IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON SOFTWARE STANDARDS AND THEIR IMPACT
IN REDUCING SOFTWARE FAILURES

Received October 30, 2017, accepted November 30, 2017, date of publication December 28, 2017, date of current version May 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2782843

Taxonomy of Factors Causing Integration Failure
during Global Software Development

ATIQUE AHMAD ZAFAR'!, SHAHELA SAIF', MUZAFAR KHAN', JAVED IQBAL’,
ADNAN AKHUNZADA“!, ABDUL WADOOD?2, AHMAD AL-MOGREN 2,
AND ATIF ALAMRI2

! Department of Computer Science, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
2Research Chair of Pervasive and Mobile Computing, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Atique Ahmad Zafar (atiquezafar @comsats.edu.pk)

This work was supported by King Saud University, through the Vice Deanship of Research Chairs.

ABSTRACT Controlling integration failure is one of the major challenges in global software development
(GSD) that remains hidden during the development phase and surfaces during the system integration. The
integration failures occur as a result of incompatibilities and integration complexities that subsequently lead
to delays, extra cost, affect the overall quality, and can even throw the entire GSD project into chaos. A very
good understanding of integration failures may help to overcome the integration challenges. The objective
of this paper is to explore comprehensively the integration failure factors. This paper thoroughly reviews the
available literature. Moreover, the authors have conducted an industrial survey to more closely explore the
integration failure factors. This paper largely contributes by devising a detailed taxonomy of 40 integration
failure factors. The classification allows to better understand the relationships between the various factors
and helps in creating a holistic solution to deal with integration problems in the context of GSD.

INDEX TERMS Global software development, integration challenges, software integration, distributed
development.

I. INTRODUCTION
Global Software Development (GSD) involves participation

Root Causes

Physical Differences _ Titns Di PEPS— Organizational Political
of different teams from multiple geographical locations. For Diffeences Leesiative
last two decades, many organizations have moved their devel- ’

opment activities to their offshore stations, but their offshore Challenges

infrastructure is still not mature for it. One of the basic reasons Comol Process Awhitctunl KOVEI el Coofmion Commuicaton
behind that is the inability of remote teams to understand the ’

working of the whole system as a single unit [1]. Project

management team finds it very hard to manage large and

complex GSD projects across the boundaries [2]. Delay Reduced Reuse Poor Quality

On the other hand, there is a lack of empirical studies
which can provide solutions for different problems faced by
the GSD management and team members [3]. The existing
studies are specific in nature. The current research is also

FIGURE 1. Multi-layer model to address GSD challenges [2].

limited in terms of socio-technical aspects of these projects.
According to [4], in GSD, project management and team
members at remote locations follow non-standard or not
agreed upon ways of implementing the project in terms of
selected locations, collaborative approach, and work items.
In addition to it, team members at various locations fol-
low different development standards, processes and quality

models which lead to the failure to provide the problem
solution [4]-[6].

According to a survey [7], 40% offshore projects resulted
into failure. Several studies [2], [8]-[16] highlighted GSD
challenges to address the project failure. Another study [2]
provided a multi-layer model, as shown in Fig. 1, to under-
stand GSD challenges effectively.

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

22228

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8370-9290
https://orcid.org/0000-0002-8253-9709

A. A. Zafar et al.: Taxonomy of Factors Causing Integration Failure during GSD

IEEE Access

In addition to the above presented challenges, module
integration in GSD projects is considered the most problem
driven phase [5]. According to [4], more than 50% of the
GSD projects face integration phase as the most problematic
one. Moreover, the alarming aspect of integration problems
is the late detection of the problems during GSD lifecycle
that results in high cost to fix the problems [19]. Some
studies [5], [18], [20], [21] emphasis on integration problems
and the results demonstrate that integration problems gen-
erally follow a pattern when considering the socio-technical
aspects.

In the existing literature, system integration in GSD has
attained surprisingly little attention [4]. According to a
study [2], a few studies has focused on the system integration.
Moreover, the existing studies related to system integration
are limited to specific project context or application and are
unable to produce general solutions to cope with system
integration issues [1].

This study contributes by exploring possible system inte-
gration failure factors experienced during system integration
in GSD projects. The taxonomy of these factors is proposed
based on the literature review and the industrial survey. The
proposed taxonomy classifies the integration failure factors
into eight classes based on the underlying causes which lead
to the factors

The advantage of the proposed taxonomy is that it may help
GSD project management teams to stay organized, keep track
of processes and identify the problems earlier. Each factor has
been assigned to a class based on the main underlying cause.
The factors placed together in the same class can help project
teams to identify similar failure factors related to the single
cause. It simplifies the job to identify the integration failure
factors and to devise viable and quick mitigation strategies.

Il. RELATED WORK

Ammerlaan [4] described the pitfalls of system integration
and testing practices in administrative and technical perspec-
tives. The study highlighted system integration issues which
include project delays, lower product quality and increase
in project cost. This study also presented the integration
strategies along with their characteristics. It was concluded
that system integration as other software development phases
also required a thorough risk analysis which might help to
control system integration problems.

Goltel et al. [11] performed an experiment through a stu-
dent project by maintaining global software development
environment to identify system integration issues. The study
argued that there was a need to plan concrete integration
strategy at early stages of the project. This study recom-
mended high level dos and don’ts for integration planning and
practices.

On the basis of a case study, Herbsleb and Grinter [5]
presented integration issues along with communication,
coordination and unpredictable problems. According to the
study, integration problems can be controlled by estab-
lishing an effective communication channel between cross

VOLUME 6, 2018

site developers. It is also reported that the task of sys-
tem integration becomes very difficult due to unrealistic
assumptions, dependencies in overall development strategy,
unclear assumptions about interface and informal specifica-
tions refinement in integration plan. Moreover, the selection
of inconsistent technology and different processes across sites
make the system integration highly problematic.

Ramaoorthy [1] performed the literature analysis to dis-
cover system integration issues. The reported studies are
limited to specific applications which do not provide general
solutions to resolve integration problems. It is also mentioned
that integration issues can be avoided by facilitating integra-
tion activities in early stages of a project.

Wolf et al. [13] proposed a prediction model to predict
integration build results by using communication structure
measures. According to the study, communication among
developers play a very important role in order to achieve
quality results related to system integration. The study also
highlights that it is very hard to determine the failure and
success of integration build through individual measures. The
results of this study are also limited to single project analysis.

Herbsleb et al. [45] analyzed nine different projects
through interview to determine the challenges and benefits
of distributed development. The teams which participated in
the projects were dispersed in three different geographical
locations. Communication and collaboration were identified
as one of the major problems during development. Face to
face meeting is highlighted as the important and fast means
of communication during distributed development. Minimal
interaction between cross sites causes an increased frustration
between cross site developers and causes hurdles in system
integration.

Ill. RESEARCH METHODOLOGY

The research methodology of this study mainly involves
extensive literature review, industrial survey, and concept
mapping. The following subsections provide the detailed
description.

A. LITERATURE REVIEW

The literature review is conducted based on the guidelines
available in [22]. The attempt is to find out all the possi-
ble evidences related to integration failure factors observed
through either empirical or non-empirical research methods.
The relevant literature is searched through the search string.
The Boolean ‘AND?’ is used for joining major terms and ‘OR’
is used for joining alternative terms. The resulting search
string is as follows:

((global OR distributed OR multi-site OR remote) AND
(software) AND (integration))

The five electronic databases are selected, as suggested
by [23], to acquire quality material from authentic resources
in software engineering domain. The electronic resources
include IEEE explore, ACM Digital library, Science Direct,
Springer Link, and Engineering Village (EiCompendex). The
selection criteria include that the selected study must provide

22229

IEEE Access

A. A. Zafar et al.: Taxonomy of Factors Causing Integration Failure During GSD

the clear evidence of integration failure factor in GSD and
every included study must be peer reviewed.
Data extraction strategy is concentrated on three points:

i The context of a factor
ii The observation source of a factor
iii The validation of a factor i.e. validated empirically or
by expert opinion or with theoretical reason.

The content of factors should also be summarized and
reported as it is originally stated in the study. In addition to
it, the selection should not be based on the authors’ under-
standing and assumptions. In total, 58 studies relevant to
the integration topic are found. Fig. 2 shows the number of
studies selected from various databases.

30

26

20 15

10 l 8 5 4

. H - -
IEEE ACM Springer Engineering Science Direct

village

FIGURE 2. No. of studies selected from various databases.
According to Fig. 3, most of the studies (42) are based on

empirical research and the remaining (16) are non-empirical
studies.

Type of Studies

B Empirical
m Non-Emprical

FIGURE 3. Types of selected studies in terms of empirical/non-empirical
evidence.

Out of 58 selected studies, 52% are case studies, 23% are
theoretical reports, 9% are interview-based, 8% are student
projects, 6% are experience reports, and 2% are field studies.
Fig. 4 shows the types of the selected studies.

Fields Studies 2%
Experience Reports [N 6%
StudentProjects [N 5%
Interviews 9%
Theoratical Reports NN 23%
Case Studies I 52%

FIGURE 4. Types of the selected studies (in percentage).

22230

TABLE 1. Profile of industrial experts.

Expert ID Project Role GSD Industrial
Experience (in years)
A 15
B 8
C 8
D Project manager 4
E 2
F 11
G 10
H 6
I Team lead 5
J 1
K 5

In total, 96 integration failure factors have been found
through the literature review.

B. INDUSTRIAL SURVEY

A total of 11 industrial experts having experience in GSD
projects participated in this survey as shown in Table 1. Out
of 11 participants, 6 were project managers and the remaining
5 were team leads. All participants had a Master degree in
Computer Science with an average experience of seven years
in GSD industry.

The survey was conducted through an open-ended ques-
tionnaire in which participants were asked to list the factors
that cause failure during integration of functional modules in
globally distributed software development projects. In total,
49 failure factors were identified through this survey.

C. FACTOR CONSOLIDATION PROCESS

In total, 145 (96 + 49) integration failure factors were iden-
tified through the literature review and industrial survey. The
consolidated list of 40 unique integration failure factors was
prepared based on the comparative data analysis [24] in two
steps, as shown in Fig. 5. In the first step, the keywords or
concepts of the failure factors were compared. If the mul-
tiple factors had the same keywords or concepts, they were
selected for the consolidation. In the second step, the context
of the factors was compared. The factors which contained
the same context were consolidated. The reason behind two
steps comparative analysis at keywords and context level was
that sometime authors used different keywords for the similar
factors e.g. ad-hoc communication and informal communi-
cation. In addition to this, sometimes authors used almost
same keywords for different factors e.g. lack of informal com-
munication due to different time zone and lack of informal
communication due to language barrier.

D. CONCEPT MAPPING

The concept mapping technique was followed to define
classes and associate each factor to the relevant class. Con-
cept mapping is a technique that explores the relationships
between concepts and presents them in a hierarchical or

VOLUME 6, 2018

A. A. Zafar et al.: Taxonomy of Factors Causing Integration Failure during GSD

IEEE Access

Compared
factor
Keyword(s)

Compare
Factor(s)
Context

Considered
as unique

If Keyword(s)/
concept are same

A

If Context is
same

Merge both
factors

Output in /

list

Stop

FIGURE 5. Factors consolidation process.

tree structure [52]. The map begins with a word or concept
that is the primary question and the sub-levels are built by
using connective terms such as “leads-to”, “results-from”,
“is-part-of” etc.

The definition of classes was based on the key terms of the
factors, and the definition of sub-levels (containing factors)
was based on ‘““leads-to”” and ‘“‘results-from” relationships.
For example, Class 2 is “inadequate process planning” that
leads-to “‘big bang integration” and/or “lack of integration
documents and manuals”. In total, eight classes were defined,
and the factors were associated with the relevant classes after
critically analyzing the context of factors. The classes and the
associated factors are presented in the next section.

IV. THE PROPOSED TAXONOMY

All identified factors are not exclusive in terms of the concept
areas that they cover. The factors are classified into eight
primary classes based on the central focus of each factor. The
classes are listed in Table 2. Fig. 6 represents the proposed
taxonomy. The proposed classes and the relevant integration
failure factors are presented in the following subsections.

A. CLASS C1: LACK OF COORDINATION

BETWEEN REMOTE SITES

The success of any software process depends on the coordi-
nation between the team members from the highest order to
the lowest. A study [5] suggests that a collocated software

VOLUME 6, 2018

TABLE 2. The proposed classes.

Class ID Class Name
Cl Lack of coordination between Remote Sites
C2 Inadequate process planning
C3 Inadequate process implementation
C4 Communication barriers
C5 Poor resource management
C6 Improper requirements change management
C7 Inadequate team expertise
C8 Improper tool selection

TABLE 3. Factors associated with lack of coordination between remote
sites.

Factor ID Integration Failure Factors
Cl1-F1 Long term lack of awareness activities at remote site
C1-F2 Uncooperative behaviour among remote team
members
C1-F3 Lack of coordination between remote teams

team spends an average of 75 minutes daily in informal
communication. But in distributed teams, this communication
frequency becomes remarkably low. This lack of coordination
can take many forms such as uncooperative behavior or lack
of awareness about activities on remote sites. Importance of
frequent and fruitful communication cannot be ignored in
globally distributed teams. A list of relevant factors is given
in Table 3.

1) FACTOR C1-F1: LONG TERM LACK OF AWARENESS
ACTIVITIES IN REMOTE SITE

In general, the division of work among various sites is such
that any component being developed at one site directly
affects the component being developed at another. The con-
tinuous awareness regarding products, between sites becomes
utmost important. Multiple teams must be aware of updates
about the processes, changes in the products, collaborative
tool integrations, information regarding potential users of
the code, and the integration teams [25]-[28]. According
to [27], communication problems turn into integration prob-
lems which lead to defected products.

2) FACTOR C1-F2: UNCOOPERATIVE BEHAVIOR

AMONG REMOTE TEAM MEMBERS

According to [12], when two teams work on a dependent
piece of software, one of the teams may sabotage the work
of the other by producing a fix that may work only in a
specific environment. This causes an integration failure and
provokes the other team to rework. The study [32] claims that
hiding crucial information results in inconsistencies during
the project evolution and failure at the time of integration.

3) FACTORCI1-F3: LACK OF COORDINATION
BETWEEN REMOTE TEAMS

Ovaska et al. [29] suggests that integration problems are
common when remote teams fail to share information about

22231

IEEE Access

A. A. Zafar et al.: Taxonomy of Factors Causing Integration Failure During GSD

Taxonomy of Integration Failure Factors

FIGURE 6. Taxonomy of integration failure factors.

- Lack of Inadequate Inadequate - WTIRSTFGE
oordination Prosee DT Communication Poor Resource Requirements Inadequate Improper Tool
between Remote Planni Impl et Barriers Management Change Team Expertise Planning
Sites anning mpiementation Management
Lo fizmm ek s Lack of face to Modul .
g Assigning unclear Late defect Free e Immature global et mikehis Module Different
of awareness responsibilities and detection duri 2 infrastructure cature addition incompatibilities| |versions of tools
activities in missing integration curing due to lack of
remote site strategy g;fg:;m tool and
technolo;
Lack of Information Lli‘St time knowledgz A\g)iding tOOlSt
; continuous and - changes in and processes to
Eer;f:‘;)igiﬁive Big bang active ;r?g];()tfelr?nfﬂmal (R product release manage and
remote team jRicezation managementof | L Lack of required con}?‘:) ! t
members software knowledge and e
architecture Rapidly chanei skills regarding el
i ngin, . :
ek aff Unrealif}ic d Communication rez?lire};;nis ganc% micerahion
assumptions an g
coordmaion | -2 poreeat | [EL
between remote | |integration plan rig orous unit cfi??el:ezt sites) iksitem .
s aI%d integration documentation
testing te<1:hnc_)logy
p— oo N
integration understanding of regarding
documents and Ad-h f t - d
e — -hoc re- requirements echnology an
planning and interface functionality
issues
Non-optimal
task allocation Incompatibilities —
patterns for between High time zone
distributed components difference
teams
Informal Increase in
[nadequate task specifications number of sites
dependencies refinement
related to
systematic
properties Deviation from
agreed
architectural
Modularization specifications
of work
Badly
engineered
Different software
assumptions
about module
Snctionaity Sharing untested
version of
= components
Lack of detailed using integration
specification centric approach
documentation
for global teams
Inadequate Poorly
communicated
process dule
selection jLrsisy
requirements

the changes on time. This can lead to delayed product release.
It is noted that coordination is required in three key areas:
“technical, process and scheduled events” [15]. Any short-
coming in terms of coordination between teams can cause
technical failures that become apparent at integration phase.

The study [30] highlights that global teams often suffer
from ill-formed coordination mechanisms which are essential
for facilitation of processes. This creates a social and psycho-
logical distance between the team members. Delays in release

22232

are frequently caused due to non-communicating teams that
are working on the dependent modules. A team or at least
one member should be assigned to look over the develop-
ment status and confirmation to standards to enable seamless
integration.

B. CLASS C2: INADEQUATE PROCESS PLANNING

The process planning involves the planning about require-
ments gathering, analysis techniques and the software

VOLUME 6, 2018

A. A. Zafar et al.: Taxonomy of Factors Causing Integration Failure during GSD

IEEE Access

TABLE 4. Factors associated with inadequate process planning.

Factor ID Integration Failure Factors

C2-F1 Assigning unclear responsibilities and missing
integration strategy

C2-F2 Big bang integration

C2-F3 Unrealistic assumptions and predictions in integration
plan

C2-F4 Lack of integration documents and manuals

C2-F5 Non-optimal task allocation patterns for distributed
teams

C2-F6 Inadequate task dependencies related to systematic
properties

C2-F7 Modularization of work

C2-F8 Different assumptions about module functionality

C2-F9 Lack of detailed specification documentation for global
teams

C2-F10 Inadequate process selection

model selection. The planning also focuses on the integra-
tion methodologies, tools selection, and communication tools
and technologies. Prikladnicki er al. [54] discuss the issues
with GSD and highlight on a broad level that knowledge
management and technical issues need to be dealt with for
successful project completion. Inadequate process planning
leads to improper management of these issues and ultimately
causes the project failure. The factors associated with this
class are given in Table 4.

1) FACTORC2-F1: ASSIGNING UNCLEAR RESPONSIBILITIES
AND MISSING INTEGRATION STRATEGY

Quick fixes to patch the problems that arise at the time of
integration cause new defects [31]. Sometimes the original
developers may not be associated with the project till integra-
tion phase which forces the other developers to improvise.
In such scenarios, it is helpful to have a plan or strategy for
integration that was previously devised. Most often the plan
that delegated responsibilities is not available causing serious
integration issues [20].

A surprising cause of failure is the project managers’
inability to provide ample time and resources to the planning
and execution of integration. This is the result of the mindset
that integration is of lesser significance than other software
lifecycle phases [4].

2) FACTORC2-F2: BIG BANG INTEGRATION

Ramamoorthy [1] in his work has studied the effect of large
number of teams on integration. The study confirms that
highly interdependent or large number of teams are difficult
to manage and coordinate. This is a perfect recipe for creating
integration problems. Integration is usually done on multiple
levels based on module usage such as subsystem and cluster.
Without the plan, the integration on every level gives rise to
numerous problems — the phenomenon termed as ‘big-bang
integration problem’ [1].

VOLUME 6, 2018

3) FACTOR C2-F3: UNREALISTIC ASSUMPTIONS AND
PREDICTIONS IN INTEGRATION PLAN

Herbsleb and Grinter [5] observed that the initial integration
plan based on many unrealistic assumptions about require-
ments, schedules, and staff issues led to integration failure.
Such integration plans could not be followed with the passage
of time.

4) FACTORC2-F4: LACK OF INTEGRATION

DOCUMENTS AND MANUALS

A thorough and correct process document sets the ground-
work for an effective system development and integration, but
it is often neglected in terms of maintenance after require-
ment or design changes. The off-sites are left unaware of
the changes and thus are unable to produce valid integration
strategy [4].

5) FACTORC2-F5: NON-OPTIMAL TASK ALLOCATION
PATTERNS FOR DISTRIBUTED TEAMS

In GSD, there are often many known and unknown depen-
dencies that exist between modules being developed at dis-
tributed sites. The allocation of tasks to inexperienced or
incompetent person on ad-hoc basis can lead to mismanage-
ment of resources and problems at time of integration [53].

6) FACTORC2-F6: INADEQUATE TASK DEPENDENCIES
RELATED TO SYSTEMIC PROPERTIES

Systemic properties such as memory footprint and perfor-
mance budget are inadequately addressed for their depen-
dencies across components being built at remote sites. Not
addressing the issue results in duplicated efforts and even con-
flicting solutions from different teams leading to integration
problems [33].

7) FACTORC2-F7: MODULARIZATION OF WORK

The proper modularization of work can ease the distribution
of work across many sites. If the remote teams are unaware
of the dependencies between the modules or changes that
may have been incorporated into requirements or design at
remote sites then it leads to integration problems [34], [35].
MacGregor et al. [36] report integration problems that
occurred due to inefficient distribution of architectural mod-
ules to teams distributed across technical and cultural
boundaries.

8) FACTORC2-F8: DIFFERENT ASSUMPTIONS ABOUT
MODULE FUNCTIONALITY

Designers at different sites may independently design the
modules that may lead to problems. As the designers
do not understand the complete software, therefore, the
interpretation of requirements may be different at vari-
ous sites that leads to incompatible modules or incorrect
functionality [1], [37].

22233

IEEE Access

A. A. Zafar et al.: Taxonomy of Factors Causing Integration Failure During GSD

9) FACTORC2-F9: LACK OF DETAILED SPECIFICATION
DOCUMENTATION FOR GLOBAL TEAMS

Globally distributed teams often have different native
languages and use one language, such as English, for
communication. According to expert I, speakers of different
languages may interpret same terms differently which empha-
sizes the significance of a detailed documentation. Expert H
has emphasized the importance of writing down the speci-
fications to the utmost detail. He argues that for non-native
speakers it is not possible to comprehend what the text might
mean if all the details are not included.

10) FACTORC2-F10: INADEQUATE PROCESS SELECTION

If processes are selected without considering the system or
organization, they may lead to integration failure even though
they are being followed properly [26]. A common case, that is
the distribution of tasks that require frequent informal com-
munication between remote teams, would cause inefficient
work progress in large global organizations [26]. According
to expert J, another cause of failure is disagreement between
teams on engineering or development methodology.

C. CLASS C3: INADEQUATE PROCESS IMPLEMENTATION
The processes are executed successfully when the required
resources are readily available. Among these, the most diffi-
cult to manage is the human resource. It has been observed
that sometimes the process plans are made but are not strictly
followed leading to software defects and problems in later
stages of the software. Table 5 shows the factors associated
with inadequate process implementation.

TABLE 5. Factors associated with inadequate process implementation.

Factor ID Integration Failure Factors

C3-F1 Late defect detection

C3-F2 Lack of continuous and active management of software
architecture

C3-F3 Ignorance of rigorous unit and integration testing

C3-F4 Ad-hoc re-planning

C3-F5 Incompatibilities between components

C3-F6 Informal specifications refinement

C3-F7 Deviation from agreed architectural specifications

C3-F8 Badly engineered software

C3-F9 Sharing untested version of components using integration
centric approach

C3-F10 Poorly communicated module requirements

1) FACTORC3-F1: LATE DEFECT DETECTION

Defects that may occur due to changes in requirements do
not surface until the integration stage. Mostly defects are
highlighted when the locally modified components are to be
integrated with the components developed at other sites. Any
changes done at this stage further delay the project and result
in projects full of bugs which are extremely costly to fix [38].

22234

2) FACTOR C3-F2: LACK OF CONTINUOUS AND ACTIVE
MANAGEMENT OF SOFTWARE ARCHITECTURE

Architectural change influences the software on multi-levels
and across all modules. It is thus crucial to continuously and
actively manage and control any change to the architecture,
to have an elaborate representation of it and to communicate
the same with all concerned parties [20].

3) FACTORC3-F3: IGNORANCE OF RIGOROUS

UNIT AND INTEGRATION TESTING

The success of integration depends on many previous devel-
opment phases and activities; testing being one of them.
According to expert J, teams should ensure thorough unit test-
ing and integration testing to allow for fault-free integration.

4) FACTORC3-F4: AD-HOC RE-PLANNING

In GSD projects, the practice is to create project and integra-
tion plans from the requirements that are initially provided.
Problem arises when teams at different sites change the plan
or the requirements without fully understanding the effect it
may have on dependent objects that are being developed at
other sites. Most often these changes are not even commu-
nicated to all concerned parties. This can be a disaster at the
time of integration [39].

5) FACTORC3-F5: INCOMPATIBILITIES

BETWEEN COMPONENTS

In a study by Bosch and Bosch-Sijtsema [40], it is noted that
component incompatibilities are identified during integration
stage. The conflicting attributes of independently developed
modules make it difficult to test the end-to-end scenarios.
This makes the integration process more time consuming,
costly and unpredictable causing major difficulties for all the
parties involved.

6) FACTORC3-F6: INFORMAL SPECIFICATIONS REFINEMENT
Any changes brought into the original plan always result in
complications later even if these updates are done to refine or
improve the original specifications. Most often the updates
are not documented thoroughly. Incomplete documenta-
tion causes problems for software management and testing.
Handling the changes during the integration is a major prob-
lem especially if the people who originally worked on the
project are no longer available [5].

7) FACTORC3-F7: DEVIATION FROM AGREED
ARCHITECTURAL SPECIFICATIONS

Cataldo et al. [41] discuss an interesting phenomenon called
“architectural drift”. The teams at remote locations deviate
from the architecture that is agreed upon and communicated
to all teams. Resultantly individual components or subcom-
ponents are not developed based on a single architecture and
therefore are not easy to integrate.

VOLUME 6, 2018

A. A. Zafar et al.: Taxonomy of Factors Causing Integration Failure during GSD

IEEE Access

8) FACTORC3-F8: BADLY ENGINEERED SOFTWARE

Expert A emphasizes the significance of re-factoring the code
by arguing that complex code can be difficult to modify and
maintain. Any ill-hearted attempt at it leads to creation of new
defects causing delays and resource wastage. Code analysis
and architectural information should guide the process of
refactoring.

9) FACTORC3-F9: SHARING UNTESTED VERSION

OF COMPONENTS USING INTEGRATION

CENTRIC APPROACH

Organizations using an integration centric approach rely on
integration phase to test various components of the software.
By this time, defect detection and resolution has become an
expensive problem [40].

10) FACTORC3-F10: POORLY COMMUNICATED

MODULE REQUIREMENTS

According to expert K, “for any developer to fully understand
the requirements, it is necessary that he sees how any partic-
ular component fits in the overall picture. The dependencies
and constraints can be implemented only when the need is
clearly understood. This must be communicated timely to
remove the inaccuracy threat.”

D. CLASS C4: COMMUNICATION BARRIERS

Distributed teams’ effective communication is crucial for
timely product delivery and feature completion. Geographi-
cal, cultural and temporal distances affect the trust building
among the remote team members. Communication is hin-
dered due to various reasons, most of which are prominent
in distributed development as given in Table 6.

TABLE 6. Factors associated with communication barriers.

Factor ID Integration Failure Factors
C4-F1 Lack of face to face meeting during integration process
C4-F2 Lack of informal and external communication
C4-F3 Communication gap between teams at different sites
C4-F4 Inadequate understanding of requirements and interface

issues
C4-F5 High time zone difference
C4-F6 Increase in number of sites

1) FACTORC4-F1: LACK OF FACE TO FACE MEETING
DURING INTEGRATION PROCESS

Lack of face to face meeting during integration process
between remote development teams and the team that per-
forms system integration produces a lot of problems during
integration process. One of the study [42] states that it is
very hard to create harmony in remote teams. To achieve this,
project management teams often travel to meet the remote
teams [42]. Another study [43] describes that the system
integration in many GSD projects is performed either by
offshore or outsource team. One of the industrial experts of
the study also highlighted the issue that without face to face

VOLUME 6, 2018

communication between remote teams, it is very hard to avoid
integration problems.

2) FACTORCA4-F2: LACK OF INFORMAL AND

EXTERNAL COMMUNICATION

Spontaneous, external and informal communication often
lack in GSD projects due to teams’ remote locations
[11], [27], [44], [45]. Because of this problem, team members
are often unaware of each other activities. In addition, it is
very hard to predict each other’s progress especially in terms
of task completion. The delayed development at any site can
create frustration for other project members [45].

The team member at remote location often requires infor-
mal communication to understand design decision [29]. The
formal communication with the help of internet technology
cannot make up for the lack of informal communication
problems [11].

3) FACTORC4-F3: COMMUNICATION GAP

BETWEEN TEAMS AT DIFFERENT SITES

According to experts D, E, G, H, I and K, team members
of different locations often belong to different ethnic back-
grounds and cultures. These members usually have differ-
ent native languages and they communicate with each other
in English. Having this situation, they interpret the clearly
explained requirements in different ways leading to different
implementations. These ‘differences’ become visible at inte-
gration time and may lead to failures.

4) FACTORC4-F4: INADEQUATE UNDERSTANDING OF
REQUIREMENTS AND INTERFACE ISSUES

Inadequate understanding of requirements and interface
issues is the common reason for the integration failure. Some-
times requirements and interface agreements are interpreted
incorrectly. One of the main reasons for this, is that the
project members at remote sites have different assumptions
about other subsystems. These different assumptions are
also believed during unit tests and appear at the time of
integration [8]. According to other studies [29], [32], the
essential details are often missing in interface specification.
These details include return values, return type, message
type, assumption about performance constraint and input
parameters.

Another study [45] concludes that the integration prob-
lems which arise due to lack of common understanding
in requirement specification remain hidden throughout the
development cycle. Expert C also mentions this problem as
developers at remote locations often do not have common
understanding of requirements and interface specification
which leads to serious integration problems.

5) FACTORC4-F5: HIGH TIME ZONE DIFFERENCE

According to studies [27], [4] and many industrial experts
[A, E, G, H, I, K], high time zone difference is one of the
main reasons behind the defects that are detected during
system integration phase. The experts collectively describe

22235

IEEE Access

A. A. Zafar et al.: Taxonomy of Factors Causing Integration Failure During GSD

that normally, emails are used to discuss the problems with
remote teams and clients in case of offshore development with
high time zone difference. During critical stages, the feedback
or the problem to be discussed between remote teams often
takes more than one-day time.

6) FACTORC4-F6: INCREASE IN NUMBER OF SITES

A study [19] suggests that increase in the number of sites
belonging to different countries, increases the likelihood
of defects during the system integration. In addition, the
increased number of sites leads to more dependencies among
the sites that complicates the coordination efforts. The
increase in dependencies might stem from multiple sources
such as the distribution of roles and responsibilities or tech-
nical properties of the system.

E. CLASS C5: POOR RESOURCE MANAGEMENT

Distribution of development teams is challenging in terms of
task management with respect to time, tools and technology
unifications and integration of various software components.

Factors related to poor resource management are presented
in Table 7

TABLE 7. Factors associated with poor resource management.

Factor ID | Integration Failure Factors
C5-F1 Immature global infrastructure
C5-F2 Information Overload

1) FACTORC5-F1: IMMATURE GLOBAL INFRASTRUCTURE
Immature global infrastructure also affects the integration
process in GSD negatively. It includes limited network band-
width among remote sites, hardware and firmware connec-
tivity, and incomplete hardware configuration in distributed
environment. Some studies [45], [47] highlight this problem
by analyzing GSD projects in case of which global infrastruc-
ture is not good enough to address distributed environment
issues. Sometimes the network bandwidth between remote
sites is not capable of handling large amount of data traffic
across the network. As a result, the developers at remote
locations working on same project face long delays [47].
The experts C and G also point out that different hardware
environments invoke integration problems.

2) FACTORC5-F2: INFORMATION OVERLOAD

The information overload can cause integration failure [14].
Due to information overload, people at remote locations
often are unable to receive important messages. For instance,
in case study [22], the person responsible for integration sent
a notification to the developers at remote locations to keep
related files intact. At a remote location, a developer was
unable to read that notification due to information overload
and made changes to the files that resulted in integration
failure.

22236

F. CLASS C6: IMPROPER REQUIREMENTS

CHANGE MANAGEMENT

Requirements engineering is an important phase of software
development lifecycle. In globally distributed development
effort, any changes to requirements need to be communi-
cated to all concerned parties at different sites. Requirements
change management is often not given the importance that
leads to problems at later stages of software development.
In globally distributed teams, the decision power often gets
split between the onsite team which most often has a direct
communication with the client and an offsite/offshore team.
This setting requires more rigorous requirements engineer-
ing process and change management process [55]. Table 8
presents the factors associated with improper requirements
change management.

TABLE 8. Factors associated with improper requirements change
management.

Factor ID Integration Failure Factors
C6-F1 Feature addition
C6-F2 Last time changes in product release
C6-F3 Rapidly changing requirements and unexpected technical

interdependencies
C6-F4 Change in requirements regarding technology and
functionality

1) FACTORC6-F1: FEATURE ADDITION

During GSD, when new features are added to the system
without formal communication to all teams, the features are
prone to defects that become apparent during the system inte-
gration and testing phase. The added features are not properly
documented, communicated, and checked for dependencies
and constraints [17].

2) FACTORCG6-F2: LAST TIME CHANGES

IN PRODUCT RELEASE

According to expert C, any changes made to a product version
that is ready for release often lead to problems due to shortage
of time. The effect of changes to other modules is neither
carefully studied nor documented or communicated.

3) FACTORC6-F3: RAPIDLY CHANGING REQUIREMENTS
AND UNEXPECTED TECHNICAL INTERDEPENDENCIES

A successful integration is achieved when all aspects of soft-
ware development are considered. Cusumano [48] discusses
that integration failure sometimes can be attributed to delays
and erroneous shift from design to implementation. Tech-
nical interdependencies between distributed modules should
be handled carefully. Rapidly changing requirements badly
affect the integration process. Underestimating the time and
resources needed for integration, in complex systems where
many parties are involved, is a classical reason for integration
failure [4].

4) FACTORC6-F4: CHANGE IN REQUIREMENTS REGARDING
TECHNOLOGY AND FUNCTIONALITY

Changes to a plan are always costly. Particularly, changing
the technology or functionality at later development stages

VOLUME 6, 2018

A. A. Zafar et al.: Taxonomy of Factors Causing Integration Failure during GSD

IEEE Access

can cause chaos for the integration plan [1]. The system may
require major additions in terms of functionalities and even
technologies. A change management procedure should be in
place to address such scenarios [1].

G. CLASS C7: INADEQUATE TEAM EXPERTISE

Small teams with little or no experience in GSD can jeopar-
dize the project. The inexperience may be in terms of tool and
technology management, or people management. Herbsleb
and Grinter [5] recommend that educational trainings for
software developers should include team-oriented training
with global development perspective. Table 9 highlights the
factors related to inadequate team expertise.

TABLE 9. Factors associated with inadequate team expertise.

Factor ID Integration Failure Factors
C7-F1 Module incompatibilities due to lack of tool and technology
knowledge
C7-F2 Lack of required knowledge and skills regarding integration

1) FACTORC7-F1: MODULE INCOMPATIBILITIES DUE TO
LACK OF TOOL AND TECHNOLOGY KNOWLEDGE

Module incompatibilities occur when we try to integrate mod-
ules developed with different technologies by independent
teams. Avram et al. [49] document the effects of using two
different configuration management tools by teams work-
ing on the same software. According to the study, due to
unfamiliarity with tools, the teams are required to perform
extra work during integration and release. The same has been
backed by the experts A, B, E and F. Expert A proposes
that by performing dynamic and static code analysis, training
developers in different technologies, and conducting peer
reviews can mitigate this problem.

2) FACTOR C7-F2: LACK OF REQUIRED KNOWLEDGE

AND SKILLS REGARDING INTEGRATION

A successful integration requires the presence of a domain
expert at the time of integration. Often integration phase is not
given the required importance and a site expert is left out. The
integration teams cannot conduct a successful integration in
the absence of necessary system and domain expertise [20].
Developers leading the project in the start may also not be
available by the time of integration. In some instances, the
required expertise towards the end of project are unknown in
the beginning of project [4].

H. CLASS C8: IMPROPER TOOL SELECTION

By essence, distributed development occurs on unconnected
locations, which at times leads to presence of different devel-
opment setup at different sites. The processes being followed
at each site can also be different due to various social, political
or economic factors. This leads to inconsistencies even in
terms of tools being used at different sites. The factors about
improper tools selection are given in Table 10.

VOLUME 6, 2018

TABLE 10. Factors associated with improper tool planning.

Factor ID | Integration Failure Factors
C8-F1 Different versions of tools
C8-F2 Avoiding tools and processes to manage and control
architecture evolution
C8-F3 Inappropriate design documentation technology selection

1) FACTORCS-F1: DIFFERENT VERSIONS OF TOOLS
Organizations establish their own work environment and have
a set of tools and technologies they work with. In cases of
mergers and unions, different working practices are inherited.
Software’s developed in such environments lead to artifacts
that cannot be integrated [50]. As expert F describes that the
synchronization between numerous components becomes an
acute challenge when development goes global.

2) FACTOR C8-F2: AVOIDING TOOLS AND PROCESSES TO
MANAGE AND CONTROL ARCHITECTURE EVOLUTION

Some GSD projects ignore the use of tools for manage-
ment of processes and changes in requirements and archi-
tecture. Rigorous evolutions need a lot of re-work that often
leads to teams’ unwillingness to control architecture evolu-
tion. Following the defined processes, in such circumstances,
becomes challenging. All this leads to an inadequate and
inappropriate integration strategy [51].

3) FACTORCS8-F3: INAPPROPRIATE DESIGN
DOCUMENTATION TECHNOLOGY SELECTION

Developers at multiple sites rely on design documentation
for accurate information about what to build. Any document
that cannot incorporate the complexities of the requirements
or does not reflect later changes can lead to development
of incorrect functionalities. Most often this problem arises
because of inappropriate technology or tool selection for
document management [5].

V. CONCLUSION
Successful integration is one of the biggest challenges in GSD
that is compromised by many factors. The aim of this study is
to explore the factors that may cause integration failure during
GSD. The study identifies40 unique factors through extensive
literature review and survey with GSD industrial experts. The
factors cover various aspects of global software development
from the beginning of the process to its very end, including
factors related to tools and technologies, project management,
immature processes and deviations from defined processes.
The proposed taxonomy classifies the integration failure
factors into eight classes based on the underlying causes
which lead to the failure. The taxonomy includes the classes:
lack of coordination between remote sites (C1), inade-
quate process planning (C2), inadequate process implemen-
tation (C3), communication barriers (C4), poor resource
management (C5), improper requirements change manage-
ment (C6), inadequate team expertise (C7), and improper tool
selection (C8). This taxonomy allows us to focus more on
problem domain rather than the individual factors. It can be

22237

IEEE Access

A A

Zafar et al.: Taxonomy of Factors Causing Integration Failure During GSD

very effective to identify integration problems that may help
in devising their solution. It may also help to formulate a
fruitful integration strategy at early stages of GSD projects.

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

C. V. Ramamoorthy, “Distributed techniques in software systems integra-
tion,” in Proc. 5th IEEE Comput. Soc. Workshop Future Trends Distrib.
Comput. Syst., Aug. 1995, pp. 252-256.

O. Tufekei, S. Cetin, and A. Arifoglu, “Proposing a federated approach
to global software development,” in Proc. IEEE 4th Int. Conf. Digit.
Soc. (ICDS), Feb. 2010, pp. 150-157.

D. §mite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical evidence in
global software engineering: A systematic review,” Empirical Softw. Eng.,
vol. 15, no. 1, pp. 91-118, 2010.

J. Ammerlaan, “Identifying pitfalls of system integration—An exploratory
study,” in Proc. IEEE Int. Conf. Softw. Test. Verification Validation
Workshop (ICSTW), Apr. 2008, pp. 331-338.

J.D. Herbsleb and R. E. Grinter, ““Splitting the organization and integrating
the code: Conway’s law revisited,” in Proc. ACM 21st Int. Conf. Softw.
Eng., May 1999, pp. 85-95.

D. Smite, C. Wohlin, R. Feldt, and T. Gorschek, ‘“‘Reporting empirical
research in global software engineering: A classification scheme,” in Proc.
IEEE Int. Conf. Global Softw. Eng. (ICGSE), Aug. 2008, pp. 173-181.

S. Betz, J. Makio, and R. Stephan, “Offshoring of software development—
Methods and tools for risk management,” in Proc. 2nd IEEE Int. Conf.
Global Softw. Eng. (ICGSE), Aug. 2007, pp. 280-281.

B. Sengupta, S. Chandra, and V. Sinha, “ A research agenda for dis-
tributed software development,” in Proc. ACM 28th Int. Conf. Softw. Eng.,
May 2006, pp. 731-740.

T. Poikolainen and J. Paananen, ‘Performance criteria in inter-
organizational global software development projects,” in Proc. 2nd IEEE
Int. Conf. Global Softw. Eng. (ICGSE), Aug. 2007, pp. 60-70.

S. Abufardeh and K. Magel, “The impact of global software cultural and
linguistic aspects on global software development process (GSD): Issues
and challenges,” in Proc. IEEE 4th Int. Conf. New Trends Inf. Sci. Service
Sci. (NISS), May 2010, pp. 133-138.

0. Gotel, V. Kulkarni, C. Scharff, and L. Neak, “Integration starts on day
one in global software development projects,” in Proc. IEEE Int. Conf.
Global Softw. Eng. (ICGSE), Aug. 2008, pp. 244-248.

L. D. Panjer, D. Damian, and M.-A. Storey, ““Cooperation and coordination
concerns in a distributed software development project,” in Proc. ACM Int.
Workshop Cooperat. Hum. Aspects Softw. Eng., May 2008, pp. 77-80.

T. Wolf, A. Schroter, D. Damian, and T. Nguyen, ‘‘Predicting build failures
using social network analysis on developer communication,” in Proc. 31st
Int. Conf. Softw. Eng., May 2009, pp. 1-11.

D. Damian, L. Izquierdo, J. Singer, and I. Kwan, “Awareness in the wild:
Why communication breakdowns occur,” in Proc. 2nd IEEE Int. Conf.
Global Softw. Eng. (ICGSE), Aug. 2007, pp. 81-90.

A. Taweel, B. Delaney, T. N. Arvanitis, and L. Zhao, “Communication,
knowledge and co-ordination management in globally distributed software
development: Informed by a scientific software engineering case study,”
in Proc. 4th IEEE Int. Conf. Global Softw. Eng. (ICGSE), Jul. 2009,
pp. 370-375.

P. S. Brockmann and T. Thaumuller, ““Cultural aspects of global require-
ments engineering: An empirical Chinese-German case study,” in Proc.
4th IEEE Int. Conf. Global Softw. Eng. (ICGSE), Jul. 2009, pp. 353-357.
M. Cataldo and S. Nambiar, ““The impact of geographic distribution and the
nature of technical coupling on the quality of global software development
projects,” J. Softw., Evol. Process, vol. 24, no. 2, pp. 153-168, 2012.

D. Smite, “Project outcome predictions: Risk barometer based on his-
torical data,” in Proc. 2nd IEEE Int. Conf. Global Softw. Eng. (ICGSE),
Aug. 2007, pp. 103-112.

R. T. Nakatsu and C. L. Iacovou, “A comparative study of important
risk factors involved in offshore and domestic outsourcing of software
development projects: A two-panel Delphi study,” Inf. Manag., vol. 46,
no. 1, pp. 57-68, 2009.

R. Kommeren and P. Parviainen, ““Philips experiences in global distributed
software development,” Empirical Softw. Eng., vol. 12, no. 6, pp. 647-660,
2007.

R. Prikladnicki, J. L. N. Audy, D. Damian, and T. C. de Oliveira, “Dis-
tributed Software Development: Practices and challenges in different busi-
ness strategies of offshoring and onshoring,” in Proc. 2nd IEEE Int. Conf.
Global Softw. Eng. (ICGSE), Aug. 2007, pp. 262-274.

22238

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

(40]

[41]

(42]

(43]

S. Keele, “Guidelines for performing systematic literature reviews in
software engineering,” Dept. Comput. Sci., Univ. Durham, Durham, U.K.,
Tech. Rep. EBSE Version 2.3, 2007.

P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within the
software engineering domain,” J. Syst. Softw., vol. 80, no. 4, pp. 571-583,
2007.

C. Willig, Introducing Qualitative Research In Psychology. New York, NY,
USA: McGraw-Hill, 2013.

B. A. Farshcian, “Integrating geographically distributed development
teams through increased product awareness,” Inf. Syst., vol. 26, no. 3,
pp. 123-141, 2001.

M. Jiménez, M. Piattini, and A. Vizcaino, ““Challenges and improvements
in distributed software development: A systematic review,” Adv. Softw.
Eng., vol. 2009, Mar. 2009, Art. no. 710971, doi: 10.1155/2009/710971.
M. Cataldo and S. Nambiar, ““On the relationship between process maturity
and geographic distribution: An empirical analysis of their impact on
software quality,” in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM
SIGSOFT Symp. Found. Softw. Eng., Aug. 2009, pp. 101-110.

C. R. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles, ““Supporting
collaborative software development through the visualization of socio-
technical dependencies,” in Proc. Int. ACM Conf. Supporting Group Work,
Nov. 2007, pp. 147-156.

P. Ovaska, M. Rossi, and P. Marttiin, ““Architecture as a coordination tool
in multi-site software development,” Softw. Process, Improvement Pract.,
vol. 8, no. 4, pp. 233-247, 2003.

J. Kotlarsky, P. C. van Fenema, and L. P. Willcocks, ‘“Developing a
knowledge-based perspective on coordination: The case of global software
projects,” Inf. Manag., vol. 45, no. 2, pp. 96-108, 2008.

J. C. Jacobs, J. H. van Moll, P. J. Krause, R. J. Kusters, and
J. J. M. Trienekens, “Effects of virtual development on product quality:
Exploring defect causes,” in Proc. IEEE 7th Annu. Int. Workshop Softw.
Technol. Eng. Pract., Sep. 2003, pp. 6-15.

M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical con-
gruence: A framework for assessing the impact of technical and
work dependencies on software development productivity,” in Proc.
2nd ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas., Oct. 2008,
pp. 2-11.

R. Sangwan, C. Neill, M. Bass, and Z. El Houda, “Integrating a software
architecture-centric method into object-oriented analysis and design,”
J. Syst. Softw., vol. 81, no. 5, pp. 727-746, 2008.

M. T. Lane and P. J. Agerfalk, “On the suitability of particular software
development roles to global software development,” in Proc. IEEE Int.
Conf. Global Softw. Eng. (ICGSE), Aug. 2008, pp. 3—12.

E. O. Conchuir, H. Holmstrom, P. J. Agerfalk, and B. Fitzgerald, “Explor-
ing the assumed benefits of global software development,” in Proc. IEEE
Int. Conf. Global Softw. Eng. (ICGSE), Oct. 2006, pp. 159-168.

E. MacGregor, Y. Hsieh, and P. Kruchten, ‘“The impact of intercultural
factors on global software development,” in Proc. IEEE Can. Conf. Elect.
Comput. Eng., May 2005, pp. 920-926.

P. Wongthongtham, E. Chang, T. S. Dillon, and I. Sommerville,
“Ontology-based multi-site software development methodology and
tools,” J. Syst. Archit., vol. 52, no. 11, pp. 640-653, 2006.

J. Jacobs, J. van Moll, P. Krause, R. Kusters, J. Trienekens, and
A. Brombacher, “Exploring defect causes in products developed by virtual
teams,” Inf. Softw. Technol., vol. 47, no. 6, pp. 399-410, 2005.

N. Mullick et al., “Siemens global studio project: Experiences adopting
an integrated GSD infrastructure,” in Proc. IEEE Int. Conf. Global Softw.
Eng. (ICGSE), Oct. 2006, pp. 203-212.

J. Bosch and P. Bosch-Sijtsema, “‘From integration to composition: On the
impact of software product lines, global development and ecosystems,”
J. Syst. Softw., vol. 83, no. 1, pp. 67-76, 2010.

M. Cataldo et al., “CAMEL: A tool for collaborative distributed soft-
ware design,” in Proc. 4th IEEE Int. Conf. Global Softw. Eng. (ICGSE),
Jul. 2009, pp. 83-92.

H. Holmstrom, E. 0. Conchdiir, P. J. Agerfalk, and B. Fitzgerald, ““Global
software development challenges: A case study on temporal, geographi-
cal and socio-cultural distance,” in Proc. IEEE Int. Conf. Global Softw.
Eng. (ICGSE), Oct. 2006, pp. 3—-11.

P. Wongthongtham, E. Chang, and T. Dillon, “Multi-site distributed soft-
ware development: Issues, solutions, and challenges,” in Computational
Science and Its Applications—ICCSA. Berlin, Germany: Springer, 2007,
pp. 346-359.

VOLUME 6, 2018

http://dx.doi.org/10.1155/2009/710971

A. A. Zafar et al.: Taxonomy of Factors Causing Integration Failure during GSD

IEEE Access

[44] M. Cataldo and S. Nambiar, “Quality in global software development
projects: A closer look at the role of distribution,” in Proc. 4th IEEE Int.
Conf. Global Softw. Eng. (ICGSE), Jul. 2009, pp. 163-172.

[45] J. D. Herbsleb, D. J. Paulish, and M. Bass, “Global software development
at siemens: Experience from nine projects,” in Proc. IEEE 27th Int. Conf.
Softw. Eng. (ICSE), May 2005, pp. 524-533.

[46] M. Cataldo and J. D. Herbsleb, ‘“Communication networks in geograph-
ically distributed software development,” in Proc. ACM Conf. Comput.
Supported Cooperat. Work, Nov. 2008, pp. 579-588.

[47] M. Yap, “Follow the sun: Distributed extreme programming develop-
ment,” in Proc. IEEE Agile Conf., Jul. 2005, pp. 218-224.

[48] M. A. Cusumano, ‘“Managing software development in globally dis-
tributed teams,” Commun. ACM, vol. 51, no. 2, pp. 15-17, 2008.

[49] G. Avram, L. Bannon, J. Bowers, A. Sheehan, and D. K. Sullivan,
“Bridging, patching and keeping the work flowing: Defect resolution in
distributed software development,” Comput. Supported Cooperat. Work,
vol. 18, nos. 5-6, p. 477, 2009.

[50] D. Redmiles et al., “Continuous coordination: A new paradigm to sup-
port globally distributed software development projects,” Wirtschaftsin-
formatik, vol. 49, no. 1, p. 28, 2007.

[51] F. Salger, “Software architecture evaluation in global software develop-
ment projects,” in On the Move to Meaningful Internet Systems: OTM
Workshops. Berlin, Germany: Springer, 2009, pp. 391-400.

[52] M. Davies, “Concept mapping, mind mapping and argument mapping:
‘What are the differences and do they matter?”” Higher Edu., vol. 62, no. 3,
pp. 279-301, 2011.

[53] N. Ramasubbu, “Governing software process improvementsin globally
distributed product development,” IEEE Trans. Softw. Eng., vol. 40, no. 3,
pp. 235-250, Mar. 2014.

[54] R. Prikladnicki, J. L. N. Audy, and R. Evaristo, “Global software devel-
opment in practice lessons learned,” Softw. Process, Improvement Pract.,
vol. 8, no. 4, pp. 267-281, 2003.

[55] J. M. Bhat, M. Gupta, and S. N. Murthy, “Overcoming requirements
engineering challenges: Lessons from offshore outsourcing,” IEEE Softw.,
vol. 23, no. 5, pp. 38-44, Sep./Oct. 2006.

ATIQUE AHMAD ZAFAR received the M.S.
degree in software engineering with specializa-
tion in technical management track from the
Blekinge Institute of Information Technology,
Sweden, in 2010. He has been a Lecturer of
computer science with the COMSATS Institute
of Information Technology (Islamabad Campus),
Pakistan, since 201 1. His area of research is Global
software development challenges.

SHAHELA SAIF received the M.S. degree in com-
puter software engineering from NUST in 2012.
She is currently a Lecturer with the COMSATS
Institute of Information Technology, Islamabad,
Pakistan. Her interest areas include software devel-
opment, GSD, and machine learning.

MUZAFAR KHAN received the M.Sc. degree in
software engineering from the Blekinge Institute
of Technology, Sweden, in 2008 the Ph.D. degree
in human—computer interaction from Universiti
Teknologi PETRONAS, Malaysia, in 2012. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, COMSATS Institute
of Information Technology, Islamabad, Pakistan.
He has keen interest in interdisciplinary research
related to human-computer interaction and
software engineering.

VOLUME 6, 2018

JAVED IQBAL received the Ph.D. degree in com-
puter science from the University of Malaya,
Malaysia, in 2016. He is currently an Assistant
Professor with the Department of Computer Sci-
ence, COMSATS Institute of Information Technol-
ogy, Islamabad, Pakistan. His areas of interest are
software process improvement, requirements engi-
neering, and software development outsourcing.

ADNAN AKHUNZADA is currently as an
Assistant Professor and Incharge Programme
(Software Engineering and Telecommunication
Networks) with the COMSATS Institute of Infor-
mation Technology, Islamabad, Pakistan. He got
a great experience of teaching international mod-
ules and a renowned member of several research
communities. He has authored several high impact
research journals, IEEE TraNsacTIONS, highly rep-
utable magazines, book chapter, and conference
papers. His current research interests include secure and dependable software
defined networks, light weight cryptography, man-at-the-end attacks, human
attacker attribution and profiling, remote data auditing, and modeling secure
software defined smart cities.

ABDUL WADOOD received the Ph.D. degree in signal and image pro-
cessing from the University of Poitiers, France, in 2011. He is currently an
Assistant Professor with the Department of Computer Engineering, CCIS,
King Saud University. His research interests are focused on color image
watermarking, multimedia security, steganography, fingerprinting, and bio-
metric template protection.

e AHMAD AL-MOGREN received the Ph.D. degree
— in computer sciences from Southern Methodist
University, Dallas, TX, USA, in 2002. He was
an Assistant Professor of computer science and a
member of the Scientific Council with the Riyadh
College of Technology. He served as the Dean of
the College of Computer and Information Sciences
and the Head of the Council of Academic Accred-
itation, Al Yamamah University. He is currently
an Associate Professor and the Vice Dean for the
development and quality with the College of Computer and Information
Sciences, King Saud University, Saudi Arabia. His research areas of interest
include mobile and pervasive computing, computer security, sensor and
cognitive network, and data consistency. He has served as a guest editor for
several computer journals.

ATIF ALAMRI received the B.Sc. and M.Sc.
degrees in information systems from College of
Computer and Information Sciences (CCIS), King
Saud University (KSU), Riyadh, Saudi Arabia, in
2000 and 2004, respectively, and the Ph.D. degree
in computer science from the School of Infor-
mation Technology and Engineering, University
of Ottawa, Canada, in 2010. He is currently an
Associate Professor with the Information Systems
Department, CCIS, KSU. He is one of the found-
ing members of the Chair of Pervasive and Mobile Computing, CCIS,
KSU, and successfully managing its research program, which transformed
the chair as one of the best chairs of research excellence in the college.
He is also acting as an Assistant Vice-Rector for Technical, Vice President’s
Office for Quality and Development, KSU. His research areas of interest are
multimedia assisted health systems, ambient intelligence, service-oriented
architecture, multimedia cloud, sensor-cloud, Internet of Things, big data,
mobile cloud, social network, and recommender system.

22239

	INTRODUCTION
	RELATED WORK
	RESEARCH METHODOLOGY
	LITERATURE REVIEW
	INDUSTRIAL SURVEY
	FACTOR CONSOLIDATION PROCESS
	CONCEPT MAPPING

	THE PROPOSED TAXONOMY
	CLASS C1: LACK OF COORDINATION BETWEEN REMOTE SITES
	FACTOR C1-F1: LONG TERM LACK OF AWARENESS ACTIVITIES IN REMOTE SITE
	FACTOR C1-F2: UNCOOPERATIVE BEHAVIOR AMONG REMOTE TEAM MEMBERS
	FACTORC1-F3: LACK OF COORDINATION BETWEEN REMOTE TEAMS

	CLASS C2: INADEQUATE PROCESS PLANNING
	FACTORC2-F1: ASSIGNING UNCLEAR RESPONSIBILITIES AND MISSING INTEGRATION STRATEGY
	FACTORC2-F2: BIG BANG INTEGRATION
	FACTOR C2-F3: UNREALISTIC ASSUMPTIONS AND PREDICTIONS IN INTEGRATION PLAN
	FACTORC2-F4: LACK OF INTEGRATION DOCUMENTS AND MANUALS
	FACTORC2-F5: NON-OPTIMAL TASK ALLOCATION PATTERNS FOR DISTRIBUTED TEAMS
	FACTORC2-F6: INADEQUATE TASK DEPENDENCIES RELATED TO SYSTEMIC PROPERTIES
	FACTORC2-F7: MODULARIZATION OF WORK
	FACTORC2-F8: DIFFERENT ASSUMPTIONS ABOUT MODULE FUNCTIONALITY
	FACTORC2-F9: LACK OF DETAILED SPECIFICATION DOCUMENTATION FOR GLOBAL TEAMS
	FACTORC2-F10: INADEQUATE PROCESS SELECTION

	CLASS C3: INADEQUATE PROCESS IMPLEMENTATION
	FACTORC3-F1: LATE DEFECT DETECTION
	FACTOR C3-F2: LACK OF CONTINUOUS AND ACTIVE MANAGEMENT OF SOFTWARE ARCHITECTURE
	FACTORC3-F3: IGNORANCE OF RIGOROUS UNIT AND INTEGRATION TESTING
	FACTORC3-F4: AD-HOC RE-PLANNING
	FACTORC3-F5: INCOMPATIBILITIES BETWEEN COMPONENTS
	FACTORC3-F6: INFORMAL SPECIFICATIONS REFINEMENT
	FACTORC3-F7: DEVIATION FROM AGREED ARCHITECTURAL SPECIFICATIONS
	FACTORC3-F8: BADLY ENGINEERED SOFTWARE
	FACTORC3-F9: SHARING UNTESTED VERSION OF COMPONENTS USING INTEGRATION CENTRIC APPROACH
	FACTORC3-F10: POORLY COMMUNICATED MODULE REQUIREMENTS

	CLASS C4: COMMUNICATION BARRIERS
	FACTORC4-F1: LACK OF FACE TO FACE MEETING DURING INTEGRATION PROCESS
	FACTORC4-F2: LACK OF INFORMAL AND EXTERNAL COMMUNICATION
	FACTORC4-F3: COMMUNICATION GAP BETWEEN TEAMS AT DIFFERENT SITES
	FACTORC4-F4: INADEQUATE UNDERSTANDING OF REQUIREMENTS AND INTERFACE ISSUES
	FACTORC4-F5: HIGH TIME ZONE DIFFERENCE
	FACTORC4-F6: INCREASE IN NUMBER OF SITES

	CLASS C5: POOR RESOURCE MANAGEMENT
	FACTORC5-F1: IMMATURE GLOBAL INFRASTRUCTURE
	FACTORC5-F2: INFORMATION OVERLOAD

	CLASS C6: IMPROPER REQUIREMENTS CHANGE MANAGEMENT
	FACTORC6-F1: FEATURE ADDITION
	FACTORC6-F2: LAST TIME CHANGES IN PRODUCT RELEASE
	FACTORC6-F3: RAPIDLY CHANGING REQUIREMENTS AND UNEXPECTED TECHNICAL INTERDEPENDENCIES
	FACTORC6-F4: CHANGE IN REQUIREMENTS REGARDING TECHNOLOGY AND FUNCTIONALITY

	CLASS C7: INADEQUATE TEAM EXPERTISE
	FACTORC7-F1: MODULE INCOMPATIBILITIES DUE TO LACK OF TOOL AND TECHNOLOGY KNOWLEDGE
	FACTOR C7-F2: LACK OF REQUIRED KNOWLEDGE AND SKILLS REGARDING INTEGRATION

	CLASS C8: IMPROPER TOOL SELECTION
	FACTORC8-F1: DIFFERENT VERSIONS OF TOOLS
	FACTOR C8-F2: AVOIDING TOOLS AND PROCESSES TO MANAGE AND CONTROL ARCHITECTURE EVOLUTION
	FACTORC8-F3: INAPPROPRIATE DESIGN DOCUMENTATION TECHNOLOGY SELECTION

	CONCLUSION
	REFERENCES
	Biographies
	ATIQUE AHMAD ZAFAR
	SHAHELA SAIF
	MUZAFAR KHAN
	JAVED IQBAL
	ADNAN AKHUNZADA
	ABDUL WADOOD
	AHMAD AL-MOGREN
	ATIF ALAMRI

