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ABSTRACT The tremendous success of machine learning algorithms at image recognition tasks in recent
years intersects with a time of dramatically increased use of electronic medical records and diagnostic
imaging. This review introduces the machine learning algorithms as applied to medical image analysis,
focusing on convolutional neural networks, and emphasizing clinical aspects of the field. The advantage
of machine learning in an era of medical big data is that significant hierarchal relationships within the
data can be discovered algorithmically without laborious hand-crafting of features. We cover key research
areas and applications of medical image classification, localization, detection, segmentation, and registration.
We conclude by discussing research obstacles, emerging trends, and possible future directions.

INDEX TERMS Convolutional neural networks, medical image analysis, machine learning, deep learning.

I. INTRODUCTION

Machine learning algorithms have the potential to be
invested deeply in all fields of medicine, from drug dis-
covery to clinical decision making, significantly altering the
way medicine is practiced. The success of machine learning
algorithms at computer vision tasks in recent years comes
at an opportune time when medical records are increasingly
digitalized. The use of electronic health records (EHR)
quadrupled from 11.8% to 39.6% amongst office-based
physicians in the US from 2007 to 2012 [1]. Medical images
are an integral part of a patient’s EHR and are currently
analyzed by human radiologists, who are limited by speed,
fatigue, and experience. It takes years and great financial cost
to train a qualified radiologist, and some health-care systems
outsource radiology reporting to lower-cost countries such as
India via tele-radiology. A delayed or erroneous diagnosis
causes harm to the patient. Therefore, it is ideal for medical
image analysis to be carried out by an automated, accurate
and efficient machine learning algorithm.

Medical image analysis is an active field of research for
machine learning, partly because the data is relatively struc-
tured and labelled, and it is likely that this will be the
area where patients first interact with functioning, practical
artificial in- telligence systems. This is significant for two
reasons. Firstly, in terms of actual patient metrics, medi-
cal image analysis is a litmus test as to whether artificial

intelligence systems will actually improve patient outcomes
and survival. Secondly, it provides a testbed for human-Al
interaction, of how receptive patients will be towards health-
altering choices being made, or assisted by a non-human
actor.

A. TYPES OF MEDICAL IMAGING

There is a myriad of imaging modalities, and the frequency
of their use is increasing. Smith-Bindman ef al. [2] looked
at imaging use from 1996 to 2010 across six large inte-
grated healthcare systems in the United States, involving
30.9 million imaging examinations. The authors found that
over the study period, CT, MRI and PET usage increased
7.8%, 10% and 57% respectively.

Modalities of digital medical images include ultra-
sound (US), X-ray, computed tomography (CT) scans and
magnetic- resonance imaging (MRI) scans, positron emis-
sion tomography (PET) scans, retinal photography, histology
slides, and dermoscopy images. Fig. 1. shows some example
medical images. Some of these modalities examine multiple
organs (such as CT, MRI) while others are organ specific
(retinal photography, dermoscopy). The amount of data gen-
erated from each study also varies. A histology slide is an
image file of a few megabytes while a single MRI may be
a few hundred megabytes. This has technical implications
on the way the data is pre-processed, and on the design of
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FIGURE 1. A collage of images depicting medical images, from left to right, top to bottom:
an axial CT brain scan with a left-sided hemorrhagic stroke, an axial MRI brain scan with a
left-sided brain tumor, a normal chest X-ray, a normal axial CT lung scan, and a histology

slide with high grade glioma (a brain tumor).

an algorithm’s architecture, in the context of processor and
memory limitations.

B. HISTORY OF MEDICAL IMAGE ANALYSIS

The symbolic Al paradigm of the 1970s led to the develop-
ment of rule-based, expert systems. One early implementa-
tion in medicine was the MYCIN system by Shortliffe [3],
which suggested different regimes of antibiotic therapies
for patients. Parallel to these developments, Al algorithms
moved from heuristics-based techniques to manual, hand-
crafted feature extraction techniques. and then to supervised
learning techniques. Unsupervised machine learning methods
are also being researched, but the majority of the algorithms
from 2015-2017 in the published literature have employed
supervised learning methods, namely Convolutional Neural
Networks (CNN) [4]. Aside from the availability of large
labelled data sets being available, hardware advancements in
Graphical Processing Units (GPUs) have also led to improve-
ments in CNN performance, and their widespread use in
medical image analysis.

McCulloch and Pitts [5] described the first artificial neu-
ron in 1943, which developed into the perceptron posited
by Rosenblatt [6] in 1958. In essence, an artificial neural
network is a layer of connected perceptrons linking inputs
and outputs, and deep neural networks are multiple layers
of artificial neural networks. The advantage of a deep neural
network is its ability to automatically learn significant low
level features (such as lines or edges), and amalgamate them
to higher level features (such as shapes) in the subsequent
layers. Interestingly, this is how the mammalian and human
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visual cortices are thought to process visual information and
recognize objects [7]. CNNs may have their origins in the
Neocognitron concept proposed by Fukushima [8] in 1982,
but it was Lecun et al. [9] who formalized CNNs and used
the error backpropagation described by Rumelhart ef al. [10],
to successfully perform the automatic recognition of hand-
written digits. The widespread use of CNNs in image
recognition came about after Krizhevsky et al. [11] won
the 2012 Imagenet Large Scale Visual Recognition Chal-
lenge (ILSVRC) with a CNN that had a 15% error rate.
The runner up had almost double the error rate at 26%.
Krizhevsky et al. introduced significant concepts that are
used in CNNs today, including the use of Rectified Linear
Unit (RELU) functions in CNNs, data augmentation and
dropout. Since then, CNNs have featured as the most used
architecture in every ILSVRC competition, surpassing human
performance at recognizing images in 2015. Correspond-
ingly, there has been a dramatic increase in the number of
research papers published on CNN architecture and applica-
tions, such that CNNs have become the dominant architecture
in medical image analysis.

C. CONVOLUTIONAL NEURAL NETWORKS

Both the 2-dimensional and 3-dimensional structures of an
organ being studied are crucial in order to identify what is
normal versus abnormal. By maintaining these local spa-
tial relationships, CNNs are well-suited to perform image
recognition tasks. CNNs have been put to work in many
ways, including image classification, localization, detection,
segmentation and registration. CNNs are the most popular
machine learning algorithm in image recognition and visual
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TABLE 1. Review articles and books in deep learning for medical image analysis.

Type Author Title Journal or Publisher Year
Pub-
lished

Re- Greenspan H., Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise IEEE Transactions on 2016

view etal. [14] of an Exciting New Technique Medical Imaging

Re- Litjens G.,et A survey on deep learning in medical image analysis Medical Image Analysis 2017

view al.[4]

Re- Shen D., et Deep Learning in Medical Image Analysis Annual Review of 2017

view al.[12] Biomedical Engineering

Re- Suzuki K. [13] Overview of deep learning in medical imaging Radiological Physics and 2017

view Technology

Book ZhouK., et Medical image recognition, segmentation and parsing: machine learning and Academic Press 2015

al. [113] multiple object approaches

Book Carneiro G., et Deep Learning and Data Labeling for Medical Applications Springer 2016

al. [114]
Book WuG, et Machine Learning and Medical Imaging Academic Press 2016
al. [115]

Book Cardoso MJ., et Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Springer 2017

al. [116] Decision Support

Book Hernandez MV.,  Medical Image Understanding and Analysis Springer 2017

etal. [117]

Book LulL., et Deep learning and convolutional neural networks for medical image computing: Springer 2017

al. [118] precision medicine, high performance and large-scale datasets

Book Zhou K., et Deep Learning for Medical Image Analysis Academic Press 2017

al. [119]

learning tasks, due to its unique characteristic of preserv-
ing local image relations, while performing dimensionality
reduction. This captures important feature relationships in an
image (such as how pixels on an edge join to form a line),
and reduces the number of parameters the algorithm has to
compute, increasing computational efficiency. CNNs are able
to take as inputs and process both 2-dimensional images,
as well as 3-dimensional images with minor modifications.
This is a useful advantage in designing a system for hospital
use, as some modalities like X-rays are 2-dimensional while
others like CT or MRI scans are 3-dimensional volumes.

CNNs and Recurrent Neural Networks (RNNs) are exam-
ples of supervised machine learning algorithms, which
require significant amounts of training data. Unsuper-
vised learning algorithms have also been studied for
use in medical image analysis. These include Autoen-
coders, Restricted Boltzmann Machines (RBMs), Deep
Belief Networks (DBNs), and Generative Adversarial
Networks (GANSs).

D. RESOURCES

Four reviews are highly recommended; Litjens et al. [4]
provides a thorough list of papers published in the field,
Shen et al. [12] and Suzuki [13] summarize many of the
advances, while Greenspan et al. [14] gives a succinct
overview of recent important papers. These review articles
and a list of relevant books can be found in Table 1. This
was collated by searching for books in the Elsevier, IEEE
Xplore and Springer databases. We generated a list of the
200 most highly-cited papers from Google Scholar, using the
query terms ’deep learning’ and *medical image analysis’ in
October 2017 using citation software [15]. These were man-
ually vetted to ensure that the returned results were relevant
and significant in the field. We limited the papers to those
published or prepublished in the last 3 years, although older
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significant papers are mentioned in this article. Table 2 shows
the top 20 papers from this list, and the full list of 200 papers
can be found in the Supplementary Data as Table S1.

Where available, the datasets used by the authors of
various papers in this article are described. The web-
site Grand Challenges in Biomedical Image Analysis
(https://grand-challenge.org/all_challenges) aggregates and
links to numerous competitions and their respective image
datasets. The Cancer Imaging Archive [16] contains numer-
ous datasets across many organ systems, and the National
Institute of Health recently released a tranche of over
100,000 anonymized chest x-rays for research use [17] called
“ChestX-ray 8. Of note, Nifty-Net (www.niftynet.io) [18] is
a useful open source framework that contains many machine
learning algorithms, released under an Apache License.
It allows researchers to explore CNNs and published machine
algorithms, such as V- net, U-net, DeepMedic [19]-[21], and
to share pretrained models.

The aim of this report is to provide an overview on the
state of machine learning algorithms as applied to medical
imaging, with an emphasis on which aspects are most useful
to the clinician, as some of the authors are practicing sur-
geons and radiologists. It is hoped that this perspective aids
researchers in moving from being trapped in the local minima
of speculative research, to designing implementable systems
that will impact medical science and patient care.

Section II describes various machine learning architec-
tures used in medical image analysis, with an emphasis on
CNNSs. Machine learning is broadly classified into Super-
vised, Unsupervised, Semi-supervised and Reinforcement
learning methods; it is the first two which are currently most
applicable to image analysis. Section III dives into different
application areas. Section IV concludes with obstacles that
the field of medical image analysis faces, and some of the
future possible directions.
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TABLE 2. Highly-cited articles in deep learning for medical image analysis.

S/n Author Year Title Cita-
Published tions

I Shin et al. [24] 2016 Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset 225
characteristics and transfer learning

2 Esteva et al. [69] 2017 Dermatologist-level classification of skin cancer with deep neural networks 214

3 Havaei et al. [78] 2017 Brain tumor segmentation with deep neural networks 198

4 Kamnitsas et al. [21] 2017 Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation 136

5 Zhang et al. [120] 2015 Deep convolutional neural networks for multi-modality isointense infant brain image 133
segmentation

6 Iglesias etal. [121] 2015 Multi-atlas segmentation of biomedical images: a survey 131

7 Greenspan et al. [14] 2016 Guest editorial deep learning in medical imaging: Overview and future promise of an exciting 128
new technique

8 Tajbakhsh et al. [26] 2016 Convolutional neural networks for medical image analysis: Full training or fine tuning? 113

9 Pereira et al. [77] 2016 Brain tumor segmentation using convolutional neural networks in MRI images 109

10 Milletari et al. [20] 2016 V-net: Fully convolutional neural networks for volumetric medical image segmentation 89

11 Roth et al. [122] 2016 Improving computer-aided detection using convolutional neural networks and random view 89
aggregation

12 Cicek et al. [123] 2016 3D U-Net: learning dense volumetric segmentation from sparse annotation 82

13 Sirinukunwattana et 2016 Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer 81

al. [72] histology images
14 Anthimopoulos et 2016 Lung pattern classification for interstitial lung diseases using a deep convolutional neural network 79
al. [124]

15 Setio et al. [125] 2016 Pulmonary nodule detection in CT images: false positive reduction using multi-view 79
convolutional networks

16 Xu et al. [73] 2016 Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images 78

17 Roth et al. [126] 2015 Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation 77

18 Moeskops et al. [76] 2016 Automatic segmentation of MR brain images with a convolutional neural network 76

19 Suk et al. [97] 2015 Latent feature representation with stacked auto-encoder for AD/MCI diagnosis 74

20 Baretal. [127] 2015 Deep learning with non-medical training used for chest pathology identification 73

Il. MACHINE LEARNING ARCHITECTURES

A. SUPERVISED LEARNING MODELS

1) CONVOLUTIONAL NEURAL NETWORKS

Currently, CNNs are the most researched machine learning
algorithms in medical image analysis [4]. The reason for this
is that CNNs preserve spatial relationships when filtering
input images. As mentioned, spatial relationships are of cru-
cial importance in radiology, for example, in how the edge
of a bone joins with muscle, or where normal lung tissue
interfaces with cancerous tissue. As shown in Fig. 2., a CNN
takes an input image of raw pixels, and transforms it via
Convolutional Layers, Rectified Linear Unit (RELU) Layers
and Pooling Layers. This feeds into a final Fully Connected
Layer which assigns class scores or probabilities, thus classi-
fying the input into the class with the highest probability.

a: CONVOLUTION LAYER

A convolution is defined as an operation on two functions.
In image analysis, one function consists of input values
(e.g. pixel values) at a position in the image, and the second
function is a filter (or kernel); each can be represented as
array of numbers. Computing the dot product between the
two functions gives an output. The filter is then shifted to
the next position in the image as defined by the stride length.
The computation is repeated until the entire image is covered,
producing a feature (or activation) map. This is a map of
where the filter is strongly activated and ‘sees’ a feature such
as a straight line, a dot, or a curved edge. If a photograph of a
face was fed into a CNN, initially low-level features such as
lines and edges are discovered by the filters. These build up
to progressively higher features in subsequent layers, such as
anose, eye or ear, as the feature maps become inputs for the
next layer in the CNN architecture.
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Convolution exploits three ideas intrinsic to perform
com- putationally efficient machine learning: sparse connec-
tions, parameter sharing (or weights sharing) and equivariant
(or invariant) representation [22]. Unlike some neural net-
works where every input neuron is connected to every output
neuron in the subsequent layer, CNN neurons have sparse
connections, meaning that only some inputs are connected
to the next layer. By having a small, local receptive field
(i.e., the area covered by the filter per stride), meaningful
features can be gradually learnt, and the number of weights
to be calculated can be drastically reduced, increasing the
algorithm’s efficiency. In using each filter with its fixed
weights across different positions of the entire image, CNNs
reduce memory storage requirements. This is known as
parameter sharing. This is in contrast to a fully connected
neural network where the weights between layers are more
numerous, used once and then discarded. Parameter sharing
results in the quality of equivariant representation to arise.
This means that input translations result in a correspond-
ing feature map translation. The convolution operation is
defined by the * symbol. An output (or feature map) s(¢) is
defined below when input /(¢) is convolved with a filter or
kernel K (a).

s(t) = (I = K)(0). ey

If ¢ can only take integer values, the discretized convolution
is given by:

s(t) = Zl(a) Kt —a). )

The above assumes a one-dimensional convolutional
opera- tion. A two dimension convolution operation with

VOLUME 6, 2018
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FIGURE 2. In this example disease classification task, an input image of an abnormal axial slice of a T2-weighted MRI brain is run through a
schematic depiction of a CNN. Feature extraction of the input image is performed via the Convolution, RELU and pooling layers, before classification

by the fully connected layer.

input I (m, n) and a kernel K (a, b) is defined as:

s(t):ZZ[(a,b)-K(m—a,n—b). 3)

a b

By the commutative law, the kernel is flipped and the above
is equivalent to:

st)=>_>"I(m—an—b)-K(ab). )
a b

Neural networks implement the cross-correlation function,
which is the same as convolution but without flipping the
kernel.

s(t):ZZ[(m+a,n+b)-K(a,b). 5)
a b

b: RECTIFIED LINEAR UNIT (RELU) LAYER
The RELU layer is an activation function that sets negative
input values to zero. This simplifies and accelerates calcula-
tions and training, and helps to avoid the vanishing gradient
problem. Mathematically it is defined as:

fx) = max(0, x). (6)

where x is the input to the neuron. Other activation func-
tions include the sigmoid, tanh, leaky RELUs, Randomized
RELUs and parametric RELUs.

c: POOLING LAYER

The Pooling layer is inserted between the Convolution and
RELU layers to reduce the number of parameters to be cal-
culated, as well as the size of the image (width and height,
but not depth). Max-pooling is most commonly used; other
pooling layers include Average pooling and L2-normalization
pooling. Max-pooling simply takes the largest input value
within a filter and discards the other values; effectively it sum-
marizes the strongest activations over a neighborhood. The
rationale is that the relative location of a strongly activated
feature to another is more important than its exact location.
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d: FULLY CONNECTED LAYER

The final layer in a CNN is the Fully Connected Layer,
meaning that every neuron in the preceding layer is con-
nected to every neuron in the Fully Connected Layer. Like
the convolution, RELU and pooling layers, there can be
1 or more fully connected layers depending on the level of
feature abstraction desired. This layer takes the output from
the preceding layer (Convolutional, RELU or Pooling) as its
input, and computes a probability score for classification into
the different available classes. In essence, this layer looks
at the combination of the most strongly activated features
that would indicate the image belongs to a particular class.
For example, on histology glass slides, cancer cells have
a high DNA to cytoplasm ratio compared to normal cells.
If features of DNA were strongly detected from the preceding
layer, the CNN would be more likely to predict the presence
of cancer cells. Standard neural network training methods
with backpropagation [10] and stochastic gradient descent
help the CNN learn important associations from training
images.

2) TRANSFER LEARNING WITH CNNs

Unlike general natural image recognition tasks, medical
image analysis lacks large labelled training datasets. As a
comparison, the Kaggle 2017 Data Science Bowl to detect
tumors in CT lung scans had a dataset of approximately
2000 patient scans, while ILSVRC 2017 had over 1 million
images across 1000 object classes [23]. Transfer learning
involves training a machine learning algorithm on a partially-
related or un-related dataset, as well as a labelled training
dataset, to circumvent the obstacle of insufficient training
data. Essentially the weights learned or pre-trained during
the training of a CNN on one (partiallyrelated or un-related)
dataset are transferred to a second CNN, which is then trained
on labelled medical data using these weights. The weights can
be applied to some or all layers of the CNN, except the last
fully connected layer. Although transfer learning techniques
are commonly used in medical image analysis in conjunctions
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with CNNSs, it is worth noting that they can be applied to other
general machine learning algorithms as well.

Shin et al. [24] explored the impact of CNN architectures
and transfer learning on detecting the presence of enlarged
thoraco-abdominal lymph nodes, and in classifying inter-
stitial lung disease on CT scans, and found transfer learn-
ing to be beneficial, despite natural images being disparate
from medical images. Ravishankar et al. [25] looked at the
task of automatically localizing the presence of a kidney on
ultrasound images. Using a CNN pre-trained on Imagenet,
they showed that the greater the degree of transfer learn-
ing, the better the CNN performed. Tajbakhsh et al. [26]
studied the effectiveness of transfer learning in 4 different
applications across 3 imaging modalities: polyp detection
on colonoscopy videos, colonoscopy video frame classi-
fication, pulmonary embolus detection on CT pulmonary
angiograms, and segmentation of the layers of the walls
of the carotid artery on ultrasound scans. They transferred
pre-trained weights from Krizhevsky et al. [11] to either a
few (’shallow tuning’) or many ('deep tuning’) layers in a
CNN. Overall, they found that transfer learning more layers
improved the CNN performance, compared to training a CNN
from scratch. In contrast to many computer vision tasks where
shallow tuning of the last few layers is adequate, medical
image analysis requires a deep tuning of more layers. They
also noted that the number of optimal layers trained varied
between different applications.

3) RECURRENT NEURAL NETWORKS (RNNs)

RNNs have traditionally been used in analyzing sequential
data, such as the words in a sentence. Due to their ability
to generate text [27], RNNs have been employed in text
analysis tasks, like machine translation, speech recogni-
tion, language modelling, text prediction and image caption
generation [28]. In a plain RNN, the output of a layer is added
to the next input, and this is fed back into the layer, resulting
in a capacity for contextual ‘memory’. To avoid vanishing
gradient problems with backpropagation through time, plain
RNNs have evolved into Long Short Term Memory (LSTM)
networks and GatedRecurrent Units (GRUs). These are mod-
ifications of RNNs to hold long term dependencies, and to
discard or forget some of the accumulated information.

In the medical image analysis space, RNNs have been used
mainly in segmentation. Chen et al. [29] combined CNN
and RNN to segment neuronal and fungal structures from
three-dimensional electron microscope images. Using a mul-
tidimensional LSTM, Stollenga et al. [30] segmented both
three-dimensional electron microscope images of neurons as
well as MRI brain scans. Shin et al. [31] describe annotating
X-ray images with captions trained on radiology reports.

B. UNSUPERVISED LEARNING MODELS

1) AUTOENCODERS

Autoencoders learn feature representations of input data
(called codings) in an unsupervised manner without labelled
data. It is a model that takes input data, gleans codings from
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this, and then uses these codings to reconstruct output data
(called reconstructions). The rationale behind autoencoders
is that the output data must be as similar to the input data
as possible, i.e., autoencoder models contain a cost function
which penalizes the model when inputs and outputs are differ-
ent. Autoencoders have several useful features. Firstly, they
are employed as feature detectors that can learn codings in an
unsupervised manner, without training labels. Secondly, they
reduce the model dimensionality and complexity as codings
often exist in a lower dimension. Thirdly, by having to recon-
struct outputs, autoencoders generate new data that is similar
to the input training data. These features are an advantage
in medical image analysis, where labelled training data is
scarce. Various network architectures are depicted in Fig. 3.

The unique architectural feature of autoencoders is that the
number of neurons in the input and output layers must be
equal. Autoencoders have hidden layers that can be stacked,
like CNNs. Stacked autoencoders (SAEs) have a typically
symmetrical architecture, with a line of reflection through
the middle = hidden layer. Some techniques for optimiz-
ing autoencoder performance include tying weights of the
decoder layer to the encoder layer, training different subsets
of autoen- coders separately before stacking them together,
and transfer learning [32]. Simply stacking more layers may
not aid in the accuracy of the model, as the model may end
up performing the trivial task of simply copying the input to
the output. That is, the model performs well during training
but it has not learned any useful feature representations that
allow the model to be generalized and applied outside of the
training data.

To force models to learn useful representations, con-
straints need to be added. One example is the Denoising
Autoencoder reported by Vincent et al. [32], where Gaussian
noise is added to the early hidden layers. Applying dropout
i.e., randomly turning off some of the neurons in the early
hidden layers, accomplishes the same goal, by forcing the
model to learn useful codings to generate back the noise-
free inputs in the output layer. A second example are Sparse
Autoencoders [33], whereby a defined proportion of the
neurons in the hidden layers are deactivated or set to zero.
This is accomplished by having a cost function that penalizes
the model when there are active neurons beyond a defined
threshold. The rationale behind this, is as Bengio states, for a
given observation, only a small fraction of the possible factors
are relevant, meaning that much of the features extracted
from the data could be represented by being set to zero [34].
Kallenberg et al. [35] combined unsupervised convolution
layers trained as autoencoders, and supervised layers to clas-
sify mammograms into different densities and textures. The
texture classifica- tion task was used to impute if a mam-
mogram was normal or depicted breast cancer. They used
2700 mammograms from the Dutch Breast Cancer Screening
Program, the Dutch Breast Cancer Screening dataset, and the
Mayo Mammography Health Study. Interestingly, they used
a sparse autoencoder to learn the parameters of the feature-
extracting convolution layers, before this input was fed into
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FIGURE 3. Various neural network architectures. A. Recurrent neural network, B. Autoencoder, C. Restricted Boltzmann Machine, D. Deep Belief
Network, E. Generative Adversarial Network. x, y, h represent input, output and hidden layers respectively.

a softmax classifier. For the cancer classification task, this
Convolution stacked autoencoder (CSAE) model obtained an
AUC score of 0.57, which the authors reported as state of
the art.

Variational Autoencoders (VAEs) are an emerging and
popular unsupervised learning architecture described by
Kingma and Welling [36]. VAEs are a generative model,
consisting of a Bayesian inference encoder network and a
decoder network, that can be trained with stochastic gradi-
ent descent. The encoder network projects input data into
latent space variables, whose true distribution is approxi-
mated using a Gaussian distribution. The decoder network
then maps the latent space back into output data, trained and
guided by two cost functions: a reconstruction loss function
and the Kullback-Leibler divergence.

2) RESTRICTED BOLTZMANN MACHINES AND DEEP

BELIEF NET-WORKS

Boltzmann machines were invented by Ackley et al. [37]
in 1985, and were modified as Restricted Boltzmann
Machines (RBMs) a year later by Smolensky [38]. RBMs
are generative, stochastic, probabilistic, bidirectional graph-
ical models consisting of visible and hidden layers [22].
These layers are connected to each other but there are no
connections within the layers themselves. RBMs use the
backward pass of input data to generate a reconstruction,
and estimate the probability distribution of the original input.
van Tulder er al. [39] modified RBMs into what they
described as convolutional RBMs to classify lung tissue into
normal, emphysematous, fibrosed, micronodular, or ground
glass tissue. For this task, they used the CT chest scans
of 128 patients with interstitial lung disease from the
ILD database. Convolutional RBMs were trained with
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either purely discriminative, purely generative, or mixed-
discriminative and generative learning objectives to learn
filters. These filters were then used to perform feature
extraction and create feature activation maps, before clas-
sification using a random forest classifier. Classification
accuracies of between 41% to 68% were obtained, depend-
ing on the proportion of generative learning and the input
patch size. They also found that filters generated from
mixed-discriminative and generative learning performed the
best, concluding that discriminative learning could help
unsupervised feature extractors learn filters optimized for
classification tasks.

RBMs can be efficiently trained with Contrast-Divergence
algorithms [40] and stacked into Deep Belief Networks
(DBNSs), where the hidden layer output of a RBM becomes
the input for the visible layer of a second RBM stacked on
it. DBNs were described by Hinton et al. [41] in 2006 in
a seminal paper, which was largely responsible for the
renaissance in deep learning. The insight from Hinton et al.
was that DBNs could be trained in a greedy, layerby-layer
fashion [42], with lower layers learning low level features,
and progressively higher layers learning high level features,
mirroring real world data hierarchy. DBNs can also be cou-
pled to layers of supervised RBMs to produce a semisuper-
vised deep learning architecture. An application of RBMs
was reported by Khatami er al. [43], who used DBNs to
classify x-ray images into 5 classes of anatomic areas and
orientations.

3) GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANs) [44] represent a
type of unsupervised learning which holds promise for med-
ical image analysis tasks. As its name suggests, a GAN is
a generative model, and is similar to a VAE in that respect.
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GANs comprise of two simultaneously-trained, competing
models, which may be multilayer perceptrons such as CNNs.
The models may be described as two players competing in a
zero-sum game. One CNN is a generator that generates artifi-
cial training images. The other CNN is called a discriminator,
which classifies if images are real training images or artifi-
cial ones from the generator. The desired end-point of this
adversarial arrangement is one where the discriminator is
unable to tell the difference between a real and a generated
image i.e., the probability of assigning an image to either
data distribution is 1/2. An advantage is that both generator
and discriminator can be trained with backpropagation and
dropout, without unwieldly inference and Markov chains.
GANSs are relatively new but some applications in brain
MRI segmentation and synthetic medical data generation are
discussed in Section 4.1 below.

Ill. APPLICATIONS IN MEDICAL IMAGE ANALYSIS

To the researcher, CNNs have been put to task for classifi-
cation, localization, detection, segmentation and registra-
tion in image analysis. Machine learning research draws
a distinction between localization (draw a bounding box
around a single object in the image), and detection (draw
bounding boxes around multiple objects, which may be from
different classes). Segmentation draws outlines around the
edges of target objects, and labels them (semantic segmenta-
tion). Registration refers to fitting one image (which may be
2 or 3 dimensional) onto another. This separation of tasks
is based on different machine learning techniques and is
maintained below.

To the clinician this separation of tasks is not that cru-
cial, and it is the authors’ opinion that a pragmatic machine
learning system will incorporate some or all of the tasks into
a unified system. It would be ideal to, in a single workflow,
detect a lung tumor on a CT chest scan, and then localize
and segment it away from normal tissue, and to prognosticate
various treatment options, such as chemotherapy or surgery.
Indeed, some of these tasks blur into one another in the papers
discussed here. From the clinician’s perspective, classifica-
tion ascertains if a disease state is present or not, i.e., is
blood present on this MRI brain scan signifying a hem-
orrhagic stroke? Localization implies the identification of
normal anatomy, for example, where is the kidney in this
ultrasound image? This is in contrast to detection, which
implies an abnormal, pathological state, for example, where
are all the lung tumors in this CT scan of the lung? Segment-
ing the outline of a lung tumor helps the clinician determine
its distance from major anatomical structures, and helps to
answer a question such as, should this patient be operated on,
and if so, what should be the extent of resection?

A. CLASSIFICATION

Classification is sometimes also known as Computer-Aided
Diagnosis (CADx). Lo et al. described a CNN to detect lung
nodules on chest X-rays as far back as 1995 [45]. They used
55 chest x-rays and a CNN with 2 hidden layers to output
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whether or not a region had a lung nodule. The relative
availability of chest x-ray images has likely accelerated deep
learning progress in this modality. Rajkomar et al. [46] aug-
mented 1850 chest x-ray images into 150,000 training sam-
ples. Using a modified pre-trained GoogLeNet CNN [47],
they classified the orientation of the images into frontal or lat-
eral views with near 100% accuracy. Although this task
of identifying the orientation of the chest x-ray is of lim-
ited clinical use, it does demonstrate the effectiveness of
pre-training, and data augmentation in learning the relevant
image metadata, as part of an eventually fully-automated
diagnostic work-flow. Pneumonia or chest infection is a com-
mon health-problem world-wide that is eminently treatable.
Rajpurkar et al. [48] employed a modified DenseNet [49]
with 121 convolutional layers called CheXNet to clas-
sify 14 different diseases seen on the chest x-rays, using
112,000 images from the ChestXray14 [17] dataset. CheXNet
achieved state of the art performance in classifying the 14 dis-
eases; pneumonia classification in particular achieved an
Area Under Curve (AUC) score of 0.7632 with Receiver
Operating Characteristics (ROC) analysis. Moreover, on a
test set of 420 images, CheXNet matched or bettered the
performance of 4 individual radiologists, and also the perfor-
mance of a panel comprising of 3 radiologists. Shen et al. [50]
used CNNs combined with Support Vector Machine (SVM)
and Random Forest (RF) classifiers to classify lung nod-
ules into benign or malignant, based on 1010 labelled CT
lung scans from the Lung Image Database Consortium
(LIDC-IDRI) dataset. They used 3 parallel CNNs with 2 con-
volution layers each, with each CNN taking image patches
at different scales to extract features. The learned features
were used to construct an output feature vector, which was
then classified using either a SVM with radial basis func-
tion (RBF) filter or RF classifier into benign or malignant.
Their method classified nodules with 86% accuracy and they
also found that it was robust against different levels of noise
inputs. Li ef al. [51] used 3-dimensional CNNs to interpo-
late missing imaging data between MRI and PET images.
830 patients with MRI and PET scans from the Alzheimer
Disease Neuroimaging Initiative (ADNI) database were stud-
ied. 3-D CNNs were trained with MRI and PET images as
input and output respectively, and used to reconstruct PET
images from patients who did not have them. Their recon-
structed PET images almost matched ground truth results
of disease classification, but one caveat is that issues of
overfitting were not addressed, limiting the potential general-
izability of their technique. Hosseini-Asl et al. [52] achieved
state of the art results in diagnosing patients with Alzheimer’s
Disease versus normal, with an accuracy of 99%. They
employed 3-D CNNs in an autoencoder architecture, pre-
trained on the CADDementia dataset to learn generic brain
structural features. The learned feature outputs were then
connected to higher layers where deep supervision techniques
fine-tuned the algorithm’s ability to discriminate between
scans of patients with normal brains, mild cognitive impair-
ment, or Alzheimer’s Disease from the ADNI database.
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Korolev et al. [53] evaluated the performance of their
VOXCNN and ResNet, which was based on the VGGNet [54]
and Residual neural network architectures [55] respectively.
They also used the ADNI database to discriminate between
normal and Alzheimer Disease patients. Although their accu-
racy of 79% for Voxnet and 80% for ResNet was lower
than what Hosseini-Asl achieved, Korolev states that their
algorithms did not need hand-crafting of features and were
simpler to implement.

Diabetic retinopathy (DR) can also be diagnosed using
CNNs. Using digital photographs of the fundus of the eye,
Pratt et al. [56] trained a CNN with 10 convolutional layers
and 3 fully connected layers on approximately 90,000 fundus
images. They classified DR into 5 clinically used classifica-
tions of DR severity, with 75% accuracy. Abramoff et al. [57]
evaluated a commercial device, the IDx-DR version X2.1
(IDx LLC, Iowa City, Iowa, USA) to detect DR. The author
does not disclose the CNN architectures but states they
are inspired by Alexnet and VGGNet. The device, trained
on up to 1.2 million DR images, obtained an AUC score
of 0.98.

Unsupervised learning methods are also an active area of
research. Plis et al. [58] used Deep Belief Networks to extract
features from functional fMRI (fMRI) images, and MRI
scans of patients with Huntington Disease and Schizophrenia.
Suk et al. [59] classified fMRI images into diagnoses of
Healthy or Mild Cognitive Impairment, using a stacked archi-
tecture of RBMs to learn hierarchal functional relationships
between different brain regions. Looking outside the usual
CNN models, Kumar et al. [60] compared the performance
of the well-known CNNs Alexnet and VGGNet to other
techniques, namely Bag of Visual Words (BOVV) and Local
Binary Patterns (LBP). Interestingly, the BOVV technique
performed the best at classifying histopathological images
into 20 different tissue types.

B. LOCALIZATION

Localization of normal anatomy is less likely to interest
the practicing clinician although applications may arise in
anatomy education. Alternatively, localization may find use
in fully automated end-to-end applications, whereby the
radiological image is autonomously analyzed and reported
without any human intervention. Yan e al. [61] looked at
transverse CT image slices and constructed a two stage CNN
where the first stage identified local patches, and the second
stage discriminated the local patches by various body organs,
achieving better results than a standard CNN. Roth et al. [62]
trained a CNN with 5 convolution layers to discriminate
approximately 4000 transverse axial CT images into one of
5 categories: neck, lung, liver, pelvis, legs. He was able to
achieve a 5.9% classification error rate and an AUC score
of 0.998, after data augmentation techniques. Shin ez al. [63]
used stacked autoencoders on 78 contrast-enhanced MRI
scans of the abdominal region containing liver or kidney
metastatic tumors, to detect the locations of the liver, heart,
kidney and spleen. Hierarchal features were learned over the
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spatial and temporal domains, giving detection accuracies of
between 62% and 79%, depending on the organ.

C. DETECTION

Detection, sometimes known as Computer-Aided Detection
(CADe) is a keen area of study as missing a lesion on a
scan can have drastic consequences for both the patient and
the clinician. The task for the Kaggle Data Science Bowl
of 2017 [64] involved the detection of cancerous lung nod-
ules on CT lung scans. Approximately 2000 CT scans were
released for the competition and the winner Fangzhou [65]
achieved a logarithmic loss score of 0.399. Their solution
used a 3-D CNN inspired by U-Net architecture [19] to isolate
local patches first for nodule detection. Then this output was
fed into a second stage consisting of 2 fully connected layers
for classification of cancer probability. Shin et al. [24] evalu-
ated five well-known CNN architectures in detecting thoraco-
abdominal lymph nodes and Interstitial lung disease on CT
scans. Detecting lymph nodes is important as they can be a
marker of infection or cancer. They achieved a mediastinal
lymph node detection AUC score of 0.95 with a sensitivity
of 85% using GoogleNet, which was state of the art. They
also documented the benefits of transfer learning, and the use
of deep learning architectures of up to 22 layers, as opposed to
fewer layers which was the norm in medical image analysis.
Overfeat was a CNN pre-trained on natural images that won
the ILSVRC 2013 localization task [66]. Ciompi et al. [67]
applied Overfeat to 2-dimensional slices of CT lung scans
oriented in the coronal, axial and sagittal planes, to predict
the presence of nodules within and around lung fissures. They
combined this approach with simple SVM and RF binary
classifiers, as well as a Bag of Frequencies [68], a novel
3-dimensional descriptor of their own invention.

Other than lung lesions, there are also a myriad of
other applications, including detecting malignant skin cells.
Esteva et al. [69] used 130,000 dermatological photographs
and dermoscopic images to train a GoogLeNet Inception
V3 CNN, with no hand-crafting of features. The CNN out-
performed human dermatologists in classifying the images
as benign, malignant or non-neoplastic lesions, reaching an
accuracy of 72% compared to the 65% and 66% accuracies
obtained by 2 human dermatologists. The CNN again bettered
21 human dermatologists at deciding treatment plans for two
types of skins cancers: carcinoma and melanoma. This task
involved 376 biopsy-proven images, and the CNN achieved
AUC scores of between 0.91 to 0.96.

Histopathological images are increasingly digitized and
this has led to numerous papers in this field. Currently these
images are laboriously read by human pathologists who look
for markers of malignancy such as: increased nucleus to
cytoplasm ratios, increased numbers of mitotic figures indi-
cating increased cell replication, atypical cellular architec-
ture, signs of cellular necrosis, high cell proliferation index
from molecular markers like Ki-67. A histopathological slide
can contain hundreds to thousands of cells, and wading
through them at high magnification carries the risk of missing
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aberrant neoplastic areas. Ciresan ef al. [70] used 11-13 layer
CNNs to identify mitotic figures in 50 breast histology
images from the MITOS dataset. Their approach achieved
precision and recall scores of 0.88 and 0.70 respectively.
More recently, Yang et al [71]. achieved accuracies of
97-98% in classifying kidney cancer histopathological
images into tumor or non- tumor, using CNNs that were
5-7 layers deep. Sirinukunwattana et al. [72] also used CNNss,
but to detect cell nuclei in 100 colorectal adenocarcinoma
histology images. For training, almost 30,000 nuclei had
to be hand-labelled. The novelty in their approach was the
use of their Spatially-Constrained CNN, which used spatial
regression and the surrounding spatial context to identify the
centers of nuclei. Nuclei in breast cancer histological slides
were also identified by Xu er al. [73], although he used a
Stacked Sparse Autoencoder (SSAE) instead. Their model
obtained precision and recall scores of 0.89 and 0.83 respec-
tively, showing that unsupervised learning methods can also
be successfully employed in this field. Albarquoni et al. [74],
deal with the issue of insufficient labelling of medical images,
by “crowd-sourcing” the ground-truth labelling of mitoses
in breast cancer histology images to non-experts on the inter-
net. The crowd-sourced input labels were fed into a CNN,
and this represents an interesting proof-of-concept work that
may solve the perennial problem of insufficient labelling in
medical image analysis.

D. SEGMENTATION

CT and MRI mage segmentation research covers a variety of
organs such as liver, prostate and knee cartilage, but a large
amount of work has focused on brain segmentation, including
tumor segmentation. The latter is especially important in
surgical planning to determine the exact boundaries of the
tumor in order to direct surgical resection. Sacrificing too
much of eloquent brain areas during surgery would cause
neurological deficits such as limb weakness, numbness and
cognitive impairment. Traditionally, medical anatomical seg-
mentation was done by hand, with a clinician drawing out-
lines slice by slice through an entire MRI or CT volume stack,
therefore it is ideal to implement a solution that automates
this laborious task. An excellent review of brain MRI seg-
mentation was written by Akkus et al. [75], who reviewed
various CNN architectures and metrics used in segmentation.
Additionally, he also detailed the numerous competitions and
their datasets, such as Brain Tumor Segmentation (BRATS),
Mild traumatic brain injury outcome prediction (MTOP) and
Ischemic Stroke Lesion Segmentation (ISLES).

Moeskops et al. [76] used 3 CNNs, each with a different
2-dimensional input patch size, running in parallel to classify
and segment MRI brain images of 22 pre-term infants and
35 adults into different tissue classes such as white matter,
grey matter and cerebrospinal fluid. The advantage of using
3 different input patch sizes is that each focuses on capturing
different aspects of the image, with the smallest patch focused
on local textures while the larger patch sizes assimilated spa-
tial features. Overall, the algorithm achieved good accuracy,
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with Dice coefficients between 0.82 and 0.87. Most segmen-
tation research has been on 2-dimensional image slices, but
Milleterai et al. [20] applied 3-dimensional CNN to segment
MRI prostate images from the PROMISE2012 challenge
dataset. Their proposed V-net was inspired by Ronnerberger’s
U-Net architecture [19], and was trained on 50 MRI prostate
scans and tested on 30 similar scans. V-net achieved a dice
similarity coefficient score of 0.869, which was similar to that
of the top placed teams in the challenge. Pereira et al. [77]
applied deliberately small filters of 3 x 3 size, to allow
the design of a deeper 11 convolution layer CNN, and to
reduce overfitting. Their CNN was trained on 274 MRI
brain tumor scans of gliomas, a type of brain tumor with
significant malignant potential, obtaining first place in the
BRATS 2013 and second place in the BRATS 2015 challenge.
Havaei er al. [78] also looked at gliomas, and explored
various 2-dimensional CNN architectures on the BRATS
2013 dataset. Their algorithm performed better than the
BRATS 2013 winner, and took 3 minutes to run, compared
to 100 minutes. Their InputCascadeCNN had a cascaded
architecture, with the output of a first CNN being fed into
a second CNN. Chen et al. [79] proposed using up-sampled
filters, atrous spatial pyramid pooling, and fully connected
Conditional Random Fields (CRFs). These aid in enlarg-
ing the field of each filter’s view at multiple scales and
improve localization accuracy. With this architecture which
they called DeepLab, Chen et al. achieved state-of-the-art
performance in the PASCAL VOC-2012 Image segmentation
task, reaching 79.7% mean Intersection over Union (mIOU).
There is some overlap with Moeskops’ [76] use of input
patches at different scales, and it would be interesting to
see how this work in image segmentation can be advanced
further. A more recent study by Casamitjana et al. [80],
compared various 3-dimensional CNN architectures. Train-
ing on the BRATS 2015 brain tumor dataset, they found
that their 3D-CNN, modified from the DeepMedic CNN by
Kamnitsas et al. [21], performed the best, and advocated
using smaller receptive fields with multi-scale architecture.
Brosch et al. [81] also exploited the analysis of multi-scale
architecture, in segmenting MRI brain lesions of multiple
sclerosis. They employed a novel approach but using both
an encoder convolutional pathway consisting of pre-trained
RBMs, and a deconvolutional pathway similar to a U-Net
architecture.

E. REGISTRATION

Although the registration of medical images has many
potential  applications, which were reviewed by
El-Gamal et al. [82], their actual clinical use is encountered in
niche areas. Image registration is employed in neurosurgery
or spinal surgery, to localize a tumor or spinal bony landmark,
in order to facilitate surgical tumor removal or spinal screw
implant placement. A reference image is aligned to a second
image, called a sense image and various similarity measures
and reference points are calculated to align the images, which
can be 2 or 3-dimensional. The reference image may be
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a pre-operative MRI brain scan and the sense image may
be an intraoperative MRI brain scan done after a first-pass
resection, to determine if there is remnant tumor and if
further resection is required. Using MRI brain scans from
the OASIS dataset, Yang et al. [83] stacked convolution
layers in an encoder-decoder fashion, to predict how an
input pixel would morph into its final configuration. They
invoked the use of a Large deformation diffeomorphic metric
mapping (LDDMM) registration model and achieved dra-
matic improvements in computational time. Miao et al. [84]
trained a 5 layer CNN on synthetic X-ray images in order
to register 3-dimensional models of a knee implant, a hand
implant, and a trans-esophageal probe onto 2-dimensional
X-ray images, in order to estimate their pose. Their method
obtained successful registrations 79-99% of the time, and
took 0.1 seconds, a significant improvement over traditional
intensity-based registration methods.

IV. CONCLUSION

A. CHALLENGES

A recurring theme in machine learning is the limit imposed by
the lack of labelled datasets, which hampers training and task
performance. Conversely, it is acknowledged that more data
improves performance, as Sun et al. [85] shows using an inter-
nal Google dataset of 300 million images. In general com-
puter vision tasks, attempts have been made to circumvent
limited data by using smaller filters on deeper layers [47],
with novel CNN architecture combinations [86], or hyperpa-
rameter optimization [87].

In medical image analysis, the lack of data is two-fold
and more acute: there is general lack of publicly available
data, and high quality labelled data is even more scarce.
Most of the datasets presented in this review involve fewer
than 100 patients. Yet the situation may not be as dire as
it seems, as despite the small training datasets, the papers
in this review report relatively satisfactory performance in
the various tasks. The question of how many images are
necessary for training in medical image analysis was partially
answered by Cho et al. [88]. He ascertained the accuracy
of a CNN with GoogLeNet architecture in classifying indi-
vidual axial CT images into one of 6 body regions: brain,
neck, shoulder, chest, abdomen, pelvis. With 200 training
images, accuracies of 88-98% were achieved on a test set of
6000 images. While categorization into various body regions
is not a realistic medical image analysis task, his report does
suggest that the problem may be surmountable. Being able to
accomplish classification with a small dataset is possibly due
to the general intrinsic image homogeneity across different
patients, as opposed to the near-infinite variety of natural
images, such as a dog in various breeds, colors and poses.

VAEs and GANS, being generative models, may sidestep
the data paucity problem, by creating synthetic medical data.
This was done by Guibas and Virdi, who used a 2 stage
GAN to segment and then generate retinal fundus images
successfully [89]. Their work was built on the research of
Costa et al. [90], which first described using GANs to
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generate retinal fundus images. Aside from synthetic data
generation, GANs have been used in brain MRI segmentation
as well by Moeskops et al. [91], Kamnitsas ef al. [92] and
Alex et al. [93].

Data or class imbalance in the training set is also a sig-
nificant issue in medical image analysis [94]. This refers
to the number of images in the training data being skewed
towards normal and non-pathological images. Rare diseases
are an extreme example of this and can be missed without
adequate training examples. This data imbalance effect can
be ameliorated by using data augmentation to generate more
training images of rare or abnormal data, though there is risk
of overfitting. Aside from data-level strategies, algorithmic
modification strategies and cost sensitive learning have also
been studied [95], [96].

An important, non-technical challenge is the public
reception towards their health results being studied by a non-
human actor. This situation is not helped by the apocalyptic
artificial intelligence scenarios painted by some. Machine
learning algorithms have surpassed human performance in
image recognition tasks, and it is likely that they will perform
better than humans in medical image analysis as well. Indeed,
some of the papers in this review report that dermatologists
and radiologists have already been bested by machine learn-
ing. Yet the question regarding legal and moral culpability
arises when a patient is misdiagnosed, or suffers morbidity
as a result of Al or Al-assisted medical management. This is
accentuated by our inability to fully explain how the black-
box of machine algorithms work. However, it is likely that our
relationship will continue evolve and recalibrate as Al-based
technologies mature and inexorably permeate different facets
of our lives.

B. FUTURE APPLICATIONS

The traditional applications for medical image analysis were
discussed in Section 3. New areas of research include prog-
nostication [97], content-based image retrieval [98], [99],
image report or caption generation [100], [101], and manip-
ulation of physical objects with LSTMs and reinforcement
learning [102], [103] involving surgical robots [104], [105].
A few innovative applications that span across traditional
medical image analysis categories are described below.

An interesting  application was  reported by
Nie et al. [106], [107], in which GANs were used to generate
CT brain images from MRI images. This is remarkable, as it
means that patients can potentially avoid the ionizing radia-
tion from a CT scanner altogether, lowering cost and improv-
ing patient safety. Nie also exploited the ability of GANs
to generate improved, higher resolution images from native
images [108] and reduced the blurriness in the CT images.
A useful extension of resolution improvement techniques
would be applying them to generate MRI images of higher
quality. High quality MRI images require high tesla (and
correspondingly costlier) MRI scanners. Algorithmically-
generated high quality MRI images on a lower field-strength
scanner would thus lower healthcare costs.
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Chang [109] demonstrated a novel application in the
nascent area of radio-genomics, which uses radiological
images to predict the underlying molecular origin of a tissue.
He first used an autoencoder to learn latent features from
MRI images of glioblastoma multiforme (GBM), a malignant
brain tumor, from The Cancer Genome Atlas Glioblastoma
Multiforme (TCGA-GBM) data collection [110]. The learned
features were then fed into a fully connected classifier layer to
classify a MRI scan into one of 4 known molecular sub-types
of GBM. Although still early, Chang’s work could potentially
diagnose a GBM sub-type and obviate the need for surgical
biopsy and molecular assays. The generalizability of this
technique to tumors elsewhere in the body is also promising.

Coudray et al. [111] accomplished an analogous task, but
used histopathological images to classify lung cancer sub-
types, and to predict common genetic mutations. Knowing
the genetic mutations is helpful in prognosticating length
of survival and guiding the choice of chemotherapy. Their
method outperforms a human pathologist, and the prediction
of genetic mutations had AUC scores of between 0.73 to 0.86.

Tsochatzidis et al. [112] described an original work com-
bining content-based image retrieval (CBIR) and comput-
eraided diagnosis (CADx). In essence, their model segmented
alesion on a query image, and compared this to the segmented
lesions in their database, consisting of 400 Regions of interest
derived from the Digital Database for Screening Mammogra-
phy (DDSM). The basis of comparison were the Euclidean
distances between the representation vectors of the query
lesion and database lesions. The model then outputs both
reference images and a likelihood of a lesion being benign
or malignant. They reported that their combined CBIR and
CADx method resulted in state of the art prediction accuracy
of 81%. These examples highlight how the field of machine
learning in medical image analysis is changing rapidly, and
that there may still be numerous applications which have not
been conceived of yet.
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