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ABSTRACT This paper presents a supervised feature learning method to learn discriminative and compact
descriptors for drusen segmentation from retinal images. This method combines generalized low rank
approximation of matrices with supervised manifold regularization to learn new features from image patches
sampled from retinal images. The learned features are closely related to drusen and potentially free from
information that is redundant in distinguishing drusen from background. The learned feature representations
are then vectorized and used to train a support vector machine (SVM) classifier. Finally, the obtained SVM
classifier is employed to classify the pixels in the test images as drusen or non-drusen. The performance
of the proposed method is validated on the STARE and DRIVE databases, where it achieves an average
sensitivity/specificity/accuracy of 90.03%/97.06%/96.92% and of 87.41%/94.93%/94.81%, respectively.
We also experimentally compare the proposed method with the several representative state-of-the-art drusen
segmentation techniques and find that it generates superior accuracy.

INDEX TERMS Age-related macular degeneration, drusen segmentation, feature learning, retinal images.

I. INTRODUCTION
Age-related macular degeneration (AMD) is a degenera-
tive eye disease and is the most common cause of legal
blindness for people over 50 in developed countries [1]–[3].
Drusen are yellow-white spots located beneath the layer of
retinal pigment epithelium (RPE) cells. Drusen are consid-
ered to be a specific physical sign of early AMD [4], [5]
because they play a major role in the progression of advanced
AMD [3], [6], [7]. Many longitudinal studies have discovered
that drusen in a larger size or number may result in a degen-
eration of RPE cells followed by a decline in central visual
acuity [8]–[10]. Moreover, the total drusen area is posi-
tively correlated with the risk of progression to advanced
AMD [11]. Therefore, the clinical assessment of drusen char-
acteristics is helpful for determining whether and when a
patient will suffer visual loss or blindness from AMD.

Drusen segmentation aims to find the location and area of
drusen on fundus images. It is a highly challenging task in

retinal fundus image analysis. The associated challenges can
be attributed to three reasons. First, color variations over color
fundus images, which are caused by choroidal pigmentation,
can confuse the observer in distinguishing drusen from the
optic disc or background. Second, drusen might vary signif-
icantly in shape and size, making the detection and segmen-
tation quite difficult. Third, nonuniform illumination or other
image artifacts may cause unpredictable variations in image
intensity or color.

To address the difficulties associated with drusen seg-
mentation, researchers have proposed a large variety of
approaches over the past twenty years. The methods for
drusen segmentation can primarily be classified into three cat-
egories. The first category is based on the frequency domain
by taking advantage of Fourier transform [12], amplitude-
modulation frequency modulation or wavelet [13]. The sec-
ond category focuses on thresholding techniques, e.g., local
thresholds [14], [15], global thresholds [16] and fuzzy logic
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FIGURE 1. The flowchart of our proposed drusen segmentation method.

thresholds [17]. The third category extracts features from an
image and distinguishes drusen from other tissues based on
these features. For the third type of methods, a crucial factor
in achieving a successful segmentation lies in the discrim-
inative ability of the feature(s) being used [18]–[21]. The
features currently adopted in these methods include intensity
differences [22], biologically inspired feature (BIF) [23],
eigen vector [24], [25], and so forth. However, these hand-
crafted features are not always discriminative enough to accu-
rately detect drusen due to the aforementioned challenges.

Many cases have shown that the classification performance
can be significantly improved by applying discriminant learn-
ing techniques [26]–[30] compared with using hand-crafted
features. For example, Wang et al. [28] obtained super-
vised kernel descriptors (SKDES) by embedding the image
label information into the design of the patch-level kernel,
and the performance on image classification benchmarks
was improved. Lei et al. [27] learned a discriminant face
descriptor (DFD) in a data-driven way, which incorporates
the discriminate image filter and the optimal soft sampling
learning for face recognition. Simonyan et al. [26] proposed
a framework to obtain a new descriptor by learning a sparse
pooling region configuration and a low-rank projection for
the selected pooling regions. Zhen et al. [31] presented a
novel supervised descriptor learning algorithm for multi-
output regression, which is formulated as generalized low
rank approximations of matrices with a supervised manifold
regularization. The power of discriminant learning lies in
its ability to extract discriminative features while removing
irrelevant and redundant information by transforming raw
features into a new low-dimensional space aligned with the
targets. Disregarding the progression of feature learning in
image classification, we find that it has rarely been used in
drusen segmentation.

In this paper, we present a supervised feature learning
(SFL) framework for drusen segmentation, which is achieved
by adjusting the multi-output regression model for image
classification in [31] to the problem of image segmentation.
Comparedwith hand-crafted features, the features learned via
the proposed framework are capable of extracting properties
related to drusen while removing other redundant informa-
tion, being more discriminative and compact. The proposed
framework consists of three main steps. In the first step,
patches are sampled from the grayscale retinal images and
treated as the training data. In the second step, the SFL

algorithm combines the benefits of generalized low rank
approximations of matrices (GLRAM) and supervised man-
ifold regularization (SMR) to learn a new descriptor. The
learned descriptors are vectorized and fed into a support vec-
tor machine (SVM) to train a classifier. Finally, the obtained
SVM classifier is employed to classify the pixels in the test
image as drusen or non-drusen. The experimental results
show that our method outperforms state-of-the-art methods.

II. METHOD
Based on the raw image pixel intensities of the training data
and by following the supervised descriptor learning strategy
of [31], the proposed SFL algorithm is applied to generate
discriminative and compact feature representations for accu-
rate and efficient drusen segmentation. The SFL algorithm is
formulated as GLRAM and SMR. The GLRAM is to learn a
low-dimensional representation by reducing the dimension of
a sequence of matrices, while the SMR takes full advantage of
the supervision to improve the discrimination of feature rep-
resentation. The flowchart of the proposed method is shown
in Fig. 1.

FIGURE 2. Training data. (a): A whole training image, where red windows
are training drusen patches and blue windows are training background
patches. (b): Drusen patches. (c): Background patches.

A. PROBLEM STATEMENT
Given color training images, we first convert them into
grayscale images by eliminating the hue and saturation infor-
mation while retaining the luminance. Based on the grayscale
training images and the corresponding ground truth, n patches
are randomly sampled from drusen and background regions.
Examples of the training patches are shown in Fig. 2. The
training patches and the corresponding labels are defined as
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FIGURE 3. Performance with different patch sizes and dimensions. k is
the patch size, m is the reduced dimensionality by U , n is the reduced
dimensionality by V .

{S1, S2, · · · , Sn} and Łi ∈ (0, 1), 1 ≤ i ≤ n, where n is the
number of training patches. Each Si has a size of k × k . The
patch label Li is 1 if the center pixel is drusen; otherwise,
the label is 0. Each patch is represented in its native matrix
representation rather than vectors as inputs, which can be
any form of matrix representation. We propose using the raw
image pixel intensities for simplicity. We aim to compute
a new discriminative and low-dimensional representation of
each Si ∈ Rr×c by adding a supervised term. The obtained
low rank approximations of matrices are vectorized as the
final descriptor and fed into the SVM classifier.

B. GENERALIZED LOW-RANK APPROXIMATION
Low-rank approximations ofmatrices have become an impor-
tant tool for extracting correlations and removing noise from
data. To obtain low-dimensional representations of training
patches, GLRAM [31], [32] is used to reduce the dimen-
sions of matrices. Compared with other traditional low-rank
approximation methods [33]–[35], the GLRAM plays a role
in the matrix representation of images directly rather than
using a vector representation. A generalized low-rank approx-
imation problem is to approximate a sequence of matrices
with low rank, as shown by the following minimization
problem:

argmin
U ,V ,{A}ni=1

1
n

n∑
i=1

‖Si − UAiV T
‖
2
F

s.t. UTU = Il1V
TV = Il2 (1)

FIGURE 4. Segmentation results of different types of drusen on the STARE
database. From top to bottom: the entire original fundus image, drusen
region in the retinal color image, segmentation results of our method,
segmentation results of Liu et al., and segmentation results of HALT.

The goal of Eq. 1 is to find two matrix transformations U ∈
Rr×l1 and V ∈ Rc×l2 that approximate each Si ∈ Rr×c to a
matrix Ai ∈ Rl1×l2 , for 1 ≤ i ≤ n, such that Ai = USiV T is
an approximation of Si. In Eq. 1, ‖‖F is the Frobenius norm,
which is a natural similarity metric between matrices. U and
V are considered as linear transformations of matrix form.
Il1 and Il2 denote identity matrices, whose sizes are l1 × l1
and l2 × l2, respectively, and the constraints UTU = Il1 and
V TV = Il2 are added to Eq. 1 for avoiding redundancy in the
approximations.

Eq. 1 aims to find the optimal transformations U and V
such that the original high-dimensional space is preserved in
the low-dimensional space {A}ni=1. Although {A}

n
i=1 have low

dimension, they do not have sufficient discriminative abil-
ity. To obtain more discriminative representations of {A}ni=1,
we incorporate the patch labels to achieve a more discrimina-
tive representation as follows.

C. SUPERVISED TERM
We first construct a weighted graph G with n nodes, one for
each patch, and the set of edges connecting neighboring nodes
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FIGURE 5. ROC curves of our method, HALT [14] and Liu et al.’s method [4] in drusen classification on three
representative images.

using the method in [36]. Specifically, an edge between nodes
i and j is constructed if i is among the k nearest neighbors of
j or j is among the k nearest neighbors of i. M denotes the
similarity matrix, which is a sparse symmetric n × n matrix
of nonnegative elements with Mij having the weight of the
edge joining vertices i and j. If nodes i and j are connected,
thenMij is computed by using a heat kernel:

Mij = e
−‖Li−Lj‖

2

α i, j = 1, 2, · · · , n (2)

where α is a parameter and L is the label of the corresponding
training patches.Weminimize the following term in low-rank
space: ∑

i,j

‖Ai − Aj‖2FMij (3)

where {A}ni=1 characterizes the low-rank approximation and
preserves the intrinsic local geometrical structure of the tar-
get space. M measures the similarities between two training
patches and reflects the manifold structure of the target space.
Minimizing Eq. 3 can inject the discrimination into the low-
rank representation via the supervised labels. By adding the
supervised term, training patches with the same labels tend to
be classified into one part, whereas those with different labels
tend to be another part. This increases the discriminative
ability of the learned feature representation.

D. LEARNING NEW FEATURE REPRESENTATION
In summary, our model is obtained by combining GLRAM
with the SMR term in Eq. 1 and Eq. 2:

argmin
U ,V ,{A}ni=1

1
n

n∑
i=1

‖Si − UAiV T
‖
2
F + γ

∑
i,j

‖Ai − Aj‖2FMij

s.t. UTU = Il1V
TV = Il2 (4)

where γ ∈ (0,∞) is used to control the trade-off between
the approximation accuracy and the discriminative ability.
The GLRAM term aims to reduce the dimension to find a
low-rank approximation of the input patch matrices {S}ni=1,
while the second term introduces supervision to improve the

discrimination of the low-rank approximation {A}ni=1. The
objective of SFL is to extract discriminative features that are
robust to drusen variations.

Due to the difficulty of directly solving the above function,
an iterative algorithm via an alternate optimization [31] is
used to obtain the optimal solution of U , V and {A}ni=1.
Considering that the truncated singular value decomposition
(SVD) can obtain the best approximation of given matrices
concerning the Frobenius norm [32], [34], SVD is adopted in
our algorithm to solve the standard eigen decomposition. The
details of the iterative algorithm are presented in APPENDIX.

E. APPLICATION OF DRUSEN SEGMENTATION
Based on the computed U and V , the overall classification
scheme includes a training procedure and a testing procedure.
To leverage the strength of SVM for the classification task,
LibSVMwith radial basis function (RBF) kernel is employed
in our experiments.

• The training procedure: With the learned transforma-
tions U and V, the patches are projected onto l1 × l2
approximation matrices {A}ni=1. These matrices are then
transformed into vectors of l1× l2 dimension, which are
considered as feature vectors to train a classifier. Based
on the feature vectors and corresponding labels above,
an SVM classifier is obtained.

• The testing procedure: Given a test image I from the
evaluation dataset, we represent each pixel by a k × k
patch with the raw image pixel intensities. Using U and
V , we obtain the low-rank approximation {A}ni=1 of all
the patches. The final descriptor of each pixel is obtained
by vectorizing {A}ni=1 and fed into the SVM classifier.
The pixel is labeled 1 if its feature vector is classified as
drusen; otherwise, the pixel is labeled 0.

III. EXPERIMENTS AND RESULTS
A. DATA
The proposed SFL is evaluated on the publicly available
STARE database [37]. This database was used to vali-
date various retinal image processing algorithms, including
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TABLE 1. The compared results based on statistical analysis.

vessel segmentation [38], optic disc localization [39], generic
lesion detection [40], and so forth. The STARE images were
collected using a TopCon TRV-50 fundus camera with an
FOV of 35 degrees. These fundus images do not have spatial
resolution information because the interior of the eye being
imaged is semi-spherical [41]. It includes 400 retinal fundus
images, and the size of each image is 700 × 605 pixels.
Sixty-three images are clinically verified as containing
drusen. From the images containing drusen, 46 are ran-
domly selected to test our approach. In detail, 5 represen-
tative images are treated as training data, and the remaining
41 images are the testing data.

The public database of DRIVE [42], [43] is also used
to validate our methodology. This database contains a total
of 40 RGB color retinal images. These retinal images are
captured by a Canon CR5 non-mydriatic 3-CCD camera
(Canon, Tokyo, Japan) with a 45 degree field of view (FOV).
The size of each image is 768×584 pixels. In the following
experiments, 9 retinal images are tested on this database.
Drusen are manually marked on test images with the help
of the drawing tool in the computer software. These marks
are treated as the ground truth, and their locations are com-
pared with the ones obtained by SFL and the comparison
methods.
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B. EXPERIMENTAL SETTING
In our experiments, the parameter γ is set to be 1 for a trade-
off between the reconstruction accuracy and discriminative
ability. In fact, the iterative solution converges fast within few
iterations. Specifically, we choose 6 iterations to achieve a
satisfactory result in our experiments. In addition, the patch
size and reduced dimensionality have a clear influence on
the final segmentation results, and we will compare them
in section D.

C. EVALUATION
To quantitatively measure the performance of the proposed
method, the results of drusen segmentation are measured by
the commonly used sensitivity (Se), specificity (Spe), and
accuracy (Acc) [44]–[46]. Se is used to measure the rate of
true positive detection, Spe measures the rate of false positive
detection, and Acc indicates the ratio of the total correctly
identified pixels. To be more intuitive, we plot the receiver
operating characteristics (ROC) and compute the area under
the curve (AUC) values.

D. RESULTS
We first test our algorithm by fully utilizing the GLRAM
and SMR. We change the patch size k and find that it has a
clear impact on the performance. Comparing the performance
when k = 9, 15, 25, and 35 under various reduced dimen-
sionalities, we can observe different classification accuracies,
as shown in Fig. 3. As shown, our method performs best
when k = 15 (red lines), and we fix k to 15 in the following
experiments.

The reduced dimensionality also affects the performance.
Since the reduced dimensionality depends on both param-
eters m and n, we conduct experiments to test the influ-
ence of one parameter by keeping the other parameter fixed.
Figs. 3 (a) and (b) indicate that our method achieves the best
performance when m = 9 and n = 5, and these parameters
are kept fixed in all the experiments.

On the STARE dataset, we compare the performance of
our algorithm with two drusen segmentation methods. The
first one is the state-of-the-art method HALT [14]. This
method employs a multilevel histogram equalization scheme
and develops an adaptive local histogram to identify an
appropriate local threshold (HALT) to segment each drusen.
The second one is the method proposed by Liu et al. [4]. This
method extracts some features at local maximum points and
trains a classifier from the weakly labeled data to classify
each maximum point as drusen or non-drusen. We compare
the segmentation results and Se, Spe, Acc, and AUC.

Fig. 4 shows the segmentation results on three representa-
tive images from the STARE dataset: one image with small
sparse drusen, the second one with large drusen, and the third
one with vague small and large drusen. The segmentation
results are satisfactory in all cases in that the background
areas are segmented and the drusen are correctly isolated.
In general, the presence of vessels and their interaction in

TABLE 2. Comparison results of the proposed method and some existing
methods.

intensity with drusen increases the difficulties of segmen-
tation. Our algorithm overcomes this problem due to the
learned discriminative and compact features from fundus
images that can separate drusen from vessel distributions.
To be more intuitive, we plot the ROC curves and compute
the AUC of these segmentation techniques in Fig. 5. It is clear
that our algorithm is superior to the comparison algorithms.

To further demonstrate the effectiveness of the proposed
method, the Se, Spe and Acc of SFL and the above two
methods on the remaining 41 images are given. As previously
mentioned, these images are selected randomly from the
STARE dataset. All images reflect actual cases without any
prior information on the status and extent of drusen. In Tab. 1,
the three average indicators of SFL exceed 90%, 97% and
96%, which outperform those of the compared algorithms.
As shown in Tab. 1, the proposed method outperforms the
state-of-the-art techniques.

Our algorithm also performs well on the DRIVE dataset,
as shown by the classification results on three representative
retinal images in Fig. 6. In fact, we test 9 retinal images on
the DRIVE dataset and achieve an average Se of 87.41%,
an average Spe of 94.93% and an average Acc of 94.81%.

The comparative performance analysis of the proposed
method with some existing methods is shown in Tab. 2.
Note that not all the drusen detection methods have used
the same datasets in Tab. 2. Liu et al. [47] used GrowCut
to segment drusen based on local extreme points and related
features. Mora et al. [48] detected drusen using a gradient-
based segmentation algorithm and then fit modified Gaus-
sian functions to evaluate the affected area. The method of
Kumari and Mittal [49] combined mathematical morphology
and Otsu’s algorithm to detect drusen. Zheng et al. [25]
proposed a set of new features and presented a learning-based
detection scheme. In the method of Bhuiyan et al. [50], local
intensity distribution, adaptive intensity thresholding and
edge information were used to detect potential drusen areas.
The experimental comparisons demonstrate the effectiveness
of our method for drusen segmentation. These results can be
attributed to the following aspects. First, the proposed super-
vised algorithm can effectively extract the most discrimina-
tive features related to drusen while removing the redundant
information by the iterative algorithm. Second, the features
learnedwith supervision by the iterative algorithm surpass the
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FIGURE 6. Segmentation results of three representative retinal images on
the DRIVE database. From top to bottom: the entire original fundus image,
drusen region in the retinal color image, posterior probability map after
classification step, pixel clusters that are probable drusen, and objects
that the algorithm classified as drusen overlaid on the original image.

hand-crafted features, particularly for drusen classification in
fundus images. The satisfactory results demonstrate the great
advantages of our method for drusen segmentation.

IV. CONCLUSION
In this paper, we propose a novel SFL algorithm for drusen
segmentation from fundus images. The proposed algorithm
can learn new features by leveraging the strengths of GLRAM
and SMR, which reduces the dimension of image patches
while improving the discriminative power. The learned fea-
tures are distinguished from most handcrafted features in
the sense that they are more compact and discriminative.
An SVM classifier is trained by using these features, and then
it classifies drusen pixels in new test images. Our algorithm
is compared with state-of-the-art techniques, and the exper-
imental results on a set of images with different classes and
shapes of drusen demonstrate the effectiveness of our method
in drusen segmentation.

APPENDIX
DETAILS OF THE ITERATIVE ALGORITHM
Due to the difficulty of directly solving the above function,
an alternative objective function is found to obtain the optimal
solution of U , V and {A}ni=1. Therefore, the first term in
Eq. 4 is rewritten and simplified as follows according to [32]:

1
n

n∑
i=1

‖Si − UAiV T
‖
2
F

=
1
n

n∑
i=1

trace((Si − UAiV T )(Si − UAiV T )T )

=
1
n
(
n∑
i=1

trace(SiSTi )+
n∑
i=1

trace(AiATi )

− 2
n∑
i=1

trace(UAiV T STi )) (5)

where the first term
∑n

i=1 trace(SiS
T
i ) =

∑n
i=1 ‖Si‖

2
F is a

constant because the {S}ni=1 is given above. Consequently,
the minimization of Eq. 5 is equivalent to minimizing the
following:

1
n
(
n∑
i=1

trace(AiATi )− 2
n∑
i=1

trace(UAiV T STi )) (6)

It is easy to obtain that only if Ai = UT SiV , for i =
1, · · · , n, does the function in Eq. 6 achieve the minimum.
Hence, by substituting Ai = UT SiV into Eq. 5 and removing
the constant

∑n
i=1 trace(SiS

T
i ), the minimization problem in

Eq. 5 is equivalent to the following optimization problem:

argmax
U ,V

1
n

n∑
i=1

‖UT SiV‖2F

s.t. UTU = Il1V
TV = Il2 (7)

Additionally, Ai = UT SiV is added to the second term
in Eq. 4, and a new alternative second term is obtained as
follows: ∑

i,j

‖UT (Si− Sj)V‖2FMij (8)

Combining Eq. 7 and Eq. 8, the final optimization function
is obtained as follows:

argmax
U ,V

1
n

n∑
i=1

‖UT SiV‖2F − γ
∑
i,j

‖UT (Si − Sj)V‖2FMij

s.t. UTU = Il1 , V TV = Il2 (9)

For seeking the optimal solution of U and V , an iterative
algorithm is provided to solve the objective function. Thus,
objective function Eq. 9 is rewritten as follows:

argmax
U ,V

1
n
trace(

n∑
i=1

UT SiVV T STi U )

− γ trace(
∑
i,j

UT (Si − Sj)VMijV T (Si − Sj)U )

s.t. UTU = Il1 ,V
TV = Il2 (10)
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In fact, the above objective function naturally avoids
the rank-deficit problem in the trace ratio form [51]. The
GLRAM term ensures the reconstruction precision, and the
SMR term improves the discrimination of the learned descrip-
tor. Consequently, the SFL learns a new feature representation
that has low dimension but high discrimination.

According to the above objective function, for a given V ,
an optimal U is calculated by using an iterative method. The
maximum of Eq. 10 is equal to finding the maximum of
trace(UTXUU ), where

XU =
1
n

n∑
i=1

SiVV T STi − γ
∑
i,j

(Si − Sj)VMijV T (Si − Sj)T

(11)

only if U ∈ Rr×l1 consists of l1 eigenvectors of the matrix
XU corresponding to the largest l1 eigenvalues. Additionally,
the maximum can be considered as a special case of the
more general optimization problem [52]. Similarly, for a
given U , finding an optimal V is to solve the maximum of
trace(V TXVV ), s.t. V TV = Il2 , where

XV =
1
n

n∑
i=1

SiUUT STi − γ
∑
i,j

(Si − Sj)TUMijUT (Si − Sj)

(12)

only if V consists of l2 eigenvectors of the matrix XV corre-
sponding to the largest l2 eigenvalues.

In detail, if an initial U is provided, the V is computed by
finding the eigenvectors of the matrix XV . With the computed
V , theU is then updated by computing the eigenvectors of the
matrix XU . The procedure can be repeated until convergence,
and the optimalU andV are finally obtainedwith the iterative
procedure. Meanwhile, we obtain the Ai using the left and
right transformation matrices U and V by Ai = UT SiV .
The initialU0 is important for the final solution. Experiments
are performed, and it is found that U0 = (I0, 0)T , where
I0 is the identity matrix, produces satisfactory results. Then,
the obtained U0 is used in our following experiments.
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