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ABSTRACT This paper considers both local and global synchronizations of fractional-order nonlinearly-
coupled complex networks with time delay and unknown external disturbances. Here, neither delayed or non-
delayed configuration matrices are necessarily irreducible or symmetric. Combined with the fractional order
compare theorem and fractional order stability theory, some novel sufficient conditions are obtained that
guarantee the realization of local and global asymptotic synchronization via adaptive control and pinning
control. The network model and conclusion in this paper are more practical and general than those in the
existing literature. The experimental results show the feasibility of our theoretical analysis.

INDEX TERMS Complex networks, fractional-order, nonlinearly coupled, time delay, external disturbances.

I. INTRODUCTION
Work and life are closely connected with various complex
networks, such as the Internet, gene networks, power grid
networks, neural networks, and so on [1]–[5]. Among diverse
dynamical behaviors of complex networks, synchronization
is one of the most significant collective phenomena, and has
many practical applications(such as image encryption, digital
communication, secure communication [6], [7]). Network
synchronization has garnered increasing research attention.
Some networks can be synchronized through information
exchange among local connections, but in reality, most com-
plex networks cannot achieve a synchronization state while
depending only on their internal structures without using
some external driving force [8]. Therefore, according to the
characteristics of different network models, various types of
control techniques have been used to facilitate achieving syn-
chronization, including feedback control [9], [10], pinning
control [11]–[13], adaptive control [14]–[16] and impulsive
control [17], [18], etc.

In contrast, fractional order calculus is an important
branch of traditional calculus. It was first proposed by
generalizing integer order calculus to an arbitrary frac-
tional order [19], [20]. However, in science and engineering
research, fractional order calculus has been neglected due to
a lack of suitable application history. Fortunately, the gradual

evolution of fractional calculus operations has now attracted
considerable research attention in various fields [21]–[24].
The main advantage of fractional-order differential equations
is its non-locality. This shows the state of fraction-order
systems depends on not only the current moment, but also
depends on the past state. Many real systems, such as power
systems and physical systems, are more likely to be the
fractional-order systems. Moreover, compared with integer-
order complex networks, the fractional-order ones add a
degree of freedom by using fractional derivative, which is
more practical in the fields of secure communication and
neural networks. Based on the peculiar superiority of memory
and hereditary nature of fractional calculus, it has become a
useful tool for accurately describing various actual complex
issues [25]–[29].

Recently, the Caputo fractional order derivative opera-
tor was introduced to complex networks because its ini-
tial conditions are the same as integer-order conditions and
reflect well-understood physical truths. As this operator has
developed, the problem of synchronizing fractional order
complex networks has gradually become a hot research
point [30]–[40]. Ma and Zhang [34] studied the hybrid syn-
chronization issue of two general fractional-order complex
networks with non-delayed coupling by using a feedback
control strategy. Wu and Lu [35] obtained some valuable

VOLUME 6, 2018
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4653

https://orcid.org/0000-0001-9668-8396


J. Pei et al.: Adaptive Synchronization of Fractional-Order Nonlinearly Coupled Complex Networks

theoretical results for outer synchronization of fractional-
order systems with non-delayed coupling by designing a
nonlinear feedback controller. They concluded that the syn-
chronization effect depends on both the feedback control gain
and fractional order. Wu et al. investigated generalized syn-
chronization of fractional-order weighted chaotic networks
by using a nonlinear control scheme in [36]. To reduce the
control costs, pinning control was used in [37]. Some novel
criteria for cluster synchronization of fractional-order linear-
coupling complex networks were obtained, and the number
of pinned nodes was effectively estimated. Wang et al. [38]
considered exponential synchronization of fractional-order
dynamical systems by using pinning impulsive control, and
proposed an estimation method for the system parameters.
Note that the fractional order models in [34]–[38] did not
consider delayed coupling or any external disturbances.

To simulate networks more realistically, time delay was
considered in [39] and [40] and an external disturbance was
addressed in [30]–[33] and [41]–[48]. For example, adap-
tive synchronization of fractional-order uncertain systems
with delayed linear coupling was considered in [39]. Projec-
tive synchronization of fractional-order undirected dynami-
cal networks with coupling delay was studied by using an
integer-order Lyapunov scheme in [40]. Stability analysis for
fractional-order financial systems under a disturbance was
investigated in [30], in which the unknown parameter can
be estimated by a corresponding adaptive law. Finite time
synchronization of fractional-order systems with an unknown
disturbance was studied in [33] using sliding mode control.
Based on sliding control and adaptive control techniques,
synchronization of general fractional-order systems with
unknown disturbances was studied in [41]. To obtain more
useful stability condition, a new T-S fuzzy control method
was proposed for the stabilization of fractional-order nonlin-
ear systems with external disturbances [43]. However, many
methods and strategies for integer-order complex networks
can not be directly extended to fractional-order networks.
Therefore, designing a novel fractional-order adaptive con-
troller to synchronize fractional-order nonlinearly-coupled
systems with non-delayed and delayed couplings as well as
unknown external disturbances is a valuable task.

Most of the research results for fractional-order networks
have been based on the following three simple cases: (i) The
signal transmission from one node to another node is consid-
ered at the time instant t or t − τ . (ii) The coupling function
of systems is linear and no external noise disturbance occurs.
(iii) The interaction topology of networks is bidirectional (the
coupling configuration matrix should be symmetrical or irre-
ducible). However, to the best of our knowledge, few research
results exist concerning adaptive pinning synchronization for
fractional-order nonlinearly-coupled directed networks with
external disturbances nor for fractional-order nonlinear net-
works with non-delayed and delayed couplings in addition to
disturbances, which is a more practical approach considering
real-world conditions. For example, time delays often occur
in communication and neural networks because of finite

signal transmission speeds. Thus, information is communi-
cated between different units not only at time t but also
at time t − τ . Meanwhile, external disturbances often exist
in communication processes because of interference from
various types of noise. Moreover, due to conditions of limited
visibility and instrument precision, the state variables xi(t)
of some neural networks may be difficult to observe, but we
can easily observe their nonlinear-coupling states. Further-
more, directional networks are widely used for information
transmission in modern life, such as research paper citation
networks and broadcasting networks.

For the above reasons, this paper investigates locally
and globally asymptotic synchronization of fractional-order
nonlinearly-coupled complex networks with non-delayed and
delayed couplings as well as external disturbances based on
fractional-order stability theory. It is worth noting that the
coupling configuration matrices considered in this paper can
be asymmetric as well as reducible and that the external
unknown disturbances are nonlinear. Our work’s major con-
tributions include four aspects as follows: (1) The fractional-
order model is more general and practical than those in the
existing literature and all the results are obtained based on
fractional-order stability theory. (2) Few works study adap-
tive synchronization of fractional-order nonlinear systems
with time-delay and disturbances by using fractional-order
compare theorem. This paper tries to fill this gap. (3) This
paper designs a novel fractional-order adaptive pinning con-
troller and it has the following characteristics. First, its
adaptive law contains a free parameter q, which is more
practical than the integer-order adaptive controller. Second,
it simultaneously introduces the sign function and 1-norm of
the synchronization error. This is the main reason that our
controller can overcome disturbances in the synchronization
process. Our controller inherits the advantages of the pinning
controller and the adaptive controller. Pinning control is a
very useful technique that controls only a subset of the nodes
rather than all the nodes. Moreover, the controllers’ gain
adjusts adaptively to a suitable strength until synchroniza-
tion is achieved. (4) Based on the linear matrix inequality
and matrix decomposition technique, the lower bound of the
control strength can be precisely evaluated.

This paper is organized into five sections. Section II pro-
vides important preliminary knowledge and introduces a gen-
eral fractional-order nonlinearly-coupled system. Section III
investigates local and global synchronization conditions of
fractional-order systems by designing suitable controllers.
Section IV presents two typical numerical examples to sup-
port the theoretical analysis and Section V concludes the
paper.
Notations: In this paper,min{} andmax{} denote the small-

est and largest element in the set {}, respectively, such as
ā = min{a1, a2, . . . , an}, â = max{a1, a2, . . . , an}, ϑ̄ =
min{ϑ1, ϑ2, . . . , ϑn} and ϑ̂ = max{ϑ1, ϑ2, . . . , ϑn}. For a
real matrix B,λmax(B) denotes its maximum eigenvalue, BT

represents its transpose, andBs = (B+BT )/2. ‖·‖1, ‖·‖∞ and
‖·‖ denote the 1-norm,infinite norm and Euclidean norm of a
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matrix or vector, respectively. For a real function x(t), Iqt0x(t)
and Dqt0x(t) denote the q order integral and Caputo derivative
whose initial value is t0, respectively.

II. SYSTEMS AND PRELIMINARIES
Consider a general fractional-order nonlinear complex net-
work with N nodes, which can be described as follows:

Dq0xi(t) = f (xi(t))+ c1
N∑
j=1

φijA5(xj(t))

+ c2
N∑
j=1

ψijA2(xj(t − τ ))+1i(t)+ ui(t) (1)

where 0 < q < 1, xi(t) = [x1i(t), x2i(t), · · · , xni(t)]T ∈
Rn is the state variable of node i and f : Rn → Rn is
a smooth vector-valued function. The constants c1 > 0
and c2 > 0 denote coupling strengths, and τ > 0 is
the coupling delay. A =diag{a1, a2, . . . , an} ∈ Rn×n is
a diagonal matrix that satisfies ai > 0, i = 1, 2, . . . , n.
8 = (φij) ∈ RN×N and 9 = (ψij) ∈ RN×N are the
coupling configuration matrices that satisfy the conditions
φii = −

∑N
j=1,j 6=iφij and ψii = −

∑N
j=1,j 6=iψij, respectively.

If there is a connection from node j to node i(i 6= j), then
φij 6= 0 and ψij 6= 0; otherwise, φij = 0 and ψij = 0.
The continuous nonlinearly-coupled functions 5(·) : Rn →
Rn and 2(·) : Rn → Rn have the forms: 5(xi(t)) =
[π1(x1i(t)), π2(x2i(t)), . . . , πn(xni(t))]T and 2(xi(t − τ )) =
[θ1(x1i(t − τ )), θ2(x2i(t − τ )), . . . , θn(xni(t − τ ))]T , respec-
tively. The initial conditions associated with (1) are x0i (t) =
[x01i(t), x

0
2i(t), · · · , x

0
ni(t)] ∈ C([t0− τ, t0],R

n). Here,1i(t) ∈
Rn are external time-varying disturbance vectors.

Suppose that s(t) is a solution of an isolated node that
satisfies

Dq0s(t) = f (s(t)). (2)

Our goal is to design some appropriate controllers ui(t) to
synchronize the solutions of network (1) to the given solution
s(t). Define the error vector as ei(t) = xi(t)−s(t), 1 ≤ i ≤ N .
Because the coupling matrices8 and9 satisfy the zero-sum-
row conditions, the error system is

Dq0ei(t) = F(ei(t))+ c1
N∑
j=1

φijA[5(xj(t))−5(s(t))]

+ c2
N∑
j=1

ψijA[2(xj(t − τ ))−2(s(t − τ ))]

+1i(t)+ ui(t) (3)

where F(ei(t)) = f (xi(t))−f (s(t)), i = 1, 2, . . . ,N . As we all
know, the dynamical system (1) asymptotically synchronizes
to the goal trajectory s(t) if the zero solution of the error
system (3) is asymptotically stable.
Remark 1: The non-delayed and delayed coupling matri-

ces are not necessarily symmetric or irreducible in this paper.
This shows that the fractional-order networks (1) can be

undirected or directed, and may also include some isolated
nodes.
Remark 2: Complex network (1) is a general fractional-

order model in which external unknown disturbances,
directed communications, and non-delayed and delayed non-
linear couplings exist. Note that the delayed coupling was
not considered in [30]–[38]. Although the fractional-order
systems in [40] considered both delayed and non-delayed
couplings, the coupling function was linear and external dis-
turbance was neglected. Moreover, the control scheme in [40]
was based on integer-order stability theory, not on fractional-
order stability theory.
Definition 1 [38]: The dynamical network (1) is said to

realize synchronization if
N∑
i=1

lim
t→∞
‖xi(t)− s(t)‖ = 0.

Definition 2 [28]: The Caputo fractional derivative for a
function x(t) is defined as

Dqt0x(t) =
1

0(n− q)

∫ t

t0
(t − τ )n−q−1x(n)(τ )dτ

where 0 ≤ n− 1 < q < n and 0(·) is the Gamma function.
Lemma 1 [49]: Let a vector-value function y(t) =

(y1(t), y2(t), . . . , yn(t))T is differentiable. Then, for ∀t ≥ t0,
one has

Dqt0 [y
T (t)y(t)] ≤ 2yT (t)Dqt0y(t), 0 < q < 1.

Lemma 2 [39]: Suppose that W (t) ∈ R1(W (t) ≥ 0) is a
continuously differentiable function, and satisfies{

Dqt0W (t) ≤ −κ1W (t)+ κ2W (t − τ ), 0 < q < 1
W (t) = κ(t) ≥ 0, t ∈ [−τ, 0]

where t ≥ 0 and κ1 > κ2 > 0. Then, limt→+∞W (t) = 0 for
all κ(t) ≥ 0 and τ > 0.
Lemma 3 [10]: Assume that 1n = (1, 1, . . . , 1)T ,Q =

In − 1
n1n.1

T
n , ϑ > 0 and H ∈ Rm×n satisfies zero-row-sum

condition, one has

xTHy ≤
1
2
(
1
ϑ
xTHHT x + ϑyTQy).

Lemma 4 [50]: let a symmetrical matrix Q ∈ Rn×n

satisfies qii = −
∑n

j=1,i 6=jqij, i, j = 1, 2, . . . , n, then for all
vectors µ = (µ1, µ2, . . . , µn)T and ν = (ν1, ν2, . . . , νn)T ,
we have

µTQν =
n∑
i=1

n∑
j=1

µiqijνj = −
∑
j>i

qij(µi − µj)(νi − νj).

Lemma 5 [8]: The following linear matrix inequality
(LMI) (

Q(x) M (x)
M (x)T R(x)

)
< 0

is equivalent to R(x) < 0 and Q(x) − M (x)R(x)−1M (x)T <
0, where Q(x) and R(x) satisfy Q(x) = Q(x)T and R(x) =
R(x)T , respectively.
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Assumption 1: Assume that there exists a constant η ≥ 0
such that ‖Df (s)‖ ≤ η, where Df (s) is the Jacobian of f
evaluated at x = s.
Assumption 2: Assume that there exists a constant L ≥ 0

such that ‖f (xi(t))− f (s(t))‖ ≤ L‖xi(t)− s(t)‖.
Assumption 3: [10] For each nonlinear function πk (·) and

θk (·) in system (1), there exist constants β ≥ 0 and ε ≥ 0
such that λk (x) = πk (x)− βx and rk (x) = θk (x)− βx satisfy
the following conditions

|πk (x1)− πk (x2)− β(x1 − x2)| ≤ ε|x1 − x2|

|θk (x1)− θk (x2)− β(x1 − x2)| ≤ ε|x1 − x2|

respectively, for ∀x1, x2 ∈ R, k = 1, 2, · · · , n.
Assumption 4: The norm of the time-varying disturbance

1i(t) is bounded, i.e., ‖1i(t)‖ ≤ wi.
Remark 3: In fact, it has been verified that many chaotic

systems, such as Lorenz system, Chen system, Chua’s circuit
system and Lü system satisfy Assumption 2.
Remark 4: Nonlinear coupling exists widely in the actual

complex network, such as the coupling between different
neurons in the neural network. The nonlinear function can be
decomposed into the linear part βx and the oscillatory part by
using projection method.

III. MAIN RESULTS
A. LOCALLY ASYMPTOTIC SYNCHRONIZATION VIA
ADAPTIVE CONTROL
To reduce the enormous difference of control strength
between theoretical value and practical need, the adaptive
controllers ui(t) of the error system (3) can be designed as
follows:{
ui(t) = −(di(t)+ d∗i )Aei(t)− d̃1sgn(ei(t))/‖ei(t)‖1,
Dq0di(t) = bi‖ei(t)‖2,

(4)

for 1 ≤ i ≤ N , where di(t), d∗i and d̃1 = 1
2N

∑N
i=1 w

2
i

are the control gains (di(t) ≥ 0, d∗i > 0, bi > 0), and
sgn(ei(t)) = (sign(e1i(t)), sign(e2i(t)), . . . , sign(eni(t)))T are
signum vectors. Substituting equation (4) into (3), the error
system becomes

Dq0ei(t) = F(ei(t))+ c1
N∑
j=1
φijA[5(xj(x))−5(s(t))]

+ c2
N∑
j=1
ψijA[2(xj(t−τ ))−2(s(t − τ ))]+1i

− (di(t)+ d∗i )Aei(t)− d̃1sgn(ei(t))/‖ei(t)‖1
Dq0di(t) = bi‖ei(t)‖2, 1 ≤ i ≤ N .

(5)

Remark 5: Let di(0) ≥ 0, clearly, di(t) = di(0) +
Iq0 (bi‖ei(t)‖

2) ≥ di(0); therefore, one can easily obtain
di(t) ≥ 0.
Theorem 1: Under Assumptions 1 and 3–4, the locally

asymptotic synchronization of the network (1) can be

achieved via the adaptive controllers (4) if there exist positive
constants ϑ̄, ϑ̂, ρ, c1, c2 and d∗i (1 ≤ i ≤ N ), such that

2η + 1+ āλmax(�1) < −c2â
(
ρβ‖9‖1 + 2ε2ϑ̂(1−

1
N
)
)
(6)

where �1 = β(2c18s
+

c2
ρ
‖9‖∞IN ) + 1

ϑ̄
(c188T

+

c299T ) + 2
(
c1ε2ϑ̂(1 − 1

N )IN − D1
)

and D1 =

diag{d∗1 , d
∗

2 , . . . , d
∗
N }.

Proof: Consider the following function:

V (t) =
N∑
i=1

eTi (t)ei(t).

Since di(t) ≥ 0 and Dq0di(t) = bi‖ei(t)‖2 ≥ 0, one has (by
Lemma 1)

Dq0V (t)

≤ Dq0V (t)+
N∑
i=1

2ā
bi
di(t)D

q
0di(t)

≤ 2
N∑
i=1

eTi (t)D
q
0ei(t)+

N∑
i=1

2ā
bi
di(t)D

q
0di(t)

= 2
{ N∑
i=1

eTi (t)D(f (s))ei(t)

+ c1
N∑
i=1

N∑
j=1

eTi (t)φijA[5(xj(x))−5(s(t))]

+ c2
N∑
i=1

N∑
j=1

eTi (t)ψijA[2(xj(t − τ ))−2(s(t − τ ))]

−

N∑
i=1

eTi (t)d̃1sgn(ei(t))/‖ei(t)‖1

+

N∑
i=1

eTi (t)1i(t)−
N∑
i=1

eTi (t)di(t)Aei(t)

−

N∑
i=1

eTi (t)d
∗
i Aei(t)+

N∑
i=1

eTi (t)di(t)āei(t)
}

≤ 2
{ N∑
i=1

eTi (t)D(f (s))ei(t)+
N∑
i=1

eTi (t)1i(t)

−

N∑
i=1

eTi (t)d̃1sgn(ei(t))/‖ei(t)‖1 −
N∑
i=1

eTi (t)d
∗
i Aei(t)

+ c1
N∑
i=1

N∑
j=1

eTi (t)φijA[5(xj(x))−5(s(t))]

+ c2
N∑
i=1

N∑
j=1

eTi (t)ψijA[2(xj(t − τ ))−2(s(t − τ ))]
}

= V1(t)+ V2(t)+ V3(t). (7)
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For convenience use later, the following notations are intro-
duced for k = 1, 2, . . . , n:

ek (t) = [ek1(t), ek2(t), . . . , ekN (t)]T

5̃k (xk (t)) = [πk (xk1(t)), πk (xk2(t)), . . . , πk (xkN (t))]T

λ̃k (xk (t)) = [λk (xk1(t)), λk (xk2(t)), . . . , λk (xkN (t))]T

2̃k (xk (t − τ )) = [θk (xk1(t − τ )), θk (xk2(t − τ )), . . . ,

θk (xkN (t − τ ))]T

r̃k (xk (t − τ )) = [rk (xk1(t − τ )), rk (xk2(t − τ )), . . . ,

rk (xkN (t − τ ))]T .

Using Assumptions 1 and 4, we obtain

V1(t) = 2
{ N∑
i=1

eTi (t)D(f (s))ei(t)+
N∑
i=1

eTi (t)1i(t)

−

N∑
i=1

eTi (t)d̃1sgn(ei(t))/‖ei(t)‖1

−

N∑
i=1

eTi (t)d
∗
i Aei(t)

}
≤ 2η

N∑
i=1

eTi (t)ei(t)+
N∑
i=1

eTi (t)ei(t)+
N∑
i=1

‖1i(t)‖2

− 2Nd̃1 − 2
N∑
i=1

eTi (t)d
∗
i Aei(t)

≤ (2η + 1)
N∑
i=1

eTi (t)ei(t)− 2
N∑
i=1

eTi (t)d
∗
i Aei(t)

=

n∑
k=1

ek (t)T
(
(2η + 1)IN − 2akD1

)
ek (t). (8)

Using Assumption 3 and Lemma 3, we have

V2(t) = 2c1
N∑
i=1

N∑
j=1

eTi (t)φijA[5(xj(t))−5(s(t))]

= 2c1
n∑

k=1

akek (t)T8[5̃k (xk (t))− 5̃k (sk (t))]

= 2c1β
n∑

k=1

akek (t)T8ek (t)

+ 2c1
n∑

k=1

akek (t)T8[̃λk (xk (t))− λ̃k (sk (t))]

≤ 2c1β
n∑

k=1

akek (t)T8ek (t)

+ c1
n∑

k=1

ak
ϑk
ek (t)T88T ek (t)+ c1

n∑
k=1

akϑk

[̃λk (xk (t))− λ̃k (sk (t))]TQ[̃λk (xk (t))− λ̃k (sk (t))].

(9)

Note that 8 is a zero-row-sum matrix. Using Assump-
tion 3 and Lemma 4, we have

n∑
k=1

akϑk [̃λk (xk (t))− λ̃k (sk (t))]TQ[̃λk (xk (t))− λ̃k (sk (t))]

= −

n∑
k=1

akϑk
∑
j>i

qij
{
[λk (xkj(t))− λk (skj(t))]

−[λk (xki(t))− λk (ski(t))]
}2

≤ −2
n∑

k=1

akϑk
∑
j>i

qij
{
[λk (xkj(t))− λk (skj(t))]2

+[λk (xki(t))− λk (ski(t))]2
}

≤ −2ε2
n∑

k=1

akϑk
∑
j>i

qij(ekj(t)2 + eki(t)2)

= 2ε2
n∑

k=1

akϑk (1−
1
N
)ek (t)T ek (t). (10)

Using Assumption 3 and Lemma 3, one has

V3(t) = 2c2
N∑
i=1

N∑
j=1

eTi (t)ψijA[2(xj(t − τ ))−2(s(t − τ ))]

= 2c2
n∑

k=1

akek (t)T9[2̃k (xk (t − τ ))− 2̃k (sk (t − τ ))]

= 2c2β
n∑

k=1

akek (t)T9ek (t − τ )

+ 2c2
n∑

k=1

akek (t)T9 [̃rk (xk (t − τ ))− r̃k (sk (t − τ ))]

≤
c2β
ρ

n∑
k=1

ak‖9‖∞ek (t)T ek (t)+ c2ρβ
n∑

k=1

ak‖9‖1

ek (t − τ )T ek (t − τ )+ c2
n∑

k=1

ak
ϑk
ek (t)T99T ek (t)

+ c2
n∑

k=1

akϑk [̃rk (xk (t − τ ))− r̃k (sk (t − τ ))]T

Q[̃rk (xk (t − τ ))− r̃k (sk (t − τ ))]. (11)

Similarly, (by the inequality (10)), we have

n∑
k=1

akϑk [̃rk (xk (t − τ ))− r̃k (sk (t − τ ))]T

Q[̃rk (xk (t − τ ))− r̃k (sk (t − τ ))]

≤ 2ε2
n∑

k=1

akϑk (1−
1
N
)ek (t − τ )T ek (t − τ ). (12)
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Substituting inequalities (8)-(12) into (7), we have

Dq0V (t) ≤
n∑

k=1

ek (t)T
{
(2η + 1)IN + ak

[
β(2c18s

+
c2
ρ
‖9‖∞IN )+

1

ϑ̄
(c188T

+ c299T )

+ 2
(
c1ε2ϑ̂(1−

1
N
)IN − D1

)]}
ek (t)

+

n∑
k=1

c2ak
(
ρβ‖9‖1 + 2ε2ϑ̂(1−

1
N
)
)

ek (t − τ )T ek (t − τ ). (13)

Let�1 = β(2c18s
+
c2
ρ
‖9‖∞IN )+ 1

ϑ̄
(c188T

+c299T )+

2
(
c1ε2ϑ̂(1− 1

N )IN −D1
)
, clearly, �1 is a symmetric matrix.

If 2η+1+ āλmax(�1)+c2â
(
ρβ‖9‖1 + 2ε2ϑ̂(1− 1

N )
)
< 0,

it means λmax(�1) < 0. Apply it into (13), one has

Dq0V (t) ≤
(
2η + 1+ āλmax(�1)

)
V (t)

+ c2â
(
ρβ‖9‖1 + 2ε2ϑ̂(1−

1
N
)
)
V (t − τ ). (14)

From lemma 2, when −
(
2η + 1 + āλmax(�1)

)
>

c2â
(
ρβ‖9‖1 + 2ε2ϑ̂(1 − 1

N )
)
, the local synchronization of

the network (1) is achieved under the adaptive controllers (4).
The following corollary is given when θk (x) = x is a linear

function and c1 = 0. In this case, the system (1) becomes
a linearly-coupled system with no non-delayed coupling,
which can be described as

Dq0xi(t) = f (xi(t))+c2
N∑
j=1

ψijAxj(t−τ )+1i(t)+ ui(t)

(15)

where i = 1, 2, . . . ,N and ui(t) is the same as in (4).
Corollary 1: Under Assumption 1, the locally asymptotic

synchronization of the linearly-coupled network (15) can be
achieved via the adaptive controllers (4) if there exist positive
constants ϑ̄, ρ, c2 and d∗i (1 ≤ i ≤ N ) such that

2η + 1+ āλmax(�∗1) < −c2âρ‖9‖1 (16)

holds, where�∗1 = c2( 1ρ ‖9‖∞IN+
1
θ̄
99T )−2D1 andD1 =

diag{d∗1 , d
∗

2 , . . . , d
∗
N }.

Remark 6: Although the synchronization of integer-order
complex networks with non-delayed and delayed couplings
has been investigated widely [9], [12], [14], their control
schemes are not suitable for fractional-order nonlinearly-
coupled delayed complex networks. Note that most of results
on synchronizing integer-order complex network (such as the
obtained results in [9], [12]–[14], [17], and [18]) cannot be
directly extended to fractional-order networks.

B. GLOBALLY ASYMPTOTIC SYNCHRONIZATION VIA
ADAPTIVE CONTROL AND PINNING CONTROL
Without loss of generality, we select the first l nodes as pinned
nodes. Then, the adaptive pinning controllers can be designed

as follows:
ui(t) = −(di(t)+ d∗i )Aei(t)− d̃2sgn(ei(t))/‖ei(t)‖1,

Dq0di(t) = bi‖ei(t)‖2, 1 ≤ i ≤ l
ui(t) = 0, l + 1 ≤ i ≤ N

(17)

where di(t), d∗i and d̃2 = 1
2l

∑N
i=1 w

2
i are the control gains

(di(t) ≥ 0, d∗i > 0, bi > 0). Thus the controlled error system
(3) can be rewritten as follows:

Dq0ei(t) = F(ei(t))+ c1
N∑
j=1

φijA[5(xj(t))−5(s(t))]

+ c2
N∑
j=1

ψijA[2(xj(t − τ ))−2(s(t − τ ))]

+1i(t)− (di(t)+ d∗i )Aei(t)
− d̃2sgn(ei(t))/‖ei(t)‖1, 1 ≤ i ≤ l

Dq0ei(t) = F(ei(t))+ c1
N∑
j=1

φijA[5(xj(t))−5(s(t))]

+ c2
N∑
j=1

ψijA[2(xj(t − τ ))−2(s(t − τ ))]

+1i(t), l + 1 ≤ i ≤ N .
(18)

Theorem 2: Under Assumptions 2–4, the globally asymp-
totic synchronization of the network (1) can be achieved
via the controllers (17) if there exist positive constants
ϑ̄, ϑ̂, ρ, c1, c2 and d∗i (1 ≤ i ≤ l), such that

(2L + 1)IN + ā�2 + c2â
(
β + 2ε2ϑ̂(1−

1
N
)
)
IN < 0 (19)

holds, where �2 = β(2c18s
+

c2
ρ
‖9‖∞IN ) + 1

ϑ̄
(c188T

+

c299T ) + 2
(
c1ε2ϑ̂(1 − 1

N )IN − D2
)
and D2 = diag{d∗1 ,

d∗2 , . . . , d
∗
l , 0, . . . , 0}.

Proof: Consider the following function:

V (t) =
N∑
i=1

eTi (t)ei(t).

Since di(t) ≥ 0 and Dq0di(t) = bi‖ei(t)‖2 ≥ 0, one has

Dq0V (t)

≤ Dq0V (t)+
l∑
i=1

2ā
bi
di(t)D

q
0di(t)

≤ 2
N∑
i=1

eTi (t)D
q
0ei(t)+

l∑
i=1

2ā
bi
di(t)D

q
0di(t)

= 2
{ N∑
i=1

eTi (t)F(ei(t))

+ c1
N∑
i=1

N∑
j=1

eTi (t)φijA[5(xj(x))−5(s(t))]
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+ c2
N∑
i=1

N∑
j=1

eTi (t)ψijA[2(xj(t − τ ))−2(s(t − τ ))]

−

l∑
i=1

eTi (t)d̃2sgn(ei(t))/‖ei(t)‖1

+

N∑
i=1

eTi (t)1i(t)−
l∑
i=1

eTi (t)di(t)Aei(t)

−

l∑
i=1

eTi (t)d
∗
i Aei(t)+

l∑
i=1

eTi (t)di(t)āei(t)
}

≤ 2
{ N∑
i=1

eTi (t)F(ei(t))+
N∑
i=1

eTi (t)1i(t)

− ld̃2 −
l∑
i=1

eTi (t)d
∗
i Aei(t)

+ c1
N∑
i=1

N∑
j=1

eTi (t)φijA[5(xj(x))−5(s(t))]

+ c2
N∑
i=1

N∑
j=1

eTi (t)ψijA[2(xj(t − τ ))−2(s(t − τ ))]
}
(20)

According to Assumption 1, we have

2
{ N∑
i=1

eTi (t)F(ei(t))+
N∑
i=1

eTi (t)1i(t)

− ld̃2 −
l∑
i=1

eTi (t)d
∗
i Aei(t)

}
≤ 2L

N∑
i=1

eTi (t)ei(t)+
N∑
i=1

eTi (t)ei(t)+
N∑
i=1

‖1i(t)‖2

−

N∑
i=1

w2
i − 2

l∑
i=1

eTi (t)d
∗
i Aei(t)

≤

n∑
k=1

ek (t)T
(
(2L + 1)IN − akD2

)
ek (t). (21)

Similarly, we have(by Theorem 1)

Dq0V (t) ≤
n∑

k=1

ek (t)T
{
(2L + 1)IN + ak

[
β(2c18s

+
c2
ρ
‖9‖∞IN )+

1

ϑ̄
(c188T

+ c299T )

+ 2
(
c1ε2ϑ̂(1−

1
N
)IN − D2

)]}
ek (t)

+

n∑
k=1

c2ak
(
ρβ‖9‖1 + 2ε2ϑ̂(1−

1
N
)
)

ek (t − τ )T ek (t − τ ). (22)

Let�2 = β(2c18s
+
c2
ρ
‖9‖∞IN )+ 1

ϑ̄
(c188T

+c299T )+

2
(
c1ε2ϑ̂(1 − 1

N )IN − D2
)
, obviously, �2 is a symmetric

matrix. If (2L + 1)IN + ā�2 + c2â
(
ρβ‖9‖1 + 2ε2ϑ̂(1 −

1
N )
)
IN < 0, it means λmax(�2) < 0. Apply it into (22), one

has

Dq0V (t) ≤
(
2L + 1+ āλmax(�2)

)
V (t)

+ c2â
(
ρβ‖9‖1 + 2ε2ϑ̂(1−

1
N
)
)
V (t − τ ). (23)

From Lemma 2, when (2L+1)IN + ā�2+c2â
(
ρβ‖9‖1+

2ε2ϑ̂(1− 1
N )
)
IN < 0, the global synchronization of network

(1) is achieved under the adaptive pinning controllers (17).
Corollary 2: Under the condition of Theorem 2, the lower

bound of d∗i (i = 1, 2, . . . l) can be estimated by the following
inequality

d̄ >
1
2ā
λmax(M1 −M2Q

−1
l MT

2 ) (24)

where d̄ = min{d∗1 , d
∗

2 , . . . , d
∗
l }, Q = (2L + 1)IN +

ā
(
β(2c18s

+
c2
ρ
‖9‖∞)+ 1

ϑ̄
(c188T

+c299T )+2c1ε2ϑ̂(1−

1
N )IN

)
+ c2â

(
ρβ‖9‖1+ 2ε2ϑ(1− 1

N )
)
IN =

[
M1 M2
MT

2 Ql

]
, and

Ql ∈ R(N−l)×(N−l) is the minor matrix of Q by removing its
first l(1 ≤ l ≤ N ) row-column pairs.

Proof: Let Q − 2āD2 =

[
M1 − 2āD∗2 M2

MT
2 Ql

]
, D∗2 =

diag{d∗1 , d
∗

2 , . . . , d
∗
l } andD2=diag{d∗1 , d

∗

2 , . . . , d
∗
l , 0 . . . , 0}.

Using the linear matrix inequality(Lemma 5), it is easy
to get that Q − 2āD2 < 0 is equivalent to Ql < 0
and M1 − 2āD∗2 − M2Q

−1
l MT

2 < 0. Consequently, d̄ >
1
2āλmax{M1 −M2Q

−1
l MT

2 }, which yields an estimated lower
bound of d∗i , i = 1, 2, . . . , l.
Remark 7: Adaptive control [41], fuzzy control [43],

sliding control [44] and feedback control [48] have been
used to overcome the effects of disturbances for network
synchronization. However, in this paper, we adaptively con-
trol only a small subset of the nodes to realize the global
synchronization of general fractional-order networks with
external disturbances. Moreover, our adaptive law contains
a free parameter q, which is more practical than the integer-
order adaptive controller. Different from the controllers
in [30]–[33], the second term of the controller(d̃2sgn(ei(t))/
‖ei(t)‖1, 1 ≤ i ≤ l < N ) uses the sign function and
1-norm of the synchronization error. The controller (4) is a
fractional-order adaptive controller and the controller (17) is
a fractional-order adaptive pinning controller.
Remark 8: Generally speaking, to reduce control cost, all

the pinned nodes should satisfy a condition that is in-degree is
smaller than their out-degree. In fact, the network nodes can
be rearranged in descending order based on the out-degree
and in-degree and the first l nodes can be selected as pinned
candidates. The proof of Corollary 2 gives us a scheme to
determine the least number l0 of pinned nodes, which satisfies
λmax(Ql0 ) < 0 and λmax(Ql0−1) ≥ 0 to reach network
synchronization.
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FIGURE 1. (a) The behavior of x(t) for the controlled network;
(b)(c)(d) The time-evolution of local synchronization errors e1i (t), e2i (t)
and e3i (t) for i = 1, 2, . . . , 9.

Remark 9: Obviously, β, ε, ϑ and L can be calculated
when the node dynamic f , the coupling matrices 8,9,A,
the coupling functions 5,2 and c1, c2 are known. Based on
Corollary 2 and [8], we need to select only the pinned nodes

FIGURE 2. The time-evolution of total error under different q.

and d∗i to satisfy condition (19) of Theorem 2. Similarly,
we can select suitable parameters for Theorem 1.

IV. NUMERICAL SIMULATIONS
This section presents two examples to verify Theo-
rems 1 and 2, respectively.
Example 1: Local Synchronization via adaptive control.
Consider a fractional-order nonlinear dynamical network

consisting of 9 nodes, which is described by

Dq0xi(t) = f (xi(t))+ c1
9∑
j=1

φijA5(xj(t))

+ c2
9∑
j=1

ψijA2(xj(t − τ ))+ ui(t) (25)

where i = 1, 2, . . . , 9 and f (xi(t)) = [a(x2i − x1i), (c −
a)x1i− x1ix3i+ cx2i, x1ix2i− bx3i]T . Then, D

q
0xi(t) = f (xi(t))

is actually a fractional-order chaotic Chen system if we set
q = 0.9, a = 35, b = 3 and c = 28.
For simplicity, the inner-linking matrix A is taken as a

diagonal matrix, i.e., A = diag{5, 5, 5}, and the coupling
configuration matrix 8 is

8 =



−3 1 0 1 0 0 0 0 1
0 − 2 1 0 1 0 0 0 0
1 0 − 3 0 0 1 1 0 0
0 0 1 − 2 0 0 0 1 0
0 0 0 1 − 3 0 1 0 1
1 0 0 0 1 − 3 0 1 0
0 1 0 0 0 0 − 1 0 0
0 1 0 0 1 0 0 − 2 0
1 0 1 0 0 0 1 0 − 3


.

Let 9 = 0.58, c1 = 0.5, c2 = 1, ϑ̄ = ϑ̂ = 5,
ρ = 1, τ = 0.2, π1(x) = π2(x) = 2x + 0.5sinx, π3(x) =
2x + 0.5cosx, θ1(x) = θ2(x) = 2x + 0.5sinx, θ3(x) =
2x + 0.5cosx and 1i(t) = (0.2sintcost, 0.3cost, 0.5sint)T .
The initial values are x0i = ((15rand − 15), (15rand −
15), (15rand − 15))T . The parameters of the controllers
(4) are set to d∗i = 20, bi = 1 and d̃1 = 0.5.
Note that the Chen system has bounded trajectories (a
detailed analysis can be found in [15]). From calculations,
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FIGURE 3. (a) The behavior of x(t) for the controlled network;
(b)(c)(d) The time-evolution of global synchronization errors e1i (t), e2i (t)
and e3i (t) for i = 1, 2, . . . , 9.

the eigenvalues of matrix �1 are −38.8593, −38.0000,
−37.6099, −37.2982, −36.7173, −36.3547, −35.8695,
−34.7722 and −32.5190. Moreover, 2η+ 1+ āλmax(�1) =

FIGURE 4. The control input responses di (t)(i = 1, 2, 3, 4) in Example 2.

−47.5950,−c2â
(
ρβ‖9‖1+2ε2ϑ̂(1− 1

N )
)
= −41.1111. It is

easy to verify that the inequality (6) of Theorem 1 holds under
these parameters. The time evolution of the states trajectories
and the synchronization errors under adaptive control are
shown in Figure 1. Clearly, local synchronization is achieved.
Define total synchronization error E(t) for the complex net-

works as E(t) =
√

1
9

∑9
i=1 ‖xi(t)− s(t)‖2. Fig 2 shows that

q can effect synchronization process through impacting node
dynamics.
Example 2: Global synchronization via adaptive pinning

control.
We also consider a nonlinear fractional-order complex

network with 9 nodes. The fractional-order Chua’s chaotic
circuit with system parameters can be given as follows:

Dq0xi(t) = f (xi(t)) = B1xi(t)+ g(xi(t)) (26)

where

B1 =

−a11 a11 0
1 −1 1
0 −b11 0

 , g(xi(t)) =
−a11g(x1i)0

0


q = 0.99, a11 = 10, b11 = 14.87, g(x1i) = m2x1i+0.5(m1−

m2)(|x1i + 1| − |x1i − 1|),m1 = −1.27 and m2 = −0.68. By
calculation, one can set L = 36 such that Assumption 2 holds.
Here, the inner-linkingmatrix isA = diag{10, 10, 10} and the
coupling configuration matrix 8 is chosen as

8 =



−2 1 0 1 0 0 0 0 0
0 − 2 1 0 1 0 0 0 0
1 0 − 2 0 0 1 0 0 0
0 0 1 − 2 0 0 0 1 0
0 0 0 1 − 1 0 0 0 0
1 0 0 0 0 − 1 0 0 0
0 1 0 0 0 0 − 1 0 0
0 1 0 0 0 0 0 − 2 1
1 0 1 0 0 0 0 0 − 2


Let 9 = 0.58, c1 = 10, c2 = 0.5, ϑ̄ = ϑ̂ = 6,

ρ = 4, τ = 0.1, x0i = ((30rand − 20),
(30rand − 20), (30rand − 20))T , π1(x) = π2(x) =
2x + 0.2cosx, π3(x) = 2x + 0.2sinx, θ1(x) = θ2(x) =
2x + 0.2cosx, θ3(x) = 2x + 0.2sinx and 1i(t) =
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(0.3sintcost, 0.5sint, 0.2cost)T . Using the adaptive pinning
controllers described in (17), the nodes 1,2,3,4 are selected
as the pinned candidates and the corresponding parameters
are set to d∗i = 40(i = 1, 2, 3, 4), d∗i = 0(i = 5, 6, 7, 8, 9),
bi = 1, d̃2 = 9/8. By performing simple calculations,
the eigenvalues of matrix �2 are −179.6161, −161.7836,
−147.9985, −119.6539, −77.2655, −44.1281, −30.9913,
−26.3891, and −18.3989. One can easily verify that these
parameters conform to the requirement of Theorem 2.
Figure 3 shows that global synchronization is achieved under
the adaptive pinning controllers. Fig 4 gives control input
responses di(t)(i = 1, 2, 3, 4) of global synchronization.

V. CONCLUSION
This paper studied the synchronization problem for fractional
order nonlinearly coupled networks with non-delayed and
delayed couplings as well as unknown disturbances. Based
on fractional-order stability theory, we converted the network
synchronization problem into one involving the stability of its
error system. By using adaptive control and adaptive pinning
control schemes, some sufficient local and global asymptotic
synchronization conditions were derived. Note that the exter-
nal time-varying disturbances of fractional-order systems had
an impact on each node; however, existing feedback control
methods often controlled all the nodes to achieve global
synchronization of such systems. In contrast, this paper adap-
tively controlled only a small fraction of the nodes to realize
this goal. Finally, two numerical examples were presented to
illustrate the theoretical results.
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