule creates an
integer-valued vector oi based on the elements of yi: the
location of the lowest value in yi is the first element of oi,
the location of the next lowest value in yi is the second
element of oi, and so on. Formally, for each j ∈

{
1, . . . , ny

}
,

the SPV rule assigns the k-th location of yi as the j-th element
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Algorithm 2 Algorithm to Build wi From x i

function NVConstruction(x i)
Input: The real-valued parameter vector (x i).
Output: The nodes vector (wi).

yi←
(
x i1, x

i
2, . . . , x

i
ny

)
zi←

(
x iny+1, x

i
ny+2

, . . . , x iny+nz
)

for each j ∈
{
1, . . . , ny

}
do

oij← j-th minor element of yi determined using (11)
end for
for each j ∈

{
1, . . . , ny

}
do

k ← oij
if D(apk ) ⊆ R then
q← Location in zi of the threshold value associ-

ated with apk , computed by (12)
t iq← Threshold value of apk obtained using (13)
wij←

(
apk , t

i
q
)
F A node with a numerical attribute

else
wij←

(
apk
)
F A node with a categorical attribute

end if
end for
return wi

of oi using the following equation:

oij = min
{
k ∈ {1, . . . , ny} \ {oi1, . . . , o

i
j−1} :

yik = min
{
yil : l ∈ {1, . . . , ny} \ {o

i
1, . . . , o

i
j−1}

}}
.

(11)

On the other hand, to adjust the threshold values repre-
sented by zi so that they belong to the domains of the numer-
ical attributes in a, another auxiliary vector t i is constructed.
If for each j ∈

{
1, . . . , ny

}
, q is the location in zi of the

threshold value associated with the numerical attribute ap
oij
,

that is computed as follows:

q = dr
⌊ j
d

⌋
+

∣∣∣{k ∈ {1, . . . , d} : D(ak ) ⊆ R ∧ k ≤ poij
}∣∣∣,
(12)

then t iq represents the threshold value of apoij
, obtained apply-

ing the following equation:

t iq = min{D(ap
oij
)}

+

(
ziq − x

min
j

)(
max{D(ap

oij
)} −min{D(ap

oij
)}
)

xmax
j − xmin

j

. (13)

Once oi contains the ordered locations of yi, and t i holds
the threshold values associated with the numerical attributes
encoded in yi, these vectors are used to build the vector wi

representing the sequence of candidate internal nodes of a

partial DT. For each j ∈
{
1, . . . , ny

}
, the j-th element of wi is:

wij =


(
ap

oij
, t iq
)

if D(ap
oij
) ⊆ R,(

ap
oij

)
otherwise.

(14)

The Algorithm 2 outlines the process to build wi from x i.
Once wi is completed, it is used to create a partial DT with
only internal nodes.

Algorithm 3 Construction of pT i from wi

function DTConstruction(wi)
Input: The nodes vector (wi).
Output: The partial DT with only feasible internal nodes

(pT i).

V ←
{
wi1
}

E ← ∅
for each j ∈

{
1, . . . , ny

}
do

if wij ∈ V then
b← Number of possible successor nodes of wij

computed using (15)
k ← j+ 1
while k ≤ ny ∧

∣∣N+(wij)∣∣ < b do
α← Attribute assigned in wik
if α satisfies R1 and R2 ∧ wik satisfies R3 then
V ← V ∪

{
wik
}

E ← E ∪
{
(wij,w

i
k )
}

end if
k ← k + 1

end while
end if

end for
pT i←

(
G (V ,E) ,wi1

)
return pT i

2) PARTIAL DECISION TREE CONSTRUCTION
A straightforward procedure is applied to construct the partial
DT from wi: First, the element in the initial location of wi is
used as the root node of pT i. Next, the remaining elements of
wi are inserted in pT i as successor nodes of those previously
added so that each new level of the tree is completed before
placing new nodes at the next level, in a similar way to the
breadth-first search strategy. The number of successor nodes
b of an internal node is calculated based on the domain of the
attribute used in its test condition, as follows:

b =

{
2 if D(α) ⊆ R,∣∣D(α)∣∣ otherwise,

(15)

where α is the attribute assigned in wi.
Since pT i is constructed using the ordered sequence of

elements of yi, it is likely to contain one or more redundant
nodes, i.e., nodes whose test condition does not split the
instances set. To ensure that pT i does not hold any redundant
node, the following rules are applied:
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Algorithm 4 Completion of a DT Using Both pT i and the
Training Set

function DTCompletion(pT i, ι, τ )
Input: The partial DT (pT i), the training set (ι), and the

threshold value used to assign a leaf node (τ ).
Output: The DT (T i) mapped from the i-th chromosome

in the population.

α← Attribute asigned to the root node of pT i

ω′← (α, ι) F The root node with the training instances
V ′←

{
ω′
}

E ′← ∅
Q← Empty queue
Enqueue(Q, ω′)
while Q is not empty do
ω← Dequeue(Q)
α← Attribute asigned to ω
φ← Instances set assigned in ω
ϕ←

∣∣N+(ω)∣∣
b← Number of possible successor nodes of ω com-

puted using (15).
8← Classify(φ, α)
for each j ∈

{
1, . . . , b

}
do

ζ ← MajorityClass(φj)
ψ ← The number of instances in φj with ζ as class

label
if (j ≤ ϕ ∧ |φj| 6= ψ ∧ |φj| > τ ) then
α← The attribute used by N+j (ω)
ωj←

(
α, φj

)
F An internal node

Enqueue(Q, ωj)
else
ωj←

(
ζ, φj

)
F A leaf node

end if
V ′← V ′ ∪

{
(ωj)

}
E ′← E ′ ∪

{
(ω,ωj)

}
end for

end while
T i←

(
G
(
V ′,E ′

)
, ω′

)
return T i

R1: A categorical attribute can only be evaluated once in
each branch of the tree.

R2: A numerical attribute can be evaluated several times in
the same branch of the tree if and only if it uses coherent
threshold values.

R3: The successor nodes of one internal node with two
branches of the tree cannot use the same categorical
attribute.

Therefore, when an element in wi does not satisfy the
previous rules, it is not used to create an internal node, and
the procedure continues analyzing the next item in it. The
Algorithm 3 shows the steps applied to create pT i from wi.
In this algorithm can be observed that V is the set of valid
internal nodes of pT i, and E is the set of edges representing
each possible outcome of each test condition in pT i.

Algorithm 5 General Structure of DE-ADTSPV method
procedure DE-ADTSPV(trainingSet , CR, F, NP, τ )
Input: The training set (trainingSet), the DE parameters

(CR, F and NP), and the threshold value used to
assign a leaf node (τ ).

(a, c, ι)← ReadTrainingSet(trainingSet)
d ← |a|
s← |c|
ny← Number of estimated internal nodes computed

using (7)
for each j ∈

{
1, . . . , ny

}
do

pj← Position of an attribute in a using (8)
end for
nz← Number of threshold values computed using (10)
n← ny + nz
xbest← DifferentialEvolution(CR, F, NP)
w← NVConstruction(xbest)
pT ← DTConstruction(w)
T ← DTCompletion(pT , ι, τ )
T ← DTRefinement(T , τ )
T ← DTPruning(T , τ )

3) DECISION TREE COMPLETION
The final stage of the mapping scheme is responsible to add
leaf nodes in pT i using the training set. In this stage, one
instances set φ is assigned to one internal nodeω (the training
set for the root node), and evaluating each element in φ with
the test condition associated to ω, several instances subsets
are created and assigned to the successor nodes of ω. This
assignment is repeated for each node in pT i. Two cases should
be considered:

1) If ω is located at the end of a branch of pT i, then as
many nodes are created as possible instances subsets
are obtained when the elements in φ are evaluated,
and they are designated as successor nodes of ω. Each
instances subset is assigned to each created node, and
each one is labeled as a leaf node using as its class label
the one that has the highest number of occurrences in
the instances subset assigned to it.

2) If the number of instances assigned toω is less than one
previously defined threshold value τ , or if all instances
assigned to it belong to the same class, thenω is labeled
as a leaf node. The majority class ζ in its instances set
is assigned as the class label of the leaf node, and its
successor nodes are removed, if they exist.

The algorithm 4 summarizes the process to complete the
DT from pT i. This procedure uses a first-in-first-out (FIFO)
queue to assign the instances of the training set in each node
of the DT. Furthermore, this algorithm uses the following
methods:

• Classify(φ, α): This method splits φ using the atribute α,
generating a collection8with as many instances subsets
as possible successor nodes of ω.
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• MajorityClass(φj): This method returns the class label ζ
associated with the largest number of instances belong-
ing to the same class in φj.

In this algorithm can be observed that V ′ is the set of both
internal nodes and leaf nodes of T ′, each one associated with
an instances subset.

C. GENERAL STRUCTURE OF THE DE-ADTSPV METHOD
The Algorithm 5 shows the structure of the DE-ADTSPV
method proposed in this work. This procedure requires to
identify the training set used to induce an axis-parallel DT,
as well as the three control parameters applied by the DE
algorithm, and the threshold value τ used to determine if a
node is labeled as a leaf node.

First, the DE-ADTSPV method uses the ReadTraining-
Set(trainingSet) method to get the attributes vector a, the vec-
tor of class labels c, and the instances set ι. Next, the values
of d and s are computed, as well as the values of ny, nz,
and n used to build the initial population of chromosomes.
Then, the DE algorithm evolves this population to obtain the
best candidate solution xbest. After that, a near-optimal DT is
constructed by applying the three stage procedure described
in the previous paragraphs. Finally, this DT is refined to
replace non-optimal leaf nodes with sub-trees, as well as
it is pruned to reduce the possible overfitting generated by
applying this refinement.

TheDE-ADTSPV method implements twomodifications in
the DE/rand/1/bin algorithm:

• Variable Scale Factor: The F parameter gradually
decreases as the evolutionary process progresses. This
decrement allows more exploration of the search
space at the beginning of the evolutionary process,
and with the passage of the generations, it tries to
make a better exploitation of promising areas of this
space [65].

• Mixed parameters: The parameters in a chromo-
some representing an axis-parallel DT can be con-
strained or not. Unconstrained parameters are associated
with the sequence of attributes, and constrained elements
represent the threshold values used to build the test
conditions with numerical attributes. When a parameter
value violates a constraint, it is adjusted to the midpoint
between its previous value and the boundary-value of the
violated constraint as follows:

uij←


1
2

(
x ij + x

max
j

)
if uij > xmax

j ,

1
2

(
x ij + x

min
j

)
if uij < xmin

j ,

uij otherwise.

(16)

This mechanism to handle constraints allows asymptot-
ically approach the space boundaries [66].

Since theDE-ADTSPV method uses an a priori definition of
the size of the chromosome, it is possible that some leaf nodes
in theDT do notmeet the following conditions: that the size of

Algorithm 6 Refinement of a DT

function DTRefinement(T i, τ )
Input: The DT (T i) and the threshold value used to

assign a leaf node (τ ).
Output: The refined DT (T i).

ω′← Root node of T i

V ′← Nodes set of T i

E ′←Edges set of T i

Q← Empty queue
Enqueue(Q, ω′)
while Q is not empty do
ω← Dequeue(Q)
ϕ←

∣∣N+(ω)∣∣
if ϕ > 0 then F The node is an internal node
for each j ∈

{
1, . . . , ϕ

}
do

ωj← N+j (ω)
Enqueue(Q, ωj)

end for
else F The node is a leaf node
φ← Instances set in ω
ζ ← MayorityClass(φ)
ψ ← The number of instances in φ with ζ as class

label
if
(
|φ| 6= ψ ∧ |φ| > τ

)
then

(V ′,E ′)← (V ′,E ′) ∪ TreeGrowing(ω, τ )
end if

end if
end while
T i←

(
G
(
V ′,E ′

)
, ω′

)
return T i

its instances subset is less than τ , or that all the instances in the
subset belong to the same class. In this case, the DE-ADTSPV
method applies the TreeGrowing procedure to replace this
node with a sub-tree whose leaf nodes fulfill these conditions.
This method implements a recursively partitioning strategy
guided by some splitting criterion. However, it is desirable
that this refinement is used only when the estimated number
of nodes ny does not permit to build a DT with an acceptable
accuracy. The Algorithm 6 shows the procedure to refine the
best T i constructed with the DE-ADTSPV method. In this
work the Gain Ratio [21] is used for the TreeGrowing pro-
cedure as splitting criterion.

VI. EXPERIMENTAL STUDY
In this section the experimental study carried out to analyze
the performance of the DE-ADTSPV method is detailed. First,
a description of the datasets used in this study, as well as
the definition of the parameters of the DE-ADTSPV method
are given. Then, both the model validation technique used
in the experiments and the statistical tests applied to eval-
uate the results obtained are outlined. Finally, a discus-
sion about the performance of the DE-ADTSPV method is
provided.
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TABLE 1. Description of datasets used in the experiments.

A. EXPERIMENTAL SETUP
A benchmark of 20 datasets chosen from the UCI machine
learning repository [67] is used to carry out the experimental
study. These datasets have been selected as they attributes are
numerical, categorical, or a combination of them, also their
instances are classified into two or more classes, and most of
them are imbalanced datasets. Table 1 shows the description
of these datasets. To ensure that the comparison of the results
achieved by the DE-ADTSPV method with those produced by
other approaches is not affected by the treatment of the data,
all datasets used in this study do not have missing values.

The DE-ADTSPV method is implemented in the Java lan-
guage using the JMetal library [68]. The parameters used
in the experiments are described in Table 2. The mutation
scale factor is linearly decreased from 0.5 to 0.1 as the evo-
lutionary process progresses, and the crossover rate is fixed
in 0.9. Furthermore, following the suggestion of Storn and
Price [34], the population size is adjusted to 5n, with 250 and
500 chromosomes as lower and upper bound, respectively.
These bounds are used to ensure that the population is not so
small as not to allow a reasonable exploration of the search
space and it is not so large as to impact the runtime of the algo-
rithm. The fitness function used in the DE-ADTSPV method
computes the training accuracy of each DT in population.

On the other hand, since the best DT obtained by the evo-
lutionary process is refined with a procedure implementing a
recursive partitioning strategy, it must be pruned to reduce the
possible overfitting generated by applying this refinement.
In the DE-ADTSPV method, the Error-Based Pruning (EBP)
approach [21] is implemented since it produces DTs with an
improved accuracy using only the training set [69]. Finally,
the DE-ADTSPV method needs to define a threshold value to
determine whether a node should be labeled as one leaf node.

To obtain reliable estimates of the predictive performance
of the DE-ADTSPV method and to compare its results with

TABLE 2. Parameters used in the experiments conducted with the
DE-ADTSPV method.

those got by other supervised learning approaches, a repeated
stratified 10-fold cross-validation (CV) procedure is applied
in this experimental study. In a 10-fold CV, the training set
is randomly divided into ten roughly equal disjoint folds. For
each k ∈

{
1, . . . , 10

}
, the k-th fold is retained (the test set),

and the remaining folds are used to induce a DT. Once the DT
has been constructed, the retained fold is used to calculate
its test accuracy. Finally, when all folds have been used in
the induction phase, the overall test accuracy of the model is
computed. In particular, in a stratified CV the proportion of
the different classes in each fold must be very similar to those
in the complete dataset, and in a repeated CV several runs of
the CV process are conducted, and the average test accuracy
of these runs is used as the final estimated yield of the model.

According to the previous paragraph, the DE-ADTSPV
method is run for each iteration of the 10-fold CV procedure.
Since the evolutionary process in the DE-ADTSPV method
uses the training accuracy of each DT as its fitness value,
the DTs in the final population are overfitted to the training
set, so the DT with the best training accuracy would have a
decreased test accuracy. In this work, with the aim of miti-
gating the effects of this overfitting, a subset of instances of
the dataset is used to determine an independent accuracy for
eachDT in the final population and to select the best one. This
value is referred in this work as the selection accuracy, so the
DT with the best selection accuracy in the final population is
used to calculate the test accuracy of the fold. To implement
this strategy, 20% of the instances in the dataset are used to
compute the selection accuracy, and the remaining are used in
the CV procedure. Fig. 3 depicts this cross-validation scheme.

The CV procedure applied to estimate the test accuracy
of the classifier constructed by the DE-ADTSPV method is
similar to the one proposed by Murthy et al. [70]: For each
fold, the selection accuracy of each DT in the population
is calculated, and the DT with the best selection accuracy
is used to compute the number of test instances correctly
classified. The ratio between the correct classifications of
all folds and the number of training instances is taken as the
overall test accuracy of the classifier. Furthermore, the DT
size is defined as the average number of leaf nodes of the
DTs constructed by all folds.

In this study, the Friedman test [71] is applied to carry
out a statistical analysis of the results produced by the
DE-ADTSPV method when comparing them with those
obtained by other classification methods. This non-
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FIGURE 3. Adapted cross-validation procedure to determine the overall
test accuracy of each dataset in the experimental study.

parametric statistical test evaluates the statistical significance
of the experimental results through computing the p-value
without making any assumptions about the distribution of the
analyzed data. This p-value is used to accept or to reject the
null hypothesis H0 of the experiment which holds that the
performance of the compared algorithms does not present
significant differences. If the p-value does not exceed a pre-
defined significance level, H0 is rejected and the Bergmann-
Hommel (BH) post-hoc test [72] is conducted to detect the
differences between all existing pairs of algorithms. These
statistical tests are applied using the scmamp R library [73].
B. METHODOLOGY APPLIED TO ANALYZE THE
PERFORMANCE OF THE DE-ADTSPV METHOD
Two DE-ADTSPV variants are evaluated in this experimen-
tal study:
• DE-ADTB

SPV: This is the first variant of the method
which returns the DT with the best selection accuracy in
the population, without applying the refinement of the
non-optimal leaf nodes.

• DE-ADTR
SPV: This variant returns the refined version of

the DT with the best selection accuracy in the popula-
tion.

The results obtained with the DE-ADTSPV variants are
compared with those achieved by several supervised learning
methods available on the WEKA data mining software [74].
First, the accuracy and size of the DTs gotten by these
variants are compared with those obtained by the following
DTI methods:
• J48 [42]: It is a Java implementation of the C4.5 algo-
rithm.

FIGURE 4. Graphical comparison of the average accuracies obtained by
the DTI methods.

• sCART (SimpleCART) [20]: This is a Java implementa-
tion of the CART method.

Next, the accuracy of the DTs constructed with the
DE-ADTSPV variants are comparedwith those achieved using
the following classification methods:

• NB (Naïve Bayes) [75]: This is a probabilistic classifier
based on the Bayes theorem.

• MLP (Multilayer Perceptron) [76]: MLP is a feed-
forward artificial neural network (FF-ANN) applying
backpropagation to classify instances. The MLP has
one or more hidden layers of nodes using sigmoid func-
tions.

• RBF-NN (Radial Basis Function Neural Network) [77]:
This is also an FF-ANN using a set of Gaussian radial
basis functions (RBF) in its hidden layer.

• RF (Random Forest) [78]: It is an ensemble learning
method constructing a multitude of DTs. RF uses a
voting scheme to predict the class membership of new
unclassified instances.

Finally, both height and size of the induced DT with the
DE-ADTSPV variants are analyzed to evaluate the advantages
of implementing the proposed scheme. The number of refine-
ments of non-optimal leaf nodes is also assessed, due to the
desire that the number of branches inserted in the evolved DT
be reduced.

C. RESULTS
In this section, the results of the DE-ADTSPV variants are
described and compared with those got by other classification
methods.

1) COMPARISON WITH DTI METHODS
In Table 3 and Fig. 4 are shown the average accuracies of the
DTs induced by the DTImethods as well as those achieved by
the DE-ADTSPV variants. In Table 3, the best result for each
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TABLE 3. Average accuracies obtained by the DTI methods.

TABLE 4. p-values for multiple comparisons among DTI methods.

FIGURE 5. p-values graph of the DTI methods.

dataset is highlighted with bold numbers and the numbers in
parentheses refer to the ranking reached by each method for
each dataset. The last row in this table indicates the average
ranking of each method. It is observed that the DE-ADTSPV
variants produce better results than those generated by the
other DTI methods. In particular, the DE-ADTR

SPV variant
obtains the best results from this experiment, as it yields
higher average accuracies than those got by the compared
DTI techniques in 16 datasets.

A statistical test of the experimental results is conducted
to evaluate the performance of the DE-ADTSPV variants.
First, the Friedman test is run and its resulting statistic value
is 22.02 for four methods and 20 datasets, which has a
p-value of 6.461 × 10−5. When evaluating this p-value with
a significance level of 5%, H0 is rejected. Next, the BH

TABLE 5. Average DT sizes of several DTI methods.

FIGURE 6. Graphical comparison of the average DT sizes obtained by the
DTI methods.

post-hoc test is applied to find all the possible hypotheses
which cannot be rejected. In Table 4 is shown both the
average rank (AR) of the results yielded by each method and
the p-values computed by comparing the average accuracies
achieved by the DE-ADTSPV variants versus those obtained
by the other DTI methods. The p-values highlighted with
bold numbers indicate that H0 is rejected for this pair of
methods since they show different performance. Unadjusted
p-values are calculated with the average ranks of the two
methods being compared, as is described by Demšar [79].
These values are used by the BH post-hoc test to compute
the corresponding adjusted p-values. Table 4 shows that the
DE-ADTR

SPV method has a better performance than the other
DTI methods since it has the lowest average rank (1.35) and
its results are statistically different than the others.

Fig. 5 shows a graph where the nodes represent the com-
pared methods and the edges joining two nodes indicate that
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FIGURE 7. Graphical comparison of the average accuracies obtained by
several classification methods.

TABLE 6. Average accuracies obtained by several classification methods.

TABLE 7. p-values for multiple comparisons among several classification
methods.

the performance of thesemethods does not present significant
differences. The values shown in the edges are the p-values
computed by the BH post-hoc test. This figure is based on that
obtained using the scmamp library, and in it is observed that
the DE-ADTB

SPV variant, the J48 algorithm and the sCART
procedure are not statistically different.

On the other hand, the average sizes of the DTs constructed
by the DE-ADTSPV variants and also of those induced by

FIGURE 8. p-values graph of the classifiction methods.

TABLE 8. Average DT height of DE-ADT variants.

J48 and sCART methods are shown in Table 5 and Fig. 6.
These results indicate that the sCART method produces the
most compact DTs but to the detriment of their accuracies.
Also, it is observed that the size of the DTs built for the
DE-ADTSPV variants has less complexity than the size of the
DTs yielded by the J48 method. As the DE-ADTR

SPV variant
applies a recursive partition strategy to refine the best DT
generated by the evolutionary process, the average sizes of its
constructed DTs are similar to the sizes of the DTs induced
by the J48 method, although they are always smaller than
the latter.

2) COMPARISON WITH OTHER CLASSIFICATION METHODS
In Table 6 and Fig. 7 are shown the average accuracies got
by several classification methods as well as those obtained
by the DE-ADTR

SPV method. In this Table can be observed
that the RF algorithm and the MLP method construct
more accurate classifiers than the others, and also that the
DE-ADTR

SPV induces DTs with better accuracy than the mod-
els built by both the RBF-NN algorithm and the NB method.

The Friedman statistics computed by analyzing the results
got by these five methods with 20 datasets is 10.4, and the
corresponding p-value is 0.034222 so that H0 is rejected.
The BH post-hoc test is then applied to find all possible
hypotheses that can not be refused. Table 7 shows the results
of these tests, and Fig. 8 shows the graph corresponding to
these p-values.
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FIGURE 9. Graphical comparison of the average DT heigths obtained by
the DE-ADTSPV variants.

TABLE 9. Refinements percentages of the DTs constructed with the
DE-ADTR

SPV variant.

The p-values obtained by the BH post-hoc test point out
that the RF method is statistically different only with the
RBF-NN algorithm and the NB method, and the comparison
between the remaining pairs of algorithms indicates that they
have a similar performance. The RFmethod is the best ranked
in this comparison, and the AR of the DE-ADTR

SPV variant
places it as the third best classification method.

3) PREDEFINED HEIGHT AND REFINEMENT RATE
For evaluating the relevance of using the dataset informa-
tion to define the size of chromosomes evolving in the
DE-ADTSPV method, both the average heights of the con-
structed DTs and the number of refinements applied to the
best DT in the last population of the evolutionary process are
analyzed. Table 8 and Fig. 9 show the average heights pro-
duced by the DE-ADTSPV variants, and also the predefined
height computed before to apply the evolutionary process.
In Table 9 is shown the refinements percentages of the DTs

constructed by the DE-ADTR
SPV variant, where the number of

refinements represents the non-optimal leaf nodes of the best
DT in the final population of the DE algorithm, which are
replaced with several sub-trees.

In Table 8 is observed that the average heights of the DTs
constructed are less than the predefined height in six datasets,
and they surpass it in two or more levels in nine datasets.
Two characteristics persist in the datasets with deepDTs: they
have more than 600 training instances and more than two
class labels. When the refinement percentage is analyzed, it is
observed that this value is higher than 25% for these datasets.

VII. CONCLUSIONS
In this paper, the DE-ADTSPV method implementing a global
search strategy to find near-optimal axis-parallel DTs rep-
resented using real-valued chromosomes is introduced. This
method estimates the size of the chromosomes based on the
characteristics of the dataset whose model is constructed
and applies a scheme to map feasible DTs from them.
In light of the experimental results, it can be affirmed that the
DE-ADTR

SPV method is an efficient DTI procedure since it
constructs DTs with high accuracy and a smaller number
of leaf nodes. The refinement applied in the best DT in the
final population permits to improve the training accuracy
of the model. Notwithstanding the results yielded by the
DE-ADTSPV method are not better than those produced by
the RF algorithm and the MLP-based classifier, they are sta-
tistically equivalent. An advantage of theDE-ADTR

SPV variant
is that it constructs models whose decisions and operations
are easily understood, and although the RFmethod also builds
DTs, its voting scheme makes it very difficult to trace the
way in which the model takes its decisions. DE algorithm
is an effective approach for constructing axis-parallel DTs
when a rule to map a DT from a real-valued chromosome is
implemented. An advantage of this approach is that the DE
operators can be applied without any modification, and the
chromosomes in population represent only feasible DTs.

In this paper, an analysis of the run-time of the algorithms
is not performed, since it is known that MHs consume more
computational time than other approaches because they work
with a group of candidate solutions, unlike the traditional
methods where only one DT is induced from the training set.
It is important tomention that for many practical applications,
the construction of the model is conducted in one offline
procedure, so the time of its construction is not a parameter
that usually impacts the efficiency of the built model.

Since DE algorithm is one of the most powerful MH for
solving both real-valued and discrete optimization problems,
in this work it is applied for inducing axis-parallel DTs.
Furthermore, although a considerable number of heuristic
algorithms and classification approaches have been described
in the existing literature, in this work a global search strat-
egy to find a classifier that is compact, accurate, robust,
and interpretable is implemented. A DT induced by this
method can be used as a predictive model in disciplines
such as biology, medicine, and finances, among others in
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which the interpretability level of the model has a crucial
importance.

Finally, it is interesting to analyze the implementation of
alternative techniques to map a DT from a real-valued vector
and evaluate its impact on the built model. It is also important
to conduct a study on the benefit of including the number
of training instances to compute the chromosome size and
consider other ideas to refine the DT resulting from the
evolutionary process.
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