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ABSTRACT Recommender Systems present a high-level of sparsity in their ratings matrices. The col-
laborative filtering sparse data makes it difficult to: 1) compare elements using memory-based solutions;
2) obtain precise models using model-based solutions; 3) get accurate predictions; and 4) properly cluster
elements. We propose the use of a Bayesian non-negative matrix factorization (BNMF) method to improve
the current clustering results in the collaborative filtering area. We also provide an original pre-clustering
algorithm adapted to the proposed probabilistic method. Results obtained using several open data sets show:
1) a conclusive clustering quality improvement when BNMF is used, compared with the classical matrix
factorization or to the improved KMeans results; 2) a higher predictions accuracy using matrix factorization-
based methods than using improved KMeans; and 3) better BNMF execution times compared with those
of the classic matrix factorization, and an additional improvement when using the proposed pre-clustering
algorithm.

INDEX TERMS Bayesian NMF, collaborative filtering, hard clustering, matrix factorization, pre-clustering,
recommender systems, sparse data.

I. INTRODUCTION
A. MATRIX FACTORIZATION BASED
RECOMMENDER SYSTEMS
The Collaborative Filtering (CF) Recommender Systems
(RS), in their early days, mainly used memory-based meth-
ods, such as K Nearest Neighbours (KNN). These methods
proved to be too sensitive to the degree of sparsity presented
by RS datasets. Currently, model-based RSs provide more
accurate results, are more scalable, and better address the data
sparsity problem [1]. The mostly adopted model by modern
RS is the Matrix Factorization (MF) [2], and recently its
Nonnegative Matrix Factorization (NMF) variant. NMF was
first introduced and popularized as a low-rank matrix approx-
imation technique [3]. It is one of themost typical decomposi-
tion tools for extracting key features from the source matrix.
Currently, NMF is widely used into machine learning pro-
cesses and it is been applied in numerous applications:
Language processing [4], image retrieval [5], computational
biology [6], large-scale networks [7], audio signals [8],
collaborative filtering [9], etc.

New RS applications and approaches are emerging every
day, using factorization techniques to provide new solutions
in the CF field or to improve existing ones [10]. The fol-
lowing is a series of recent studies using Matrix Factoriza-
tion (MF) or NMF in the field of CF RS: The MF based
framework [11] provides a better use the intrinsic structure
of user-item rating matrix and content-based information.
Using the MF based CF as the best option for group RS
has been reported in [12]. The maximum margin MF tech-
niques when the rating matrix contains only two levels
(e.g. like/dislike) is used in [13]. MF in context-aware CF
RS has been used [14], specifically using a dataset with
geographic information and another dataset with musical
information. A generic framework to preserving privacy MF
by utilizing differential privacy [15] has been addressed.
High performance healthcare recommendation model [16]
has been provided. It uses the topic model based approach
to discover user preference distribution and they incorporate
topic model and emotional offset into theMF. A non-negative
multiple MF with social similarity for RS [17] considers
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the similarities between users, the relationships of users-
resources and the relationships of tag-resources. The novel
hybrid web service QoS prediction approach [18] systemati-
cally combines the memory-based CF and model-based CF,
using NMF and Expectation-Maximization techniques.

NMF is used in a large number of applications as a
machine learning method. NMF is a blind source separation
technique decomposing multivariate data sets into meaning-
ful non-negative factors. A really promising approach is to
incorporate regular statistical support into the NMF model.
In this way it is possible to associate probabilities with
the predictions and recommendations themselves, as well as
to make use of the inherent properties of the probabilistic
approach. In short, incorporating Bayesian theory into the
NMF model enriches its results and also its interpretation.

The following studies show the current use of the Bayesian
approach into the NMF factorization model, and its applica-
tion to the CF RS: Two novel latent factor models [19] incor-
porate both socially-influenced feature value discrepancies
and socially-influenced conditional feature value discrepan-
cies. This method models the user preferences as a Bayesian
Network. The real log canonical threshold of NMF is tudied
in [20]; they give an upper bound of the generalization error
in Bayesian learning. Results show that the generalization
error of the MF can be made smaller than regular statistical
models if Bayesian learning is applied. Uniqueness is an open
NMF problem addressed in [21], where authors propose a
Bayesian optimality criterion for NMF solutions. It can be
delivered in the absence of prior knowledge. The NMFmodel
order determination problems [22] determine the capability
and accuracy of data structure discovering. Authors propose
a method based on hierarchical Bayesian inference model,
maximum a posteriori criterion and non-informative param-
eters. A probabilistic MF scaling linearly with the number
of observations has been introduced in [23]. It includes an
adaptive prior on the model parameters.

B. RECOMMENDER SYSTEMS CLUSTERING
Data clustering [24] presents three main aspects:

1) Methods: techniques commonly used.
2) Domains: raw data types (text, multimedia, ratings,

streams, biological, etc.).
3) Variations: cluster validation, cluster ensembles, etc.

RS research mainly uses ratings data as source information.
RS can incorporate a large amount of additional informa-
tion to ratings (demographic, content-based, context-aware,
social, etc.); however, the common denominator for all mod-
ern RS is its ratings matrix. Effective clustering based on
the ratings matrix will be useful for any RS, and there-
fore this approach can be considered as universal. The data
type (domain) determines, to a large extent, the set of clus-
tering methods that best fit that domain. The main types
of clustering used in the field of RS are: a) distance based
algorithms and b) dimensionality reduction methods. Feature
selection methods and density-based approaches are much
less widely used methods in the RS field.

The following are some representative papers in the field
of CF clustering: Two clustering based CF algoritms [25]
are proposed: Item-based fuzzy clustering and trust-aware
clustering; they obtain an increased value of coverage without
affecting recommendation quality. By integrating the user
clustering regularization term [26], the standard MF can be
optimized. This work reports improvements in the recom-
mendations accuracy, compared with standard algorithms.
To dimension the number of clusters (K) is a process that
requires experience, knowledge of the data and a trial and
error mechanism to choose the most appropriate values. The
correct choice of this parameter determines the quality of the
resulting clusters, as well as the predictions and recommenda-
tions made; [27] dynamically sets the parameter: with more
data coming in, the incremental clustering algorithm deter-
mines whether to increase the number of clusters or merging
the existing clusters. Authors report encouraging prediction
accuracy. Hu et al. [28] use a co-clustering method to divide
the raw rating matrix into clusters, and then it employs NMF
to make improved predictions of unknown ratings.

User preferences change over time. A method to model
the change of preferences is based on taking into account
the temporal features evolutions. An evolutionary clustering
algorithm [29] is proposed. This algorithm performs an opti-
mization of conflicting parameters instead of using the tradi-
tional evolutionary algorithms like genetic ones. An efficient
incremental CF system [30] is proposed, based on weighted
clustering approach; this method provides a very low compu-
tation cost. The recommendations of e-commerce products
can be improved by clustering similar products [31]; rec-
ommendation work is then done with the resulting clusters.
The [32] research paper applies the users’ implicit interaction
records with items to efficiently process massive data by
employing association rules mining. The clustering technique
has been employed to reduce the size of data and dimension-
ality of the item space as the performance of association rules
mining. A network model [33] is made feeding with items
and users regarded as heterogeneous individuals. According
to the constructed network model, states of individuals evolve
over time. Individuals with higher scores cluster together and
individuals with lower scores got away.

Centroid selection in k-means based RS [34] can improve
performance as well as being cost saving. The proposed
centroid selection method has the ability to exploit under-
lying data correlation structures. [35] provides a k-means
survey, where they summarize the existing methods, discuss
the major challenges and point out some of the emerging
research.

It is possible to formulate clustering as a matrix decom-
position problem [36]. According to [24] and [37], MF has
important advantages when used as a clustering method:
1) It can model widely varying data distributions due to the
flexibility of matrix factorization [38], [39]; 2) It is able
to perform simultaneous clustering of the rows (users) and
the columns (items) of the input data matrix; and 3) It can
simultaneously achieve both hard and soft clustering [40].
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This paper delves into improving, simultaneously, the RS
hard clustering results and the predictions accuracy.

A set of representative and current MF and NMF clustering
papers is presented below: Latent information [38] in high
dimensional data, using 3-factors NMF as a coclustering
method can be extracted. They discover a clean correlation
structure between document and terms clusters; this correla-
tion structure can be used, as starting point, for some other
machine learning method. Co-clustering has been proposed
into the collaborative filtering field to discover subspace
correlations from big data environments [41], [42].
An NMF-based constrained clustering framework [37] is
proposed in which there are constraints in the form of must-
link and cannot-link (semi-supervised co-clustering [43]).

When datasets incorporate some specific constraint
information, it is possible to fuse both the data distribu-
tion information and the constraint information to be pro-
cessed using a constrained clustering algorithm. When the
data incorporates constraints, the constrained clustering algo-
rithms provide better performance; however its use is not uni-
versal, because it only makes sense to apply them in datasets
that meet the constraint restrictions. The regularized NMF
field introduces additional constraints to the standard NMF
formulation, such as local learning regularizations based on
neighbourhoods [44]. The clustering method we propose
is not based on any specific restrictions and does not use
additional information, so it can be used on any type of
CF ratings matrix. A RS clustering based on genres [45]
uses NMF to obtain predictions and recommendations. They
report improvements both in prediction and recommendation
quality. To combine each cluster result is the challenge they
have faced using weighting strategies.

C. MOTIVATION AND HYPOTHESIS
Organizing data into sensible groupings is one of the most
fundamental modes of understanding and learning [35].
Grouping, or clustering, is made according to measured
intrinsic characteristics or similarity. The research in the
field of CF RS clustering has focused on the objective of
detecting groups of users or groups of items, in order to
perform a differentiated process of CF in each group of
users or items. The advantages that are presented as results of
these studies are: a) accuracy improvement, b) performance
improvement [27]–[29], [31], [46]. These papers usually
test the quality of the clusters in an indirect way: veri-
fying the quality improvement of the predictions and the
recommendations.

The use of RS model-based methods, specifically the MF
and the NMF, has reduced the importance of the CF method
performance, due to the model speed prediction when it
has already been trained. However, due to the increasing
demand for big data results [41], [42], [47], the process of
RS clustering takes on importance in itself as a source of data
analytics information. Consequently, the process of clustering
CF ratings matrices is an increasingly important field, not
only as ameans to improve quality recommendations, but also

to provide reliable analytics, which can be incorporated into
value-added business actions.

The MF techniques provide great clustering results when
applied to sparse data, such as those in the RS datasets [37],
[42], [43]. NMF can model widely varying data distributions
due to the flexibility of MF as compared to the rigid spher-
ical clusters that the K-means clustering objective function
attempts to capture. When the data distribution is far from
a spherical clustering, NMF may have advantages. NMF
scalability can be effectively addressed through different
schemes: Shrinking, partitioning [48], incremental [49] and
parallel [50], making it possible to perform clustering of big
data CF matrices.

Current research points to the MF methods as the most
suitable for performing clustering in sparse datasets, such as
the RS ones. However, the assignment of each user (or item)
to its corresponding cluster is not always sufficiently precise:
the problem is that the different values of the hidden factors
may be too similar; In such situations you can not make a
convincing decision about which cluster to assign to each
user or item.

The preliminary hypothesis of this paper is that the quality
of clustering in RSwill improve if BayesianNMF is used: this
approach enriches the NMF model, providing a probabilistic
basis. In this way, we can use the probabilistic parameters to
fine-tune the allocation of each user (or item) to each cluster,
and thus to improve the whole RS clustering.

As far as we know, there is not a relevant paper providing
a comprehensive study of CF clustering based on Bayesian
NMF. However, there are indeed several Bayesian NMF
methods published [21], [22], [51]–[53]. Our paper takes as
a reference the Bayesian MF method [54]. It is based on
factorizing the ratings matrix into two non-negative matri-
ces whose components have an understandable probabilis-
tic meaning. The mathematical foundations of BNMF and
its good behaviour as CF method are established in [54].
We focus on checking its superiority as a hard clustering
method when applied to CF datasets.

The rest of the paper is structured as follows: section II
explains the Bayesian non-Negative Matrix Factorization
(BNMF) method and presents a running example to easily
understand the choice of the proposed method and the cus-
tomized pre-clustering algorithm. Section III focuses on pre-
clustering: the centroid selection and the BNMF initialization
of their learning parameters. Section IV introduces the exper-
iments designed for the paper and it explains the obtained
results. Finally, section V summarizes the conclusions of the
paper and it proposes promising future works.

II. METHOD
This section is divided into two subsections:

1) Method design and formulation: Summary of the fun-
damentals of the BNMF method [54], the meaning of
its most important parameters, the reason why it ade-
quately clusters RS and the mathematical formulation
that implements it.
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2) Motivation:We use a data-toy running example to illus-
trate the main concepts. This running example shows
the weakness of existing clustering methods when
applied to RS datasets. We also show the improve-
ment of results by using the BNMF proposed method.
The motivation sequence starts from the simplest and
best known clustering method (Kmeans) and continues
by selecting the most promising centroids (LogUser
Power method); then, theMatrix Factorization model is
used. Finally, results are obtained by applying the pro-
posed method. The running example shows the gradual
improvements that each of the tested methods provide,
and the superior quality that is achieved when using the
proposed one.

A. METHOD DESIGN AND FORMULATION
Here we will summarize the probabilistic model discussed
in [54] and the algorithm based on this model for finding out
clusters of users sharing the same tastes.

The algorithm for finding out clusters is based on a gener-
ative probabilistic model; this model is graphically showed
into Fig. 1: Circles represent random variables, arrows
between two variables indicate dependence between them.
A grey circle indicates that the value of this random variable
is observed. The small black squares represent parameters of
the model.

FIGURE 1. Graphical model representation of our probabilistic approach.

The probabilistic model considers that users can be clus-
tered in K sets according to their tastes. This probabilistic
model allows us to simulate the ratings that users make over
the items by means of the following procedure:

1) For each user u, we sample a K dimensional vector
random variable φu from a Dirichlet distribution:

Eφu ∼ Dir(α1, . . . , αK ) (1)

• The vector (φu,1, . . . , φu,K ) represents the proba-
bility that a user belongs to each cluster.

• α is a parameter of the model. It indicates the prior
knowledge of the overlapping degree between
clusters.

2) For each item i and each factor k , we sample a random
variable Ki,k from a Beta distribution (which takes
values from 0 to 1):

Ki,k ∼ Beta(β, β) (2)

• The value Ki,k represents the probability that users
in cluster k like the item i.

• β is a parameter of the model and it indicates the
amount of evidence that the algorithm requires to
deduce that a group of users likes an item.

3) For the user u and each item i such that ru,i 6= • (not
voted), we sample the following random variables:
• The random variable zu,i from a categorical
distribution (which takes values in the range
{1, . . . ,K }).

zu,i ∼ Cat( Eφu) (3)

• A value k in zu,i represents that the user u behaves
like users in cluster k when consuming the item i.

• The random variable ρu,i from a Binomial distri-
bution.

ρu,i ∼ Bin(R,Ki,zu,i ) (4)

Parameter R is highly related to the ratings that the
user u has made over item i. Indeed, the normalized
rating (r∗u,i) that the user u has made over the item i
is ρu,i/R.

R = MaxRatingRange− IntervalRatingRange

(5)

e.g. using Movielens and Netflix: R = 5− 1 = 4,
whereas using FilmTrust: R = 4 − 0.5 = 3.5
(FilmTrust ratings go from 0 to 4 step 0.5; Movie-
lens & Netflix ratings go from 1 to 5, step 1).

Following this procedure, we can simulate samples of
plausible ratings. We observe the value of the random vari-
ables ρu,i (grey circle into Fig. 1). The rest of variables (white
circles in Fig. 1) are unknown for us. The important issue
about the model lies in finding out the posterior distribution
of the unknown random variables Eφu (which are sometimes
called latent variables), indicating the posterior probability
that the user belongs to each cluster. Like almost all proba-
bilistic graphical models, the probabilistic model considered
does not allow to computationally calculate the exact condi-
tional distributions in an analytical way. An algorithm based
on the variational inference technique is adopted to calculate
this posterior probability distribution. The description of the
algorithm as a black box is:
• Input. The input of the algorithm is a matrix of ratings,
since we are focusing on CF RS. We will use the follow-
ing notation related to this rating matrix:
– N : Number of users in the ratings matrix.
– M : Number of items in the ratings matrix.
– ru,i: Rating that user u has made over the item i.

So that our algorithm can be used for any RS with
different scales, we will consider the normalized
ratings ru,i which lie within [0, 1]. We will use the
notation ru,i = • to indicate that user u has not rated
the item i yet.

– Parameters. Besides the rating matrix, the tech-
nique also takes into account some parameters fixed
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by the RS. Specifically it considers the following
parameters:
∗ K . This parameter indicates the number of

groups of users (clusters) that the algorithm is
going to find out.

∗ α ∈ (0, 1). This parameter is related to the
possibility of obtaining overlapping groups of
users sharing the same tastes. A value very close
to 0 involves that users tend to only belong to
one group. A greater value indicates that we are
allowing that the user may be in more than one
group.

∗ β > 1: This parameter is related to the amount
of evidence that the algorithm requires to deduce
that a group of users likes an item. The higher β,
the more evidence the model requires to deduce
that a group of users likes or dislikes an item.

– Output. From the input data and the parameters
values, the algorithm outputs the NxK matrix (au,k )
associated to users. Each term au,k of the matrix
informs about the probability that user u belongs
to each cluster k of users. The algorithm calculates
some auxiliary variables γu,k , ε−i,k , ε+i,k to finally
calculate the values au,k . Steps:
∗ Initialize randomly γu,k
∗ Initialize randomly ε−i,k
∗ Initialize randomly ε+i,k
∗ Repeat until changes are not significant

For each user u:
For each item i rated by the user u in the training
set:
For each factor k: update λu,i,k according to
equations:

λ′u,i,k = exp
(
9(γu,k )+ r

+

u,i ·9(ε+i,k )+ r
−

u,i

· 9(ε−i,k )− R ·9(ε+i,k + ε
−

i,k )
)

λu,i,k =
λ′u,i,k

λ′u,i,1 + · · · + λ
′
u,i,K

(6)

For each user u:
For each factor k: update λu,i,k according to
equation:

γu,k = α +
∑
{i|ru,i 6=•}

λu,i,k (7)

For each item i rated by the user u in the training
set: For each factor k: update ε+i,k according to
equation:

ε+i,k = β +
∑

{u|ru,i 6=•}

λu,i,k · r
+

u,i (8)

For each factor k: update ε−i,k according to
equation:

ε−i,k = β +
∑

{u|ru,i 6=•}

λu,i,k · r
−

u,i (9)

where
9 is the digamma function defined as the loga-
rithmic derivative of the gamma function:

9(x) = (ln0(x))′ =
0′(x)
0(x)

(10)

r+u,i = ρu,i = R · r∗u,i (11)

r−u,i = R− ρu,i = R ·
(
1− r∗u,i

)
(12)

R = maxRatingRange − 1, r+u,i & r−u,i ∈
{minRatingRange − 1, ,maxRatingRange −
1} e.g.: for datasets where ratings belongs
to {1, 2, 3, 4, 5}: minRatingRange = 1,
maxRatingRange = 5, r+u,i & r−u,i ∈

{0, 1, 2, 3, 4},R = 4. Output au,k :

au,k =
γu,k

γu,1 + . . .+ γu,K
(13)

Output bk,i:

bk,i =
ε+i,k

ε+i,1 + . . .+ ε
+

i,K

(14)

It is important to highlight that this probabilistic
method fulfils an important restriction about the
users hidden factors:

K∑
k=1

au,k = 1 (15)

The mathematical proof of these equations can be found
into the ‘‘Appendix’’ section of the BNMF paper [54]

B. MOTIVATION
In this section we intend to show, in a simple and intu-
itive way, the operation of the proposed method. We also
explain, with examples, the improvements made to the most
significant existing methods. We will support a didactic run-
ning example. This running example is based on a data-toy
designed to show the clustering quality variations obtained in
each case of study. The original data-toy is based on Fig. 2
rating matrix (12 users, 12 items):

FIGURE 2. Data-toy ratings matrix.
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FIGURE 3. KMeans clustering and prediction results: a) KMeans, b) KMeans and Log power-users pre-clustering (KMeans+). Each different color into the
figure corresponds to a cluster found using this method.

Into the data-toy we can see, intuitively, the existence of
four groups: G1 = U1,U2,U3, G2 = U4,U5,U6, G3 =
U7,U8,U9, G4 = U10,U11,U12. G1 users share a similar
taste for items I1, I2, I3 since ru,i > 4. U1 and U8 have a
similar taste for item 11; However, U8 does not belong to
G1 because it dislikes I2. The same reasoning can be used
to explain the existence of G2, G3 and G4. In the following
sections, we will use several clustering methods to test their
ability to detect the four predicted groups.

A major problem in most clustering methods is their
sensitivity to initialization of parameters and to the choice
of start centroids. Research literature reports clustering
improvements when initialitation methods are applied to
the iterative refinement clustering algorithms; the most
cited algorithms to be initialized are: K-prototypes (mainly
k-Means and k-Modes), expectation-maximitation (EM),
fuzzy c-Means, k-Means++, spherical K-Means, and Classi-
fication EM (CEM). Poor choice of pre-clustering parameters
and centroids can lead to local minima, poor clustering and
insufficient prediction quality. This paper addresses both
clustering and pre-clustering
improvements.

1) KMeans AND PRE-CLUSTERING IMPROVED
KMeans (KMeans+)
Fig. 3a shows a result obtained using the KMeans method.
The column ‘‘cluster’’ shows the cluster in which each user
has been classified: G1 = U1,U2,U3,U6,U10,U11,U12,
G2 = U4,U5,U8, G3 = U7, G4 = U9. Users have not been
classified as expected. Predictions p1,1, p9,8 and p11,12 are
correct, but prediction p5,5 shows as ‘‘indifferent’’ (3) a value
that was expected ‘‘not like’’ (1 or 2). The results obtained
vary considerably according to which are the initial centroids
with which the KMeans is executed.

Fig. 3b) shows the results obtained using KMeans clus-
tering and ‘‘Log power-users’’ pre-clustering [34]. The users
who have rated a large number of items in a RS are referred

to as power users. Zahra et al. [34] use the power users
to select the pre-clustering centroids, obtaining good RS
results. The ‘‘Log’’ power users version is based on an spe-
cific probability function to choose centroids. [34] presents
three probability versions: ‘‘Power’’, ‘‘ProbPower’’ and ‘‘Log
Power’’, The latter is the one that has given us the best
results.
Fig. 3b) shows an improvement in the choice of clusters:

now, cluster 4 is perfectly done. However, the quality of
clustering is still poor, and some prediction results are incor-
rect (e.g. p11,12). Traditional clustering methods have little
precision when applied to extremely sparse datasets, such as
those in RS.

2) MATRIX FACTORIZATION
RS have evolved from using memory-based methods, such
as the KNN to the use of model-based methods, such as
the Matrix Factorization (MF). MF methods provide bet-
ter prediction and recommendation results, total coverage
and scalability. MF methods also provide clustering results,
by analyzing their hidden factors.
Fig. 4a) shows the users hidden factors values in a MF

of dimension K = 4. We assigned each user to the cluster
(F1, F2, F3, F4) whose hidden value is higher; e.g: U1 has
been assigned to cluster 3, because its hidden value 1.87 is
greater than its other three hidden values (0.87, 0.75, 0.04).
U4 has been assigned to cluster 4, for its hidden value 2.07,
greater than −0.33, 0.47 and 0.06, and so on.
Fig. 4b) summarizes the users assignment to clusters (right

column) and also shows some relevant predictions. We can
see a significant improvement in the clustering results with
respect to the KMeans+ solutions: in this caseU1 toU9 users
are correctly classified (U10 and U12 are not). Predictions
are correct, except for p9,8 which shows an ‘‘indifferent’’
value (3) instead of a ‘‘like’’ one (4 or 5).

Overall, MF clustering method improves the KMeans+
one when applied to sparse datasets; Nevertheless, there is
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FIGURE 4. Matrix Factorization clustering and prediction results: a) Users factors matrix, b) Clustering results. Each different color into the
figure corresponds to a cluster found using this method.

FIGURE 5. Bayesian Non Negative Matrix Factorization clustering and prediction results: a) Users factors matrix, b) Clustering results. Each different
color into the figure corresponds to a cluster found using this method.

margin for improvement in both clustering and prediction
results.

3) BAYESIAN NON-NEGATIVE MATRIX
FACTORIZATION (BNMF)
The Bayesian NMF version we propose [54] improves the
existing NMF and provides a probabilistic basis that classifies
each user or item among the K factorization factors. This fine
tune is expected to improve both MF and NMF clustering
results.

Fig. 5 shows the results of our running example using
Bayesian non Negative Matrix Factorization (BNMF). As it
can be seen into graph a), results are correct: each user is
assigned to its clustering group. Graph b) shows the clustering
groups and predictions: Predictions (u1,i1), (u5,i5), (u9,i8) are
accurate, whereas prediction (u11,i12) is not.

4) PRE-CLUSTERING AND BAYESIAN NON-NEGATIVE
MATRIX FACTORIZATION (BNMF+)
Pre-clustering is used for improving clustering accuracy
as well as System performance. We will use KMeansPlus
LogPower centroid selection [34] to initialize the learning
parameters of our BNMF method. We will call BNMF+ to
the sequence: 1) centroid selection, and 2) Bayesian NMF.
Section III explains the details of the proposed pre-clustering
algorithm and its customization to the BNMF method.

To illustrate the advantages of pre-clustering, we have
added a user (u13) to the ratingmatrix of our running example,
making clustering a bit more complicated (Fig. 6).

The top table into Fig. 7 shows the results of three dif-
ferent runs of the BNMF method. These runs do not use
any type of pre-clustering. Usually, a very accurate result is
obtained, as shown in ‘‘Experiment 1’’. However, in some
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FIGURE 6. Extended running example ratings matrix.

cases, the method is based on initial values, taken randomly,
that lead to unsuitable solutions. This is the case for the runs
labelled as ‘‘Experiment 2’’ and ‘‘Experiment 3’’ where the
algorithm has reached local minimums.

If we use pre-clustering, we can reduce the probability
of reaching inadequate solutions and local minimums. The
chosen pre-clustering method uses a similarity measure to
calculate the distances between the RS items (or users),
and thus determine which are the most suitable initial cen-
troids. Usually, the similarity measure chosen is Euclidean
distance, however, in RS datasets, it is more appropriate
to use similarity measures adapted to sparse matrices [55].
[56] explains that Pearson correlation is better than the cosine
and Euclidean distance.

The table at the bottom of Fig. 7 shows the results of
using centroid selection pre-clustering to determine the ini-
tial values of the parameters that feed the iterative BNMF
algorithm. Left side shows results using the Mean Jaccard
Difference (MJD) similarity measure, central position shows
the obtained results using JMSD and right side shows Pear-
son correlation results. It can be seen that, in our example,
MJD [57] produces the expected results, whereas JMSD [58]
and Pearson correlation do not. Overall, using pre-clustering,
we will be able to minimize the situations in which we
obtain inadequate clustering results. As we will see later, into
this paper, the pre-clustering we have designed improves the
clustering quality and it decreases the execution times of the
matrix factorization.

III. BAYESIAN NON NEGATIVE MATRIX FACTORIZATION
PRE-CLUSTERING (BNMF+)
The basic clustering methods start from initial cen-
troids, or from initial parameters, taken at random. From
them, by means of an iterative process, the centroids and
their clusters are modified. The machine learning process
finishes when a condition of completion is obtained or when
a maximum number of iterations have been reached.

The clustering quality results depend, to a great extent,
on the choice of the centroids or the initial parameters with
which the iterative process is fed. A poor choice of initial
values can lead the algorithm to a local minimum. For this

TABLE 1. Mean Absolute Error (MAE) of the RS when not rated items are
filled in with: rating 0, with rating 3, with the average of each user’s
ratings. Ratings from 1 to 5.

reason there are several RS-based approaches to choosing
the initial centroids rather than randomly; e.g: Kmeans-,
Kmeans+, Kmeans++, KmeansUserPower, etc. [34]. The
sparse nature of the RS datasets makes it difficult to choose
the initial centroids and the constituent elements of each
cluster. Since each user only votes a very small number of the
available items, most of the pairs <user, item>, into the rating
matrix, are empty. This is a circumstance that does not exist
in most clustering situations. To fill in the rating matrix with
zero values, or with intermediate values, is not an appropriate
solution. Table 1 shows that the quality of the prediction
results is very deficient following these approaches.

Memory-based CF RS face the sparsity problem by using
customized similarity measures [55], [57]–[59]. These simi-
laritymeasures provide distances between RS items (or users)
better than the classic statistical metrics (Euclidean distance,
cosine, Pearson correlation, etc.) [1], [60]. In this way, wewill
use RS similarity measures to select the initial centroids in the
proposed pre-clustering process.

The pre-clustering method proposed in this paper consists
of two phases that are executed consecutively. Phase 1 is
the KMeansPlusLogPower algorithm [34]. This is a KMeans
variant, which utilizes ‘‘power’’ users to find K centroids.
Power users are the users with maximum number of ratings
in the training set. Thus, the first centroid corresponds to the
user who has cast the most votes (or a random one, in case of
a tie). Next centroids are selected looking for the greater dis-
tance from the existing ones. Using KMeansPlusLogPower,
the probability that a training set user becomes one of the K
initial centroids is calculated by the following equation:

Pu ∈ C =
∑
c∈C

dist(u, c)+ log
(
|Ic|
|Iu|
+ 1

)
(16)

Where:
C is the set of existing centroids; C ∈ [1..K ]
|Iu| is the number of items rated by user u.
To implement the distance dist(u, c) into the previous equa-

tion, we have tested different RS similarity measures, and
compared the quality of the results with that obtained without
performing pre-clustering. Results suggest an improvement
in the quality when applying an adequate similarity measure;
in this case: Mean Jaccard Difference (MJD) [57]. MJD
improves results compared with the traditional Pearson corre-
lation, used to implement KMeansPlus algorithms [34], MJD
has also provided better results than Jaccard Mean Squared
Differences (JMSD) [58].

Phase 1 outputs the cluster k ∈ [1..K ] to which each RS
user belongs. In this way, for each RS user u ∈ U , we can
know if, initially, it belongs to a cluster k . Phase 2 initial-
izes the BNMF learning parameters, taking into account the
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FIGURE 7. Pre-clustering and Bayesian Non Negative Matrix Factorization (BNMF+): Users factors.

clustering results obtained in phase 1. Specifically, learning
parameters ε+i,k and ε

−

i,k are initialized as follows (see the end
of section II-A):

ε+i,k = β +
∑

u∈Kru,i 6=•

r+u,i (17)

ε−i,k = β +
∑

u∈Kru,i 6=•

r−u,i (18)

In summary, making use of a pre-clustering phase con-
tributes to improve the quality of the clustering results. As we
will see in next section, using a pre-clustering phase also
improves both the quality of RS predictions and the clustering
execution times. The contributions of this paper to BNMF
pre-clustering are: a) choice of the best similarity measure for
theKMeansPlusmethods, and b) the way to linkKMeans pre-
clustering results with the initial values of the BNMF learning
parameters ( ε+i,k and ε

−

i,k ).

IV. EXPERIMENTS AND RESULTS
In this section we design a set of experiments that shows
the validity of the paper hypothesis: the use of Bayesian

non-negative matrix factorization improves clustering results
in collaborative filtering RS environments. Moreover, it is
verified that the prediction accuracy of the RS is also
improved, reducing the average error of prediction (MAE).

Sub-section IV-A explains the experiments that have been
carried out: methods that have been executed, chosen parame-
ters, baselines, tested datasets, and quality measures to check
the improvements of the proposed MF. Sub-section IV-B
selects the BNMF parameters used to make experiments.
Sub-section IV-C focuses on testing the quality of cluster-
ing, measuring the data cohesion. Sub-section IV-D tests the
prediction accuracy, analyzing the mean error of predictions.
Finally, sub-section IV-E shows the runtime improvements
through the use of the proposed pre-clustering.

A. EXPERIMENTS DESIGN
Table 2 summarizes the most relevant decisions that have
been made in the experiments design:
• We test: 1) The Bayesian non-Negative Matrix Factor-
ization method (BNMF), 2) the proposed pre-clustering,
and 3) The combination of both (BNMF +).

VOLUME 6, 2018 3557



J. Bobadilla et al.: Recommender Systems Clustering Using BNMF

TABLE 2. Experiments designs scheme.

• We use as baselines: Improved K-Means and Matrix
Factorization.

• We obtain results in RS open datasets.
• Wemeasure the quality of predictions, data cohesion and
runtime performance results.

• Experiments design includes 3-fold cross-validation
techniques.

• Testing a broad range of cluster sizes: from 6 to 400.

Within-cluster (cohesion) quality measure has been chosen
because it is the most representative in the MF context: The
very nature of the MF leads to a classification of the RS
elements (users and items) into aK number of hidden factors.
Consequently, the between-cluster (separation) quality of the
results is high. Where the RS model-based machine learning
methods present the greatest difficulties of clustering is in
the cohesion quality. This is because once the classification
is done according to the K hidden factors values, the set
of items or users into each cluster i depends on the k − 1
hidden factors different to i. This effect could be reduced by
making successive matrix factorizations clustering from the
elements of each cluster, but the scalability of the method
would be compromised. The advantage of our BNMF proba-
bilistic approach lies in its ability to adopt different solutions
based on the values of its parameters. In this way, the hidden
factors will be configured differently in each solution, and we
can choose the combination of parameter values that better
clustering results achieve.

Mean Absolute Error (MAE) prediction accuracy measure
has been chosen because it is the metric that indicates the
quality of the CF predictions. RMSE provides conceptually
similar results to MAE. Precision, recall and F1 measures
test the quality of RS recommendations. There is some rela-
tionship between the quality of the prediction results and the
quality of the recommendation results. When you are testing
the quality of a CF method, both types of quality measures
are used: an increase in the MAE usually leads to an increase
in precision/recall, but not in a linear way. Knowing this level
of detail is relevant in the RS recommendation papers; never-
theless, to validate the clustering quality usually it is mea-
sured the prediction quality (combined with the clustering
quality).

B. CHOOSING THE ALPHA AND BETA VALUES
The BNMF method allows us to define α and β parameters
(section II-A). The higher the β is, the more evidence the
model requires to deduce that a group of users likes or dislikes
an item. In this way, the higher the value of β, the higher the
resulting clustering quality. On the other hand, a high β value
generates conservative predictions and therefore worsens
accuracy. An α value very close to zero means that users tend
to belong to one group. Higher α values indicate that each
user may probabilistically belongs, simultaneously, to more
than one group. Therefore, an α value close to zero takes us
to a hard clustering approach, providing better within-cluster
quality results. An α value closer to one leads us to a more
flexible soft clustering approach.

The BNMF α parameter is particularly promising for
establishing the clustering properties. This parameter deter-
mines the sparsity level of the users hidden factors. The
lower the value of α the more likely there will be to assign
most of the user’s features to a single hidden factor, while α
high values provide more flexibility to distribute each user
characteristics among the set of hidden factors. Lower values
of αmake it easier to assign each user to a single cluster, while
using higher α values it is more natural to probabilistically
assign each user to a set of clusters (soft-clustering).

Using MF, NMF or BNMF, each user is represented by a
number K of hidden factors. Each hidden factor represents
and encodes a mixture of characteristics; as a simplified
example: factor 1 could represent action films, but not horror
ones, while factor 2 could be associated with humor films.
In this way, if K = 2, a user containing a 0.85 value into
factor 1 and a 0.15 value into factor 2, has been represented
as a fan of action movies, who dislikes horror films and
does not like very much humor movies. Using BNMF, when
α is small, characteristics of each user are concentrated into
a single ‘‘determinant’’ factor or into a reduced number of
factors. When α is large, the amount of necessary evidence to
characterize a user into various factors is lower.

Fig. 8 shows the results of the following experiment: using
the Movielens 1M dataset, the BNMF process is performed
for different α values. This experiment sets to 6 the num-
ber of clusters (K = 6). For each α, by way of example,
we take the mean of the hidden factor 5 for those users whose
factor 5 is greater than the other factors (black bars into
Fig. 8). As expected, for small values of alpha a single factor
(factor 5) determines almost all the behaviour of the user,
whereas with large α values, the main factor loses weight and
the rest of factors also define the users characteristics. Into
Figure 8, when α is similar to 1, factor 5 determines less than
half of the user’s characteristics.

Table 3 shows all the averaged values corresponding to
the BNMF K = 6 hidden factors. Each table has been
obtained using a different α value. Each column of each table
shows the averaged values from factor 1 (f1) to factor 6 (f6).
Each column factor is the one with the maximum value.
For example, in the table corresponding to α = 0.8, col-
umn f3 shows that factor 3 determines, on average, the 51%
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TABLE 3. Users hidden factors distribution from Movielens 1M, BNMF, K = 6. Averaged results for all the users.

FIGURE 8. Users hidden factors distribution from Movielens 1M, BNMF,
K = 6. Averaged results for users whose maximum hidden factor is f5.

of the characteristics from the users most characterized by
factor 3, whereas those same users are determined 11% by
factor 6.

Once the significance of the alpha parameter has been
detailed, figure 9 shows theMAE and the within-cluster qual-
ity results when different BNMF α and β values are applied
to the Movielens 1M dataset. These results were obtained
using 10 clusters (K = 10). Fig. 9a shows the mean absolute
error impact when different values are applied to the α and
β parameters. As expected, accuracy improves as the β value
decreases. The horizontal line into Fig. 9a indicates the MAE
value provided by the classical MF. Our objective is to test the
BNMF method superiority to perform RS clustering, without
worsening the predictions accuracies. In this way we select
the value β = 5 which gives us a margin of improvement
both in accuracy and clustering quality.

FIGURE 9. MAE and within-cluster quality results obtained when
different values of the α and β parameters are combined. Dataset:
Movielens 1M, Method: BNMF, Number of clusters (K): 10. a) Lower
values are the better ones, b) Higher values are the better ones.

Fig. 9b shows the within-cluster impact when different
values are applied to the α and β parameters. Within-cluster
values (y axis) have been normalized to the interval [0..1].
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As predicted, a low beta value (β = 5) produces worse
clustering results than high beta values do. When the clus-
tering process is independent of the recommendation process
it is more appropriate to choose a high β value. In our case,
we look for a RS balance: we want to improve the cluster-
ing quality without worsening the prediction quality, so we
maintain our choice of β = 5.

Once we have chosen the value β = 5, from Fig. 9b we can
see that α values close to zero give us better clustering qual-
ities without compromising the accuracy quality (Fig. 9a).
In this way we select the α ≈ 0 value and therefore we choose
the hard clustering approach. It is important to indicate that
the BNMF method allows values α ∈ (0, 1), so α ≈ 0 means
an α value very close to zero.

C. CLUSTERING IMPROVEMENTS
In this section we present the quality results obtained from
each clustering experiment, according to the design pre-
sented in Table 2. Among the existing clustering quality
measures [61], [62] we have taken the most representative
and popular: cohesion (intra-cluster distance). Usually, this
measure is defined as the sum of the distances between
each cluster element and its centroid. The following equation
formalizes the concept:

cohesion =
K∑
k=1

∑
∀u∈ck

similarity(u, ck ) (19)

where:K is the number of clusters,Ck is the k cluster, ck is the
k cluster centroid, u is a RS user, similarity is the chosen sim-
ilarity measure (Pearson, MJD, Euclidean, etc.). The higher
the cohesion value, the better the clustering quality. Since we
use RS datasets, we have chosen Pearson correlation as simi-
larity measure [1]: It is a classical CF similarity measure and
it returns [−1..1] bounded values. Additionally, in order to be
able to compare results through different datasets, we have
normalized cohesion to the [−1..1] range dividing its value
among the number of each RS users (U):

cohesion =
1
U

K∑
k=1

∑
∀u∈ck

correlation(u, ck ) (20)

Following Table 2 experiments design, we have tested
the proposed methods along with the chosen baselines.
Fig. 10 shows theMovielens, Netflix* and FilmTrust datasets
results. As explained into the previous subsection, the chosen
parameters values are: β = 5, α ≈ 0. As it can be seen
into Fig. 10, BNMF and BNMF+ within-cluster results are
similar.

Analyzing the three graphs into Fig. 10, the main conclu-
sions that we can extract are:
• The proposed BNMF method greatly improves the clus-
tering quality of the two baselines (KMeans+ and MF).
Fig. 11 shows the clustering improvement percentages
of BNMF over the baselines average.

• BNMF and BNMF+ provide the same clustering qual-
ity, so their curves are almost completely overlapping:

FIGURE 10. Clustering results using a) FilmTrust, b) Movielens, and
c) Netflix*. y-axis: normalized cohesion (within-cluster) results; x-axis:
Number of clusters (K). β = 5, α ≈ 0. Higher values are the better ones.

we expect execution time improvements rather than
quality ones.

• KMeans+ gets better results than MF when applied to
RS datasets, confirming the effectiveness of the Plus-
Log-Power initialization [34].

• As expected, the higher the number of clusters (K ) the
better the quality of clustering: there are a greater variety
of centroids to assign each element.

• Clustering quality decreases when the size of the dataset
increases; FilmTrust shows the best results, followed by
MovieLens, and finally Netflix*: the larger the dataset
the more elements, on average, must be assigned to each
cluster.

• BNMF clustering improvement over baselines (MF and
KMeans+) is higher when the number of clusters (K ) is
lower (Fig. 11): there is a bigger margin of improvement
on lower K values (figure 10).
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FIGURE 11. Clustering improvements of BNMF compared to the mean of
the baselines (MF and KMeans+). y-axis: % improvement; x-axis: number
of clusters (K). β = 5, α ≈ 0.

• From a significant number of clusters (K > 20),
the improvement of BNMF with respect to the baselines
is greater in the larger datasets (Fig. 11): there is a bigger
margin of improvement in large datasets (Fig. 10).

D. PREDICTION ACCURACY IMPROVEMENTS
In this section we determine the ability of each tested method
(KMeans+, MF, BNMF, BNMF+) to generate correct pre-
dictions. Fig. 12 shows the predicted quality (MAE) results
for each tested dataset.

The main conclusions from graphs into Fig. 12 are:
• The proposed method (BNMF) provides better accuracy
results than the baselines do.

• The proposed pre-clustering use achieves an additional
accuracy improvement.

• When the classical MF method is used to cluster, pre-
dictions quality is significantly affected when selecting
high K values.

Comparing graphs into Fig. 10 and Fig. 12 we can determine
an inverse relationship between clustering quality and predic-
tion quality. Fig. 13 shows, in the range [0..1], the evolution of
the BNMF+ accuracy (expressed as 1-MAE) and the evolu-
tion of the BNMF+ within-cluster; Datasets: Netflix* (NF)
and Movielens (ML). The points where the accuracy and
within-cluster curves intersect gives us an optimal K = 35
for Netflix and K = 20 for Movielens. These values are
consistent with the usual need to increase the number of
clusters as the size of the datasets increase.

E. PRE-CLUSTERING EXECUTION IMPROVEMENT
In the previous sub-sections we have verified how the use of
pre-clustering implies a little improvement in the quality of
the BNMF predictions (MAE). In this sub-section we focus
on the execution time improvement that is achieved when
using the proposed BNMF pre-clustering technique, as well
as on the BNMF execution time superiority regarding the
selected baselines.

We have executed both the proposed methods (BNMF
and BNMF+) and the baseline ones (KMeans+ and MF).

FIGURE 12. Mean Absolute Error results using a) FilmTrust, b) Movielens,
and c) Netflix*. y-axis: MAE results; x-axis: number of clusters (K ). β = 5,
α ≈ 0. Lower values are the better ones.

FIGURE 13. Accuracy (1-MAE) and within-cluster trends using BNMF+ on
Movielens (ML) and Netflix* (NF). y-axis: (1-MAE) and within-cluster
results normalized to the range [0..1]; x-axis: number of clusters (K)
values. β = 5, α ≈ 0.

We show results choosing different values of K (from K = 6
to K = 400), β = 5, α ≈ 0. Fig. 14 shows the results; the
most relevant conclusions are: a) BNMF execution time after
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FIGURE 14. Execution performance on both the proposed methods and
the baseline ones. Datasets: a) FilmTrust, b) Movielens, c) Netflix*; y-axis:
time (minutes); x-axis: number of clusters (K). β = 5, α ≈ 0.

pre-clustering (BNMF+) is better than BNMF execution time
without pre-clustering, b) Baseline methods are slower than
BNMF ones, c) The performance differences are significant
when the number of clusters is not small (bigger than 50),
d) When using small datasets (e.g. FilmTrust), MF based
methods are slower than KMeans+, and e) The MF baseline
is slower than KMeans+ and BNMF, which emphasizes the
suitability of BNMF (and BNMF +) as RS model-based
method.

V. CONCLUSION
Beyond accuracy, recommender systems clustering is
important; it allows to face several collaborative filtering
challenges: recommendations explanation, data analytics,
visualization and browsing through the dataset informa-
tion, obtaining the characteristics that define each group of
users or items, etc.

Model-based methods get accurate results and they accel-
erate the prediction process once the model has been trained.

Among model-based methods, matrix factorization tech-
niques are the most popular ones. Classical matrix factor-
ization methods do not provide flexibility in their operation
beyond the choice of the number of hidden factors. The
Bayesian non-negative matrix factorization method gives
flexibility factorizing data. It also provides the useful con-
dition that each individual user hidden factor is a probability.
Experiments show that the BNMF method: a) It improves,
simultaneously, the baselines accuracy and their clustering
quality results, b) It can be configured to increase clustering
improvements reducing accuracy, or vice versa, 3) It obtains
important execution times improvements, compared to base-
lines, especially when the number of clusters is not small.

This paper proposes an original BNMF pre-clustering
algorithm (BNMF+) that provides clustering and perfor-
mance improvements. Additionally, this work opens a hope-
ful future work: getting clustering improvements through a
BNMF soft-clustering approach. BNMF can be parameter-
ized so that each user or item probabilistically belongs to
several clusters. Soft BNMF also opens up the possibility of
improving recommender systems accuracy.
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