
Received December 1, 2017, accepted December 27, 2017, date of publication January 1, 2018, date of current version March 13, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2788639

Traffic State Spatial-Temporal Characteristic
Analysis and Short-Term Forecasting
Based on Manifold Similarity
QINGCHAO LIU 1,2, YINGFENG CAI1, HAOBIN JIANG1, XIAOBO CHEN 1, AND JIAN LU2
1Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
2Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China

Corresponding author: Qingchao Liu (autoits@163.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB0102603, in part
by the National Natural Science Foundation of China under Grant U1564201, Grant 61601203, Grant 61403172, and Grant 61773184,
in part by China Postdoctoral Science Foundation under Grant 2017M611729, in part by the Natural Science Foundation of the Jiangsu
Higher Education Institutions of China under Grant 17KJB580003, in part by the Key Research and Development Program of Jiangsu
Province under Grant BE2016149, in part by the Key Project for the Development of Strategic Emerging Industries of Jiangsu Province
under Grant 2016-1094 and Grant 2015-1084, in part by the Key Laboratory for New Technology Application of Road Conveyance of
Jiangsu Province under Grant BM20082061503, and in part by the Jiangsu University Scientific Research Foundation for Senior
Professionals under Grant 16JDG046.

ABSTRACT The study on the spatial-temporal characteristics of highway traffic flow is helpful to deeply
understand the inherent evolution of highway traffic system and provide a theoretical basis for prediction and
control of highway traffic flow. This papermakes an empirical analysis on the spatial-temporal characteristics
of highway traffic flow using manifold similarity index and manifold learning technology. The time series
of highway traffic flow is converted into the distance series containing manifold features to calculate the
manifold distance betweenmulti-section traffic flow data points, which are highly similar to spatial-temporal
distribution of traffic flow speed parameters, and then, the levels calibration of traffic state is carried out
according to the manifold distance, so as to reveal the distribution rule of spatial-temporal characteristics
of highway traffic flow. Its prediction error is obviously lower than the traditional distance measurement
method, which has higher accuracy. The research of this paper can provide new ideas and methods to reveal
the highway traffic flow evolution and traffic state prediction.

INDEX TERMS Traffic state, spatial-temporal characteristics, prediction, manifold similarity.

I. INTRODUCTION
Aiming at improving safety, high efficiency and comfort
of road transportation system, the Intelligent Transporta-
tion System (ITS) [1] takes full advantage of available road
elementary facilities to solve problems such as traffic jam,
the frequent occurrence of traffic accidents, and environmen-
tal pollution. As an integral part of ITS, short-term traffic state
forecasting is defined as predicting the traffic flow of a target
road segment in the next time interval and can be used for
traffic signal control, route guidance, congestion mitigation,
adaptive rampmetering, and so on. For example, with reliable
forecasting data, traffic managers can detect potential risks of
unstable traffic conditions early and take the necessary steps
to ensure that traffic is functioning properly. For travelers,
they can receive the real time and dynamically estimated
results about future traffic condition and make a decision on

departure time or adjust travel routes before jam formation.
Due to the important role of short-term traffic state forecast-
ing in ITS field and extensive application, it has become an
interesting topic, attracting more and more researchers.

The goal of short-term traffic state forecasting is to predict
the evolution of traffic over a span of time from a few seconds
to a few hours [2]. Estimation of traffic state prediction mod-
els that are very consistent with actual traffic data are more
preferable and valuable in practical applications. In general,
traffic state forecasting can be viewed as a learning problem.
First, a predictive model is constructed by learning basic
traffic patterns from given historical traffic data and then
predicting future conditions based on real-time traffic data.
Over the past decade, a variety of traffic flow forecasting
methods have been proposed. However, accurate and reliable
traffic flow forecasting remains a challenging issue because
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transport systems are a time-varying and complex system
whose current and future evolution largely depends on the
interaction between traffic flows [3]. The combination of
the availability of a large amount of space-time traffic data
with the advances in data analysis techniques has created
reasonable predictive accuracy and shorter processing time
for short-term traffic forecasts. The analysis and extraction
of traffic flow characteristics is an important part of self-
organization rules, which is of great significance to traffic
flow modeling, prediction, and control [4].

According to Vlahogianni et al. [2] and Kong et al. [5],
the current methods of traffic state prediction can be divided
into four categories: Naïve, non-parametric, parametric, and
hybrid. Naïve methods are to provide a simple estimation
of future traffic, such as the historical average. Parametric
methods refer to model-based that require a fixed set of
parameter values as part of the statistical equations or math-
ematical they use, such as macroscopic models, time series
analysis [6]. Most of these methods are influenced by their
assumption of parametric models and prove to be relatively
poor performance under nonlinear and complex traffic con-
ditions [2]. Non-parametric methods are mainly data-driven
and combine empirical algorithms to provide predictions.
This method is advantageous because of the uncertainty of
any estimate model parameters and assumptions they have
not involved on the developed model. Many researchers say,
the performance of non-parametric model is better than para-
metric models, because they are more suitable for learning
frommore complex data and adapt to these data. For example,
Van Lint and Van Hinsbergen [7] argued that in the context
of traffic prediction, non-parametric methods are the first
choice because the input and output traffic variables are noisy
and the relationship between them is nonlinear and difficult
to understand. Other methods of short-term traffic predic-
tion have implemented a mix of the above approaches [8].
Smith et al. [9], Lin et al. [10], Lippi et al. [11] have provided
a comparative analysis of several models. Most studies that
make short-term traffic forecasts use standard statistical tech-
niques such as simple, smooth, complex time series analysis
and filtering.

Application of smoothing for traffic forecast includes
KS (kernel smoothing) [12], SES (simple exponen-
tial smoothing) [13], and HES (hybrid exponential
smoothing) and neural networks [14]. Some investigations
treat historical traffic flow for the target site as a time series
process. They employ time series analysis theory to stimulate
the temporal evolution of traffic flow and predict the future
trends. For example, the ARIMA model (Autoregressive
Integrated Moving Average) [15], [16]. Seasonal ARIMA
(of SARIMA) model has been implemented in a number of
studies [8], [10], [11], [17].

Szeto et al. [8] proposed a method that a combination of
cell transmission and SARIMAmodels. Filtermodels are also
applied to short-term traffic prediction [18], such as Kalman
filtering. Chen and Rakha [19] proposed a traffic prediction
method based on particle filters. Another research direction

on short-term traffic state forecasting is the application of
neural networks and pattern recognition methods. A method
based on pattern recognition (a subset of the non-parametric
method) seems to be more appropriate since they effec-
tively define similar traffic conditions for producing predic-
tions. Some studies have focused on the realization of neural
network and its variants [20]–[26]. Pattern recognition
methods were also applied for short-term traffic forecast,
e.g., k-nearest neighbor [27], support vector machines
(SVM) [28], cluster analysis [29].

In recent years, many researchers have paid more and
more attention to the construction of prediction models that
integrate more space-time features and even the entire traffic
network information. Wang et al. [30] proposed an improved
synergetic traffic state recognition method based on manifold
learning, in which the geometrical structure in high dimen-
sions can be well maintained. Lu et al. [31] present a graph
embedding algorithm that strikes a balance between local
manifold structures and global discriminative information for
traffic sign recognition. Lee et al. [32] present a method
to identify the trajectories of moving vehicles from various
viewpoints using manifold learning to be implemented on an
embedded platform for traffic surveillance. During training,
the extracted features of the training data are projected on to
a 2D manifold and feature corresponding to each trajectory
are clustered into k clusters, each represented as a Gaussian
model. In order to extract the features of people’s collective
behaviors, Yang and Zhou [33] utilized manifold learning
technique referred to as locally linear embedding (LLE) is
used to computing the K coefficients in fitting every traffic
data point with its K nearest neighbors in the high dimen-
sional space and then the local features of the data points are
summarized by using principal component analysis (PCA)
to obtain a global feature to represent the traffic data.
Yang et al. [34] used the boundary model to represent the
traffic flow time series data, and the historical time sequence
highly similar with current traffic flow time sequence is
searched in the historical database. Li et al. [35] based on
the change trend of traffic flow, five distance metrics of time
series of traffic data are designed. According to the similarity
of traffic parameter data, Zhang et al. [36] proposed a method
based on weighted Euclidean distance is used to classify the
traffic state. Fractal theory is used to study the self-similarity
of traffic flow. In order to show better characteristics in traffic
condition on the road network [37], [38], Fu et al. [39] divide
traffic flow into three levels, and the prediction algorithm is
realized based on the neural fuzzy system. By influencing the
spatial-temporal characteristic of traffic condition in advance,
Dong et al. [40] realizes the traffic state level prediction
methods based on the maximum entropy model. The existing
research shows that there is a correlation between traffic
flow data at each collection site, especially for the manifold
fluctuation, it needs further research [41], [42].

In summary, KNN approach has been previously applied
for the purpose of forecasting traffic state. A number
of researchers have applied KNN to forecast traffic flow
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FIGURE 1. The time series of traffic flow data collected by different detectors.

rates [9], [43]. Similarly, other researchers applied KNN for
forecasting travel times [44]. The main limitations of the
works of these authors are that the simplest form of KNNwas
used and inclined to predict traffic volume. Lin et al. [45]
pointed out ‘‘forecasting the traffic volume is unsuitable,
because the same volume may correspond to different traffic
state.’’ Therefore, it is necessary to find a new metric to
describe the traffic state. In addition, most of these studies
are more ideally premised traffic conditions, they do not
consider themanifold features in the extraction and prediction
of traffic flow, and there are some difficulties when applied
to the actual road. This is a missing component from most of
the existing studies in the literature.

Motivated by the above discussions, we design a novel
traffic state forecasting model by manifold similarity deal-
ing with the manifold distance metric of KNN. Specifically,
we first propose a manifold distance metric of traffic flow
data, which can choose candidate data points by the manifold
features of traffic flow. And then we construct an improved
KNN, which can choose the nearest neighbors by mani-
fold distance. An elaborately designed distance metric is
presented to implement the extraction of a spatial-temporal
characteristic of traffic flow, it is possible to find the optimal
solution for traffic state forecasting problems. In such a way,
we can not only determine the suitable nearest neighbors of
the target data and the optimal KNN but also fully excavate
crucial spatiotemporal information contained in the section of
road by training different site data. To evaluate the effective-
ness of the proposed method, real-world traffic flow data are
collected from 3 observation sites spreading over a freeway
called US26 in Portland, OR, USA.

The main contributions of the work are listed as follows.
First, we propose the manifold distance in defining the sim-
ilarity of traffic flow data and design a function to cal-
culate the distance between any two points, the distances
between points on the observation manifold are measured
along geodesic paths. Second, we utilize the dimensionality
reduction strategy to fit every data point with its K nearest

neighbors in the manifold feature space and improve KNN
that the Euclidean distance is replaced by manifold distance
in the search of neighbors. Finally, extensive experiments are
conducted to test and compare different metrics, and a traffic
model for the short-term forecast is given. The experimental
results show that the proposed traffic model can achieve
better forecasting accuracy. Moreover, comparing the works
of this paper with others which applied KNN approach of
the forecast, the details presented in terms of measuring the
manifold similarity of traffic flow is new.

The remainder of this paper is organized as follows.
Section 2 describes the spatial-temporal characteristic and
manifold characteristic of highway traffic flow, which
accounts for the flow behavior by a manifold distance met-
ric. Section 3 presents the proposed traffic state forecasting
method based onmanifold similarity. In this section, we show
how traffic data with different spatial-temporal information
can be calculated by manifold distance and predicted the
future traffic state. Section 4 presents the real traffic data,
extensive experiments, and detailed results analysis. Finally,
we draw some conclusions in section 5.

II. SPATIAL-TEMPORAL CHARACTERISTIC AND
MANIFOLD CHARACTERISTIC OF TRAFFIC FLOW
The time series of traffic flow show some regularity and
similarity and present a similar trend in the whole. As shown
in Figure 1, the flow data collected by the two detectors
of 100857 and 100858 present the evolution of the bimodal,
which can be divided into three periods (morning peak,
evening peak, and small flow period). In the morning and
evening peak, speed decreases significantly while small flow
time period is large. The traffic flow data has spatial-temporal
similarity, which is the basis of the similarity analysis.

The time series of traffic flow show strong fluctuation
as time goes on. Figure 2 (a) depicts the fluctuation and
the manifold curve of traffic flow. These manifold features
reflect the spatial-temporal characteristics of the traffic flow.
In Figure 2 (b) plots traffic flow data collected by detectors
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FIGURE 2. A single-section and multi-sections traffic flow diagram.

FIGURE 3. The (a) A single section manifold distance; (b) Multi-sections manifold distance.

at different locations, which can show the congestion and
dispersion process of traffic flow. Although traffic flow
are nonlinear and time-varying, there are some rules in
the spatial-temporal evolution, which are mainly shown
in two aspects: firstly, the spatial-temporal distribution of
traffic flow has the characteristics of aggregation. Sec-
ondly, the spatial-temporal evolution of traffic flow is
continuous.

Traffic flow data were collected at intervals of 5 minutes
for each detector, so the indicator of speed are discrete.
In order to describe the spatial-temporal characteristics of
traffic flow, this paper adopts manifold distance as the sim-
ilarity metric (the specific formula is shown in section 3).
Figure 3 (a) is detector 100857, which is used to calculates
the manifold distance at each 5min interval for the detector
100857 with 0:00 as starting point. From figure 3 (a) and
Figure 1, it can be seen that the greater the distance, the more
serious the traffic congestion and the lower the speed of
vehicles.

Figure 3 (b) plots the manifold distance collected by detec-
tors at different locations. In Figure 3 (b) and Figure 2(b),

take the morning and evening peak periods as an example.
As shown in Figure 2 (b), when the morning peak reaches the
maximum capacity of the location at detector 6, the conges-
tion occurs and gradually dissipates downstream. The con-
gestion condition is easy to dissipate and the congestion level
is low. Around 15:30, after congestion occurs at detector 9,
capacity falls. With the increasing of vehicle queue moving
upstream, congestion occurs and is more severe. Conges-
tion is prone to occur at upstream and dissipates slowly to
downstream gradually. The velocity at the time of dissipation
is around 30mph, the corresponding manifold distance is
about 0.08, and the congestion concentration and dissipation
process of Figure 3 (b) is similar to that of Figure 2 (b).
The manifold distance intuitively describes the process of
traffic flow congestion generation, concentration, dissipation
and so on, which is helpful to analyze the spatial-temporal
evolution rules of different sections.

III. MANIFOLD SIMILARITY
Similarity measures generally include Euclidean distance,
Manhattan distance and so on. However, the traffic flow has
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FIGURE 4. (a) the Euclidean nearest neighbors; (b) the manifold nearest neighbors.

the characteristics of manifold fluctuation, common indi-
cators can not accurately describe manifold features. For
the selection of the neighborhood points on the manifold,
we introduce the manifold distance.

A. MANIFOLD DISTANCE
Definition 1: The length of (xi, xj) between two points
L(xi, xj) in traffic flow is defined as the following

L(xi, xj) = e
d(xi,xj)
σ − 1 (1)

In which d(xi, xj) indicates the Euclidean distance between
the two points (xi, xj) and σ is adjustable parameters (After
performing tests in the data preprocessing stage many times,
σ = 5 result is better). The distance between any two points
is defined as follows:
Definition 2: If the traffic flow data points are considered as

the peak on the graph, and Pij represents all path centration of
the connection data points in figure p ∈ Pij, where each path
contains k sections, the manifold distanceMD(xi, xj) between
the two point (xi, xj) is the minimum path in the graph, which
connecting the two points.

MD(xi, xj) = min
p∈Pij

|p|−1∑
k=1

L(pk , pk+1) (2)

The manifold distance between any two points of traf-
fic flow data set can be calculated according to the above
definition, and the suitable adjacent point can be selected.
As shown in Figure 4, blue is the target point, red is for the
adjacent point of the target point. Adjacent selection results
for Euclidean distance and manifold distance are respectively
Figure 4 (a) and (b). Figure 4 (b) selects adjacent points in the
direction of the manifold curve according to the local feature
of traffic flow.

B. CHARACTERISTICS ANALYSIS OF TRAFFIC STATE
BASED ON MANIFOLD SIMILARITY
Traffic state can be reflected through indicators such as speed,
flow, occupancy, for example, reflecting the traffic state by
speed, and indicating congestion degree that the higher the
speed is the smoother of traffic state, whereas the less con-
gestion. Based on the speed index, this paper starts from the
manifold similarity of traffic flow to study how the manifold
distance reflects the characteristics of traffic state.

Traffic state 1: as shown in figure 3 (b), manifold distance
is between 0∼0.05, speed is above 50 mph, the speed differ-
ence between upstream and downstream detectors is small,
and the whole road covered by the detector is in smooth.

Traffic state 2: manifold distance is between 0.05∼0.067,
speed range is 40∼50 mph, the speed difference between
upstream and downstream detectors increases and the whole
road covered by detectors are basic smooth.

Traffic state 3: manifold distance is between 0.067 ∼
0.083 and the speed range is 30∼40 mph. In traffic state 3,
the traffic flow shows the alternation between smooth and the
congestion.

Traffic state 4: manifold distance range is between
0.083∼0.11, and the speed ranges from 15∼30 mph. Traffic
state 4 is aggravated by traffic congestion, and the road
sections covered by detectors are in moderate congestion.

Traffic state 5: manifold distance range is 0.11∼0.15, and
the speed is lower than 15 mph. Queue of vehicle increases
and moves upstream, and the whole road covered by the
detectors are in severe congestion.

Take morning and evening peaks as an example, traffic
state can be divided into four patterns and five traffic state
levels. Figure 5 (a) is the morning peak, 5 (b) is evening
peak. The white area is for traffic state 1, grey area is for
traffic state 2, and in this analogy, 3, 4 and 5 are black,
maroon and red. The five colors represent five traffic states,
which are smooth, basic smooth, lightly congestion,moderate
congestion, and severe congestion.

Pattern 1 indicates the section at this period is smooth,
and the adjacent road sections in adjacent period tends to be
smooth, in which the traffic state is relatively simple and its
corresponding manifold distance and contained traffic state
is shown in Table 1; Pattern 2 indicates the section at this
period is congestion, but the adjacent road section in adjacent
period is smooth, in which congestion occurs because the
flow is over the allowable capacity and it moves downstream
gradually and such state is easy to dissipate, the congestion
state easy to dissipate, and includes traffic state 2, 3; Pattern 3
indicates that this section of the road is congested, and its
adjacent space-time is also congested. The traffic condition
is mixed with modes 3, 4, 5. Pattern 4 indicates that this
section of the road is smooth, but the adjacent road sections
are congested in the adjacent period, the traffic state is mixed
with 1, 2 and 3, and the congestion level is low and easy to
dissipate.
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FIGURE 5. Traffic state level corresponding to the range of manifold distance (a) morning peak; (b) evening peak.

TABLE 1. Manifold distance range in four traffic patterns.

C. TRAFFIC STATE FORECASTING BASED ON
MANIFOLD SIMILARITY
The main ideas of traffic state forecasting based on mani-
fold similarity (TSFMS) are as follows: (1) We analyze the
historical traffic flow data and select the characteristic data
that can accurately describe the traffic condition, so as to
construct Traffic state feature library, which contains multi-
section spatial features and various time-varying character-
istics of traffic state; (2) The ISOMAP (Isometric Feature
Mapping) algorithm is introduced. ISOMAP is used to keep
the manifold characteristics of the original data and map it
to the reduced data, allowing the neighbor selection to contain
the manifold structure of the original traffic flow data. In our
model, the multivariate feature of traffic data established in
step 1 is reduced to two-dimensional space as model input
data; (3) We fit every data point with its K nearest neighbors
in the manifold feature space and improve KNN that the
Euclidean distance is replaced by manifold distance in the
search of neighbors. (4) In the prediction stage, we utilize
KNN which is improved by manifold distance to select a
group of clusters closest distance of samples to be predicted
as the prediction state. Figure 6 shows the technical roadmap
of the proposed method.

FIGURE 6. The roadmap of TSFMS.

D. MEASURING PERFORMANCE
Three measures are used as indicators of the accuracy of
the short-term traffic state prediction method, as shown in
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TABLE 2. The link number and data integrity information.

FIGURE 7. Traffic flow data collection location map.

equations (3)–(5): Mean Absolute Percentage Error (MAPE),
Root Mean Square Error (RMSE) and Equality Coeffi-
cient (EC). These measures of performance provide a deep
understanding of the nature of the prediction errors. For
example, MAPE provides prediction error based on the per-
centage difference between observed and predicted flow
rates, and RMSE provides prediction error based on the num-
ber of vehicles.

MAPE =
1
n

n∑
i=1

∣∣∣(Yi − Ŷi/Yi)∣∣∣ (3)

RMSE =

√√√√1
n

n∑
i=1

(Yi − Ŷi)2 (4)

EC = 1−

√√√√ n∑
i=1

(Yi − Ŷi)2/(

√√√√ n∑
i=1

Y 2
i +

√√√√ n∑
i=1

Ŷ 2
i ) (5)

Where Yi is the ith observed value, Ŷ is the ith forecast value,
n is the number of samples.

IV. EMPIRICAL ANALYSIS
A. EXPERIMENTAL DATA
In this study, Traffic flow data collected by eight loop detec-
tors for 31 days, from Dec. 1st to Dec. 31st in the year 2016 is
used in the experiments as shown in Figure 7. These loop

detectors were installed around the U.S. Route 26 (US-26)
in Portland, Oregon, USA. US-26 is a major cross-state state
highway in the U.S. state of Oregon, connecting U.S. Route
101 on theOregonCoast near Seasidewith the Idaho state line
east of Nyssa. The Portland Oregon Regional Transportation
Archive Listing (PORTAL) has been developed by Portland
State University in cooperation with the Oregon Department
of Transportation (ODOT) and other regional transporta-
tion agency partners. The identification numbers (IDs) for
these loop detectors are 100857, 100858, 100859, 100860,
100861, 100862, 100863 and 100864. As shown in Table 2,
100859 and 100862 collected traffic flow data are seri-
ously missing, so we did not use. The aggregation period
is 5 minutes, thus leading to 288 sample points per day.
The total number of sample points is 288 × 6 × 31 =
53568. For each station, the first fifteen days (Dec.1st to
Dec.15st) are used as a training period, the following five
days (Dec.16st to Dec.20st) are used as a validation period
for model selection and parameter tuning, and the remain-
ing eleven days (Dec.21st to Dec.31st) are used as a test
period.

B. VARIABLE ESTIMATION FOR TSFMS TRAFFIC
STATE FORECASTING
For the proposed TSFMS algorithm, several variables must
be predetermined so that the prediction error is as small as
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FIGURE 8. Comparison of Manifold and Euclidean distance metric.

possible. These variables include in comparing the appropri-
ate distance measure, lag time, and nearest candidates.

1) COMPARISON OF DISTANCE MEASURE
As discussed previously, two distance measures were con-
sidered for searching the nearest candidates. Figure 8 shows
the average prediction error corresponding to the above
distance measurement, namely: (1) Manifold distance and
(2) Euclidean distance. The twenty-one nearest neighbors
with two hours’ lag time for this purpose (this is discussed in
detail later). It can easily be observed that the Manifold dis-
tance is better than the Euclidean distance and the prediction
error is significantly lower. Therefore, the rest of this article
will use the manifold distance measure.

2) CHOOSING LAG DURATION AND NUMBER
OF CANDIDATES
It is very important to use the best lag time and the number
of candidates to minimize the prediction error. The lag time
affects the performance of K-NN based traffic prediction
because it is a major variable for searching the similar traffic
state. The study considered a series of lag durations ranging
from 1 hour to 24 hours. To a certain extent, shorter lag time
is suitable for short-term traffic forecasting, while relatively
long time is suitable for long-term traffic forecasting. Another
variable that affects the accuracy of forecasting methods is
the number of candidates. In this paper, a large number of
different numbers of candidates are considered, from one can-
didate to 24 candidates. The impact of time lag and number of
candidates on forecast accuracy is shown in Figure 9. When
the number of candidates (K) is greater than 3, it can be
seen that as the lag duration increases, the prediction error
increases and then start to decrease slightly. This shows that
the best lag period to identify similar traffic patterns should
be relatively short; Likewise, the number of candidates also
affects the accuracy of the forecast, but to a lesser extent
than the impact of the lag duration. Figure 9 shows the
effect of some candidates on the prediction accuracy when
the lag duration ranges from 2 hours to 4 hours. In term
of MAPE, Given the increase in the number of candidates,

the forecast error decreases. In term of RMSE, as the number
of candidates increases, the RMSE begins to fluctuate and
then the amplitude begins to decrease until the number of
candidates is greater than 15. As shown in Figure 9, in our
case, the optimum number of candidates to be considered is
found to be twenty-one. And two-hours lag duration is found
to be most suitable.

C. PREDICTION BY LEVEL OF TRAFFIC STATE
AND ERROR DISTRIBUTION
Take stations 1085, 1086 and 1087 as example, Figure 10
visually reflects the manifold distance between the sam-
ple to be predicted and the different traffic conditions.
Figure 10 (a) and (b) show the traffic flow data collected
by the detection station 1085. Figure 10 (c) and 10 (d),
10 (e) and 10 (f) are respectively stations 1086 and 1087.
Detectors 100857 and 100858 in early rush hour are in
a better condition with no obvious congestion. Detectors
100860, 100861, 100863 and 100868 are more heavily con-
gestion, with the congestion time longer than 1 hour. Among
them, the congestion of detectors 100860 and 100861 dis-
sipates quicker than detectors 100863 and 100864. During
the evening peak period, six detectors are in a congested
condition and the congestion continues for more than 2 hours.
Detectors 100860 and 100861 are in the level of traffic
state 4 and 5 alternately.

To perform comparison and analysis of Euclidean distance
and manifold distance, the distribution of prediction error on
the level of traffic states are evaluated by four indicators:
Dev_0, Dev_1, Dev_2 and Dev_H, the formulas as (6)–(9).
Dev_1 indicates that the predicted traffic state differs from
the actual traffic state by one level, Dev_H indicates that
the predicted traffic state differs from the actual traffic state
by more than two levels, and so on. Error distribution of
road traffic state level prediction (Yi is actual value and Ŷi is
predicted value) is as shown in Table 3 and 4.

Dev_0 =
nright
ntotal

× 100% (6)

Dev_1 =
none−deviation

ntotal
× 100% (7)
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TABLE 3. Error distribution based on euclidean distance.

FIGURE 9. Optimum number of candidates given the lag duration in 2-4 h.

TABLE 4. Error distribution based on manifold distance.

Dev_2 =
ntwo−deviation

ntotal
× 100% (8)

Dev_H =
ntotalnrightnone−deviationntwo−deviation

ntotal
×100% (9)

We conducted short-term traffic state forecasting experi-
ments over two kinds of span: 5 minutes and 15 minutes.
By 5 minutes interval prediction error, the error Dev_0 dis-
tribution at 6 detectors for prediction method of manifold
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FIGURE 10. Multi-sections manifold distance time series diagram.

distance has five times better than that for prediction method
of Euclidean distance. Only for 100863, the prediction accu-
racy is lower than prediction method based on Euclidean
distance. However, the two prediction methods of the
Dev_2 rate and Dev_H are almost equal, which means that
the prediction precision can be improved by Dev_1 reduc-
tion. Look at 15 minute intervals, in error comparison of
6 detectors, prediction method based on manifold distance
has five wins and a draw, so it has about 3% higher in average
prediction accuracy for 5 wins and the overall accuracy fluc-
tuates within 82%∼89%, reflecting the effectiveness of the
traffic state prediction method based on manifold similarity.

D. COMPARISON OF THE RESULTS WITH
CLASSIC MODELS
In order to evaluate the performance of TSFMS, detector
100860 is taken as an example. The results are compared with
classic models. The models they employed include:

1) MULTILAYER FEEDFORWARD NEURAL
NETWORK (MLFNN)
The MLFNN model for traffic state prediction consists of an
input layer, a hidden layer, and an output layer. The number of
neurons in the hidden layer was set to 10; one output neuron
is used. The learning rate was set at 0.3, the momentum rate
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FIGURE 11. Prediction error bars obtained by KNN, ARIMA, MLPNN and TSFMS.

was fixed at 0.2, and the number of training times was set
at 1000.

2) ARIMA (p, d , q)
p: the number of lag observations included in the model,
is set to 1. d : the number of times that the raw observations
are differenced, also called the degree of differencing, is set
to 0, q: the size of the moving average window, also called
the order of moving average, is set to 1. When two out of
the three terms are zeros, the model may be referred to base
on the non-zero parameter, dropping ‘‘AR’’, ‘‘I’’ or ‘‘MA’’
from the acronym describing the model. For example,
ARIMA (1,0,0) is AR(1), ARIMA (0,1,0) is I(1), and
ARIMA(0,0,1) is MA(1).

For comparison, MLFNN and ARIMA are performed on
the same training set and testing set. MLFNN is implemented
inWEKA,which is a popular software tool formachine learn-
ing. ARIMA is implemented in Python, which has ARIMA
model package.

To intuitively illustrate the prediction results of different
methods, we show the predicted traffic flow and the associ-
ated error bars obtained by each method in Figure 11. Error
bars are graphical representations of the difference of actual
data and used on graphs to indicate the error in traffic predic-
tion. Error bars can be expressed in a plus-minus sign (±),

plus the upper limit of the error and minus the lower limit
of the error. As shown in Figure 11, The prediction range of
ARIMA fluctuates in the range of (−45, 120), the prediction
range ofMLPNNfluctuates in the range of (−45, 90), the pre-
diction range of KNNfluctuates in the range of (−15, 90) and
the range of fluctuation of the prediction of TSFMS at (0, 90).
The predicted range of ARIMA, MLPNN and KNN fluctuate
more than TSFMS. In the term of error bars, the predicted
error bars of ARIMA, MLPNN and KNN are smaller during
the small flow period, but the prediction error increase when
the morning and evening peak. The prediction error bars of
TSFMSduring rush hours are less thanARIMA,MLPNNand
KNN. From these results, we can observe that the proposed
TSFMS achieves smaller prediction error than the other com-
petitors, indicating this method can better capture the traffic
flow pattern.

Table 5 lists six kinds of classic prediction algo-
rithm, in which autoregressive models (AR), moving aver-
age model (MA), autoregressive moving average model
(ARMA), and ARIMA are commonly used by scholars in
recent years as prediction methods of traffic state while the
MLFNN is commonly used by scholars as prediction method
of neural network. Comparing the six methods, TSFMS had
advantages in MAPE and EC. According to the above exper-
iments, the prediction results of TSFMS can well reflect the
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TABLE 5. Comparison of six traffic state prediction methods.

trend and regularity of the traffic flow with high prediction
accuracy, which can be used in traffic state prediction and
has strong competitiveness.

V. CONCLUSION
The ability to predict timely and accurate the evolution of
traffic is important to proactive traffic management and to
provide travelers with reliable travel times. In this paper,
we propose a short-term traffic forecasting method, which
is an algorithm TSFMS using manifold distance to predict
traffic state. In addition, the TSFMS algorithm variables are
optimized, applied to different data sets collected from dif-
ferent sites and compared with other models to estimate the
performance of multiple steps to prove the robustness of the
method. This study provides the following findings:

• Manifold features of traffic flow that exist within the
archived datasets can be used to provide reliable and
accurate short-term traffic state forecasts.

• Manifold distance-based KNN algorithm is very effec-
tive in identifying the trend and regularity of the traffic
flow from large sets of archived data.

One of the limitations of TSFMS is based on the speed data
collected only on freeway corridors and does not take into
account the ramp. Another limitation is that the impact of
factors affecting traffic operations, such as weather condi-
tions, the proportion of heavy vehicles, and the occurrence of
incidents, have not been addressed. Future work will focus
on traffic state forecasts at the network level as well as
forecasting the length of the corridor on the expressway and
include external factors that influence traffic operations into
the forecasting model.
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