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ABSTRACT In this paper, we present the dynamic modeling and controller design of a tendon-driven system
that is antagonistically driven by elastic tendons. In the dynamic modeling, the tendons are approximated as
linear axial springs, neglecting their masses. An overall equation for motion is established by following the
Euler–Lagrange formalism of dynamics, combined with rigid-body rotation and vibration. The controller is
designed using the singular perturbation approach, which leads to a composite controller (i.e., consisting of
a fast sub-controller and a slow sub-controller). An appropriate internal force is superposed to the control
action to ensure the tendons to be in tension for all configurations. Experimental results are provided to
demonstrate the validity and effectiveness of the proposed controller for the antagonistic tendon-driven
system.

INDEX TERMS Tendon-driven system, antagonistic actuation, composite controller, singular perturbation
approach.

I. INTRODUCTION
Tendon-driven systems in robotics and machines have sev-
eral promising features, including light-weight design, a high
payload to weight ratio, and re-configurability. However, they
also have some significant drawbacks, such as low stiffness,
elongation of the tendons, pull-only actuation, and the non-
linear characteristics of tendons that complicate controller
design [1]–[3]. The elasticity of tendons in particular plays as
a major source of obstacle that prevents from proper mechan-
ical operation [4], [5]. So, in this paper, we propose a reliable
controller for tendon-driven systems that guarantees effective
tracking performance by reducing the deleterious effects of
elastic tendons (i.e., vibrations and jerky movements at the
changes in direction), through the use of the singular pertur-
bation approach.

A large number of studies have been conducted with the
purpose of optimizing tendon transmission for developing
robotic systems such as the whole arm manipulator [6], the
astronaut rehabilitative training robot [7], and the ECCE
humanoid robot [8], just to name a few. However, the best
example of a tendon-driven system may be found in the

human body. Most of human’s biological joints are driven
by the contraction of antagonist and agonist tendons. Unlike
the rotary types of tendon-driven joints that are often found
in mechanical systems, human joints are driven by tendons
that are directly anchored to the sides of bones, which are
known as on-link typed joints [9]. The advantages of on-link
typed joints over simple rotary joints include increased struc-
tural stiffness, better controllability, and enhanced mechan-
ical load-carrying ability, although the increased difficulty
of control is a downside that has not yet been completely
overcome. In this paper, we focus on the on-link type of
tendon-driven joint system, although the theoretical claims
can be generalized to other joint types with ease.

Designing adequate controllers dedicated to tendon-driven
systemsmust be an important issue; the use of tendons instead
of rigid transmissions leads to new challenges in this respect.
For example, because tendons can only pull and not push,
the controller must guarantee that all tendons should remain
under tension at all times [10]. Another important problem
is the elasticity of the tendons, which may cause unwanted
vibrations or fluctuations at the discontinuity of accelera-
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tion. This is particularly problematic for robotic applica-
tions where high precision and accurate tracking performance
are required, such as assembly, spraying, aligning, or other
manipulations by the end-effector [11]. In order to cope with
these issues, a reliable and dependable controller is needed.

Many conventional control techniques, if tendons are
treated as non-elastic elements, could be used for tendon-
driven systems, including inverse dynamic control [12], [13],
robust iterative learning control [14], robust PID and PD
control [15], [16], slidingmode control [17], and optimal con-
trol [18]. In practice, however, any controller designed under
this assumption for rigidity can create instability or failure
during high speed motion.

Previous studies on controller design for tendon-driven
systems that incorporate the elasticity of the tendons seem
very limited (see, for example, [4], [5], [19]). In [4], an inner
and outer loop control scheme was proposed, in which an
inverse dynamics controller was designed to control the end-
effector’s pose in the outer feedback loop, while a H∞ was
designed for the inner loop. However, the stability of the
system was not fully analyzed. Khosravi and Taghirad [5]
proposed a new control strategy by taking into account the
elasticity of the tendons. They used the Lyapunov stability
theory to analyze system stability, and ensured that all of the
cables were in tension at the same time.

While it is important to design controllers for tendon-
driven systems with elastic tendons that ensure high precision
in positioning and vibration suppression as well, there have
not been enough previous examples of controllers that we
can evaluate, compare, and adopt. Therefore, in this paper,
we propose a novel composite controller based on a two-
time scale dynamic model following the singular perturbation
approach. The singular perturbation approach has been stud-
ied widely in the modeling and control of electro-mechanical
systems [20], [21], and has proven its efficacy. This approach
may be a unique mathematical and systematic method for
dealing with flexible systems, which allows us to extract
the slow and fast sub-dynamics and to establish a separate
control scheme for each sub-system. The final controller is
obtained simply through the linear addition of these two sub-
controllers. However, to the authors’ best knowledge, its use
in tendon-driven systems has been rare, with only a handful of
studies, e.g., [22]–[24], having been published on this topic.

This paper, as a new attempt, has three distinct objec-
tives: i) to develop a precise dynamic model of an on-link
type antagonistic tendon-driven system with elastic tendons,
ii) to obtain the slow and fast subsystems by redefining
the dynamic model into the standard form of the singular
perturbation approach, and iii) to design and implement a
composite controller based on this model. The effectiveness
of the proposed control strategy will be demonstrated through
experimentation, something which has rarely been conducted
on singular perturbation schemes for tendon-driven systems
in previous studies.

This paper is organized as follows. First, the kinematics
and dynamic modeling of an antagonistic tendon-driven sys-

tem are described in Section 2. The control and stability
of a tendon-driven system with non-elastic tendons is then
investigated in Section 3. In Section 4, the effectiveness of
the proposed controller is evaluated through experimentation.
Finally, concluding remarks are provided in Section 5.

FIGURE 1. Antagonistic tendon-driven joint system with an external force.

II. MODELING ANTAGONISTIC TENDON-DRIVEN
JOINT SYSTEMS
A. KINEMATIC MODEL
Fig. 1 displays the schematic of a joint system driven by
antagonistic elastic tendons and the exertion of external force
Fext , which is normal to the link rotating around the joint.
Hereafter, this system will be referred to as the tendon-driven
joint (TDJ) system. The dotted and solid lines represent the
static equilibrium configurations before and after the exertion
of Fext , respectively. We do not consider the force in the
axial direction of the link as it would not contribute to the
displacement of the joint.

The static equilibrium in Fig. 1 satisfies the equation:

−[l0 cos θ1 −l0 cos θ2]
[
t1
t2

]
+ τext = 0, (1)

where l0 is the length of the link from the base to the point
of action for Fext , θi, i = 1, 2, is the angle between the
i-th tendon and the line of action for Fext , ti, i = 1, 2, is
the tension in the i-th tendon, and τext is the moment at the
center of the joint produced by Fext . The above expression
can be rewritten as

−JT t + τext = 0,

where t = [t1 t2]T is the vector for the tensions and J =
[l0 cos θ1 −l0 cos θ2]T is the structure matrix for this TDJ.
We can define the internal force, t0 = [t01 t02 ]

T , such that
t01 cos θ1 − t02 cos θ2 = 0, which does not contribute to the
moment. Based on the virtual work principle, the following
also holds: [

l̇1
l̇2

]
=

[
l0 cos θ1
−l0 cos θ2

]
θ̇ or l̇ = J θ̇ . (2)

5216 VOLUME 6, 2018



M. Shoaib et al.: Composite Controller for Antagonistic TDJs With Elastic Tendons and Its Experimental Verification

From Fig. 1, it is true that cos θi = di sin(θ−90)/li i = 1, 2.
The above equation can thus be re-written as[

l̇1
l̇2

]
=

[
lod1 sin θ/l1
−lod2 sin θ/l2

]
θ̇ or l̇ = J θ̇ . (3)

The joint stiffness can be expressed as

Kθ :=
d(−τext )
dθ

=
dJT

dθ
t + JT

d t
dθ

=
dJT

dθ
t + JTKmJ, (4)

where Hooke’s law for elastic tendons, t = Kmδl and Km
=

diag(Km
1 ,K

m
2 ), is applied. By substituting the detailed forms

of J and Km into (4), joint stiffness is expressed as

Kθ = l20 (K
m
1 cos

2θ1 + Km
2 cos

2θ2)

− t1l20 sin θ1
dθ1
dθ
+ t2l20 sin θ2

dθ2
dθ

. (5)

In the above, dθi/dθ can be obtained from the geometry of
Fig.1. That is, the following two relations (by cosine law),

l20 + l
2
1 − 2l0l1 sin θ1 = d21 ,

l20 + d
2
1 − 2l0d1 cos θ = l21 , (6)

lead to

dθ1
dθ
=
dθ1
dl1

.
dl1
dθ
=
l1 − l0 sin θ1

l1
. (7)

Similarly, the following result can also be obtained:

dθ2
dθ
=
dθ2
dl2

.
dl2
dθ
= −

l2 − l0 sin θ2
l2

. (8)

By plugging in (7) and (8), the joint stiffness in (5) becomes

Kθ = l20 (K
m
1 cos

2θ1 + Km
2 cos

2θ2)

− t1l20 sin θ1
l1 − l0 sin θ1

l1
− t2l20 sin θ2

l2 − l0 sin θ2
l2

.

(9)

The first part of terms on the right hand side is referred to as
the material stiffness of the joint, while the other terms are the
geometric stiffness of the joint. Note that the human arm takes
advantage of this type of TDJ in motion and load carrying.

B. DYNAMIC MODELING OF ANTAGONISTIC
TENDON DRIVEN JOINTS
Now we establish a dynamic equation for the TDJ system
shown in Fig.1 using Euler-Lagrange formalism. Under the
linear axial spring assumption, the potential energy associ-
ated with the tendons of the TDJ can be given by

Uelastic =
1
2
Km
1 (l1(θ )− l1(θm1))

2
+

1
2
Km
2 (l2(θ )− l2(θm2))

2,

(10)

where li(θ ) denotes the geometric length of tendon i, and
li(θmi) is the length of tendon imeasured by the angle ofmotor
i (i.e., θmi), which satisfies

li(θmi) = rθmi + li,0, (11)

where r and li,0 are the pulley radius of motor and the length
of tendon i at θmi = 0, respectively. The stiffness coefficients
of the tendons in the above equation can be calculated using
the conventional formula as follows:

Km
i = EiAi/li(θmi), i = 1, 2, (12)

where Ei and Ai denote the Young’s modulus and cross-
sectional area of tendon i, respectively.

The gravitational potential energy of the TDJ system is

Ugrav = mglcg sin θ, (13)

where m and lcg are the mass and the distance from joint axis
to the center of mass of link, respectively and g is the gravi-
tational constant. The kinetic energy of the TDJ system is

T =
1
2

(
ml2cg + I

)
θ̇2 +

1
2
Jm1θ̇2m1 +

1
2
Jm2θ̇2m2, (14)

where I and Jmi are the moment of inertia of the link (at the
center of mass) and the rotor inertia of motor i, respectively.
The Lagrangian L := T − Uelastic − Ugrav allows us to
obtain equations for motion with generalized coordinates q =
[θ θm1 θm2]T as shown in (15), at the bottom of this page.
where τmi, i = 1, 2, is the torque of motor i.
If we define δli , (li(θ ) − li(θmi)), i = 1, 2, the above

equation can be re-written in terms of deflection variables.
Combining (6) and (11) and then taking the time derivatives,
we obtain the relation between the actuator and deflection
variables as

δl̈1 = −(lod1 sin θ θ̇ )2/l31 (θ )+ lod1 cos θ θ̇
2/l1(θ )

+ lod1 sin θ θ̈/l1(θ )− r θ̈m1,
δl̈2 = −(lod2 sin θ θ̇ )2/l32 (θ )− lod2 cos θ θ̇

2/l2(θ )
− lod2 sin θ θ̈/l2(θ )− r θ̈m2. (16)

ml2cg + I 0 0
0 Jm1 0
0 0 Jm2

 θ̈

θ̈m1
θ̈m2


+

Km
1 lod1 sin θ(l1(θ )− l1(θm1))/l1(θ )− K

m
2 lod2 sin θ (l2(θ )− l2(θm2))/l2(θ )

−rKm
1 (l1(θ )− l1(θm1))− rK

m
1 (l1(θ )− l1(θm1))

2/2l1(θm1)
−rKm

2 (l2(θ )− l2(θm2))− rK
m
2 (l2(θ )− l2(θm2))

2/2l2(θm2)

+
mglcg cos θ0

0

 =
 0
τm1
τm2

, (15)
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Equivalently,

θ̈m1 = lod1 sin θ θ̈/rl1(θ )− δl̈1/r − (lod1 sin θ θ̇ )2/rl13(θ )

+ lod1 cos θ θ̇2/rl1(θ ),

θ̈m2 = −lod2 sin θ θ̈/rl2(θ )− δl̈2/r − (lod2 sin θ θ̇ )2/rl23(θ )

− lod2 cos θ θ̇2/rl2(θ ). (17)

By substituting (17) into (15) the equation can be redefined
in terms of joint and deflection variables as follows: ml2cg + I 0 0

Jm1lod1 sin θ/rl1(θ ) −Jm1/r 0
−Jm2lod2 sin θ/rl2(θ ) 0 −Jm2/r

 θ̈δl̈1
δl̈2


+

 0

Jm1lod1 cos θ θ̇2/rl1(θ )−Jm1(lod1 sin θ θ̇ )
2
/rl13(θ )

−Jm2(lod2 sin θ θ̇)
2
/rl23(θ )−Jm2lod2 cos θ θ̇2/rl2(θ )


+

Km
1 lod1 sin θδl1/l1(θ )− K

m
2 lod2 sin θδl2/l2(θ )

−rKm
1 δl1 − rK

m
1 δl

2
1/2l1(θm1)

−rKm
2 δl2 − rK

m
2 δl

2
2/2l2(θm2)


+

mglcg cos θ0
0

 =
 0
τm1
τm2

. (18)

This is the most comprehensive form of the exact dynamic
equation for an antagonistic TDJ system. Starting from (18),
we now need to convert the original form of the equation
into the standard form of the singular perturbation approach,
which separates the dynamics into its slow and fast approxi-
mate forms. We will then design a composite controller based
on the separated subsystems that enhances control perfor-
mance.
It has often been the case in previous works, for example,

[25] and [26], that the singular parameter is defined as the
supremum of the inverse of the stiffness matrix:

µ := sup
i

1
Km
i
. (19)

By using the singular parameter µ, the variables of interest
can be re-scaled such that

δli = µδl̃i, Km
i =

K̃m
i

µ
, i = 1, 2. (20)

Now substituting (19) and (20) into (18) yields ml2cg + I 0 0
Jm1lod1 sin θ/rl1(θ ) −Jm1/r 0
−Jm2lod2 sin θ/rl2(θ ) 0 −Jm2/r

 θ̈

µδ ¨̃l1
µδ ¨̃l2


+

 0
Jm1lod1 cos θ θ̇2/rl1(θ )− Jm1(lod1 sin θ θ̇ )

2
/rl31 (θ )

−Jm2(lod2 sin θ θ̇ )
2
/rl32 (θ )− Jm2lod2 cos θ θ̇

2/rl2(θ )


+

K̃m
1 lod1 sin θδl̃1/l1(θ )− K̃

m
2 lod2 sin θδl̃2/l2(θ )

−rK̃m
1 δl̃1 − rK̃

m
1 µδl̃1

2
/2l1(θm1)

−rK̃m
2 δl̃2 − rK̃

m
2 µδl̃2

2
/2l2(θm2)


+

[
mglcg cos θ

0
0

]
=

[
0
τm1
τm2

]
. (21)

Simply, by setting µ = 0 in (21), a reduced model of the
slow subsystem can be obtained, representing the motion with the
assumption for rigidity, as follows:

(ml2cg + I )θ̈ + mglcg cos θ + K̃
m
1 lod1 sin θ δ̃l1s/l1(θ )

− K̃m
2
lod2 sin θ δ̃l2s/l2(θ ) = 0, (22)

Jm1lod1 sin θ θ̈/rl1(θ )+ Jm1lod1 cos θ θ̇
2/rl1(θ )

− Jm1(lod1 sin θ θ̇ )
2/rl31 (θ )− rK̃

m
1 δ̃l1s = τm1s, (23)

and

Jm2lod2 sin θ θ̈/rl2(θ )+ Jm2(lod2 sin θ θ̇ )
2/rl32 (θ )

+ Jm2lod2 cos θ θ̇
2/rl2(θ )+ rK̃

m
2 δ̃l2s = −τm2s, (24)

where τm1s and τm2s denote the control torque of the slow subsystem,
and ˜δlis is the quasi-steady-state solution of the deflection variable.
The above three equations constitute the slow manifold for the
singularly perturbed system in (21). If δ̃lis is eliminated in (22) by
combining (23) and (24), we obtain(
ml2cg + I + Jm1l

2
od

2
1 sin

2θ/r2l21 (θ )

+ Jm2l
2
od

2
2 sin

2θ/r2l22 (θ )
)
θ̈ +

(
Jm1l

2
od

2
1 sin θ cos θ/r

2l21 (θ )

− Jm1(lod1 sin θ )
3/r2l41 (θ )+ Jm2(lod2 sin θ )

3/r2l42 (θ )

+ Jm2l
2
od

2
2 sin θ cos θ/r

2l22 (θ )
)
θ̇2 + mglcg cos θ

=
[
lod1 sin θ/rl1(θ ) −lod2 sin θ/rl2(θ )

] [ τm1s
τm2s

]
= 1/r JT τ s, (25)

where τ s := [τm1s τm2s]T is the vector of the control torque of the
slow subsystem. This equation may be written in short form as

M (θ )θ̈ + C(θ, θ̇ )+ G(θ ) = 1/r JT τ s.

The solution θ for (25) can be denoted as θs as it represents the
solution for the slow subsystem.

Next, to obtain the dynamic equation for the fast subsystem, let
us define the following set of perturbed variables as

ξi := δl̃i − δl̃is, zi := ξi, wi := εżi, (26)

where ξi indicates the transient deviation of δ̃li from ˜δlis and ε
1
=

√
µ is a small constant used for time scale expansion via h = t/ε,

resulting inwi = dzi/dh. We can obtain the fast part of the dynamics
by first subtracting the slow form from the overall dynamics and then
by imposing condition µ = 0 (or ε = 0 ) on the resulting equation.
The eventual equation for the fast part of the dynamics becomes

τm1f = −
Jm1
r

d2z1
dh2
− rK̃m

1 z1,

τm2f = −
Jm2
r

d2z2
dh2
− rK̃m

2 z2, (27)

where τmif = τmi − τmis, i = 1, 2. This is a boundary layer
equation that is implicitly parametrized by the slow variable θs.

III. CONTROLLER DESIGN FOR TDJ SYSTEM
A. DESIGN OF COMPOSITE CONTROLLER
Once the dynamic equations of the TDJ system are established, the
next step is to design a controller that is consistent with the fast and
the slow subsystems. It is well known that the composite controller
can be written in the following form:

τ = τ s + τ f :=

[
τm1,s
τm2,s

]
+

[
τm1,f
τm2,f

]
, (28)
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FIGURE 2. Schematic of proposed composite controller for antagonistic TDJ system.

FIGURE 3. Experimental system overview.

TABLE 1. Parameters for the antagonistic TDJ system.

TABLE 2. Parameters for the controllers in comparison.

where τ s and τ f denote sub-controllers that act upon the slow
and fast subsystems, respectively. Each of these sub-controllers can
be independently designed to satisfy the stability requirements of
the corresponding subsystem. The block diagram of the proposed
composite controller is shown in Fig. 2.

For the sub-controller τ s for the slow subsystem in (25), the con-
ventional PD control law is employed as

τ s = r(JT )†
(
M (θ )θ̈d + C(θ, θ̇ )+G(θ )+ Kpseθ + Kdsėθ

)
+λN,

(29)

FIGURE 4. Control flow for the experimental system.

where eθ = θd − θ is the trajectory tracking error, Kps and Kds
denote positive gains of the PD controller, (JT )† := J(JT J)−1
represents the pseudo-inverse of JT , and λ and N respectively
denote an arbitrary scaling parameter and the one-dimensional null
space basis vector of JT such that JTN = 0. On the right hand
side of (29), the first group of terms is the feedforward and feedback
compensations, and the last term is the homogeneous input that is
chosen in such a way that all components of the input torque are
positive, thus preventing slack tendons.

Next, we design the fast sub-controller τ f for the fast subsystem
in (27). The fast subsystem in a TDJ, if not properly controlled, can
jeopardize the entire system, especially for applications that require
high precision and high bandwidth operation.

As was the slow sub-controller, the fast sub-controller can take
the PD control form:

τ f = Kpf

[
z1
z2

]
+ Kdf

[
w1
w2

]
, (30)
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FIGURE 5. Movements of the antagonistic TDJ system while tracking the reference trajectory.

where Kpf ∈ R2×2 and Kdf ∈ R2×2 are the propor-
tional and derivative gain matrices, respectively, of the fast
sub-controller.

Note that the control gains Kpf and Kdf should be interpreted
as higher gains at normal magnitude and time scales. That is, with
feedback δli and δl̇i, instead of δ̃li (for zi) and d δ̃li/dh (for wi), the
effective gains will become Kpf → Kpf /µ and Kdf → Kdf /ε. The
main reason why higher gains are required for the fast sub-controller
is that the fast subsystem needs to quickly converge to the slow
manifold and remain on the equilibrium trajectory. It should also
be recalled that (27) is a set of linear parameter varying equations in
the fast time scale, which thus requires the condition on gains, Kpf
and Kdf , to ensure stability. We shall discuss this issue in the next
subsection.

FIGURE 6. Experimental results for the rigid-only joint controller.
(a) Trajectory tracking. (b) Trajectory tracking error. (c) Elastic deflection in
l1. (d) Elastic deflection in l2. (e) Torque 1. (f) Torque 2.

Ultimately, our composite controller can be constructed by
adding a corrective term (i.e., the fast sub-controller) to the slow
sub-controller as follows:

τ = r(JT )†
(
M (θ )θ̈d + C(θ, θ̇ )+ G(θ )+ Kpseθ + Kdsėθ

)
+Kpf

[
z1
z2

]
+ Kdf

[
w1
w2

]
+ λN . (31)

It should be remembered that the output tension for the proposed
composite controller (31) can be guaranteed to be positive with a
suitable choice of λ.

B. STABILITY ANALYSIS
Now that we have the two reduced-order subsystems in
(25) and (27), and their respective sub-controllers in (29) and (30),

FIGURE 7. Experimental results for the proposed controller. (a) Trajectory
tracking. (b) Trajectory tracking error. (c) Elastic deflection in l1. (d) Elastic
deflection in l2. (e) Torque 1. (f) Torque 2.
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FIGURE 10. Movements of the antagonistic TDJ system while tracking the reference trajectory (extended range of joint motion).

FIGURE 8. Experimental result by using rigid-only joint controller (faster
trajectory). (a) Trajectory tracking. (b) Trajectory tracking error. (c) Elastic
deflection in l1. (d) Elastic deflection in l2. (e) Torque 1. (f) Torque 2.

the stability of the overall system should be discussed. For the
slow subsystem, stability using conventional PD control can be
guaranteed without any difficulty, as discussed in numerous pre-
vious research studies [22], [23]. Therefore, in this section we will
focus primarily on the stability of the fast subsystem, and then the
combined system. In fact, once the fast subsystem is rendered stable,
the stability of the entire system can be guaranteed by invoking
Tikhonov’s Theorem [27]. According to this theorem, in singularly
perturbed systems, if the slow and fast subsystems are independently
stable, then the stability of the overall system can be proved using
the conditions derived from the stability of the two subsystems [25],
[28], [29].

In order to analyze the stability of the fast subsystem, let us recall
the fast sub-dynamic equations in (27) and the fast sub-controller
in (30). If we combine these, the resulting closed-loop equations

FIGURE 9. Experimental result by using the proposed controller (faster
trajectory). (a) Trajectory tracking. (b) Trajectory tracking error. (c) Elastic
deflection in l1. (d) Elastic deflection in l2. (e) Torque 1. (f) Torque 2.

become

Jmi
d2zi
dh2
+ rKdfi

dzi
dh
+ (rKpfi + r2K̃m

i )zi = 0 i = 1, 2.

If we define yi :=

 zi

dzi/dh

, then the above becomes

dyi
dh
= Aiyi, (32)

where

Ai =
[

0 1
−(rKpfi + r2K̃m

i )J−1mi −rKdfiJ
−1
mi

]
i = 1, 2,

and Kpfi and Kdfi are the diagonal elements of Kpf and Kdf , respec-
tively. In contrast to previous research in [22]–[24], where Ai was
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assumed to be constant, the Ai in our case varies because the
stiffness coefficients of the tendons are a function of the joint angle.

The stability of the fast subsystem can be examined using the
Lyapunov stability theory. Let a Lyapunov function candidate be

Vf =
2∑
i=1

yTi Piyi,

where

Pi =
1
2

[
r(rKdfi + Kpfi + rK̃m

i ) rJmi
rJmi Jmi

]
.

By invoking Schur’s complement [30], the positive definiteness of
Pi can be ensured only if the following is satisfied:

rKdfi + Kpfi + rK̃m
i > rJmi. (Cond. 1)

Taking the derivative with respect to the scaled time, then

dVf
dh
=

2∑
i=1

dyi
T

dh
Piyi + y

T
i Pi

dyi
dh
+ yTi

dPi
dh

yi

=

2∑
i=1

−r2yTi (Kpfi + (rK̃m
i −

1
2
dK̃i

m
/dh))yi

− ryTi (Kdfi − Jmi)yi.

Simply,

dVf
dh
= −

2∑
i=1

yTi Siyi,

where

Si =
[
r2(Kpfi + (rK̃m

i −
1
2dK̃i

m
/dh)) 0

0 r(Kdfi − Jmi)

]
.

Since Kpfi, Kdfi, and Jmi are positive quantities, dVif /dh becomes
negative definite if the following conditions hold:

Kdfi > Jmi (Cond. 2)

Kpfi + rK̃m
i −

1
2
dK̃i

m
/dh > 0. (Cond. 3)

Eventually, Cond. 1 through Cond. 3 guarantee that the closed-loop
system in (32) is asymptotically stable.

After proving the individual stability of the slow subsystem
and the boundary layer (i.e., the fast subsystem), we can prove
the stability of the complete system via Tikhonov’s theorem. This
states that, the asymptotic stability of the original system with the
composite controller is guaranteed if a singular parameter is chosen
such that 0 < ε < ε∗, where ε∗ is some number associated
with each particular system. Depending on the complexity of the
system, the exact value of ε∗ may or may not be found easily. (If not
found easily, ε could be tuned by treating it as a control parameter.)
For a detailed proof, see [27] and the references therein. Hence,
the asymptotic stability of the overall system can be guaranteed by
the combined composite control law (31) comprising the slow sub-
controller (29) and the corrective fast sub-controller (30).

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
The purpose of the experimental tests was to first demonstrate
the effectiveness of the proposed control scheme for an antago-
nistic TDJ system and then to examine the mechanical benefits
of the TDJ system when carrying a load. For the experiments,
the antagonistic TDJ system shown in Fig.3 was employed. Two
brushless DC-servomotors (from Faulhaber GmbH and Co.) with

FIGURE 11. Experimental results using the rigid-only joint controller for
the extended range of joint motion. (a) Trajectory tracking. (b) Trajectory
tracking error. (c) Elastic deflection in l1. (d) Elastic deflection in l2.
(e) Torque 1. (f) Torque 2.

a 43:1 gear reduction were installed to drive the TDJ system. The
motor angles θmi, i = 1, 2 and the joint angle θ at the bottom of
the link were measured using optical rotary incremental encoders
(resolution: 1000 counts/rev × 4 decoding). With these encoders,
the smallest detectable joint error is approximately 1.57E-3[rad]
(i.e., 2π/(1000×4)). The rigid link at the center was pulled by steel
tendons (fromCarl Stahl Technocables) of diameter 1.0[mm], whose
stiffness was computed as Km

i = 9.82E5[N/m], i = 1, 2. Please
refer to Table 1 for a summary of the related physical parameters for
the TDJ system.

For the implementation of the controller, RTX (Real Time
eXtension) from Venturcom Co., patched over Windows XP, was
employed as a software platform, running on an IBM PC (Intel
Core i5 CPU). The commercial RTX software enabled us to set
the timer interrupt with the highest priority, with a maximum
latency of only 12µs. The control algorithm in every experimental
test was run at 1000Hz. The control flow diagram is depicted in
Fig.4.

B. TRACKING CONTROL FOR ANTAGONISTIC TDJ SYSTEM
To verify the effectiveness of the proposed control scheme, we
compared the trajectory tracking performance of the rigid-only con-
troller, i.e., the joint PD controller in (29) and that of the proposed
composite controller in (31). The rigid-only controller by nature has
no ability to cope with the elastic deflection in the tendons. The
control parameters used in the experiments are shown in Table 2,
with the parameters for the rigid-only controller set to be the same
as τ s of the proposed controller.

We set the TDJ system to follow a back-and-forth trajectory,
as shown in Fig.5. That is, starting at the center with joint angle
θ0 = 90◦, the system first moved to the left by 40◦, then to the right
by 80◦, and so on. (Here, for simplicity, the reference trajectories
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are described in degrees in the text, but the data plots of the joint
angles are displayed in radians.) Fig.6 presents the experimental
results using the rigid-only controller. For the back-and-forth joint
trajectory, starting at θ = 90◦, the overall tracking performance
seemed adequate, but joint tracking performance fell rather signifi-
cantly with noticeable peaks, when the direction of motion changed,
as shown in Fig.6(b). The main reason for this behavior has the
uncontrolled fast subsystem, in which the elasticity of the tendons
was ignored. Any increase in controller gain to reduce the tracking
error tended to excite vibrations in the tendons. We observed peaks
for tendon deflection exactly when peaks for joint error appeared.
(See Figs.6(c)-(d).) The chattering in the control input torques of
the motors (see Figs. 6(e)-(f)) was due to the switching between
motor 1 and motor 2, as the control action and its subsequent noisy
derivative feedback had to maintain positive tension. The chattering
in the control input torques may have been mitigated if we had
employed encoders with high resolution or velocity observers that
could produce smoother velocity profiles.

With the proposed composite controller, the overall control
performance improved, as shown in Fig.7. It can be seen that
the proposed controller was able to reduce the peaks in joint
error that were observed in the previous test with the rigid-only
controller. The joint tracking error was bounded by the order
of 1E-3[rad], so our proposed controller can guarantee a track-
ing performance that is almost as accurate as the resolution of
the joint encoder (1.57E-3[rad]). The elastic deflection in the ten-
dons also varied monotonously without noticeable peaks, as shown
in Figs.7(c)-(d). The magnitude of the chattering in the control input
torques was much smaller than that for the rigid-only controller
(see Figs.7(e)-(f)).

FIGURE 12. Experimental results using the proposed controller for the
extended range of joint motion. (a) Trajectory tracking. (b) Trajectory
tracking error. (c) Elastic deflection in l1. (d) Elastic deflection in l2.
(e) Torque 1. (f) Torque 2.

To further compare control quality, we performed the same set
of experiments but reduced the tracking time to 2 seconds for quick
motion. As summarized in Figs.8 and 9, the experimental results
were very similar to those in the previous set of experiments. The
rigid-only controller produced some abrupt peaks in tracking error
and elastic deflection when the direction of motion changed, while
the proposed controller did not. The maximum tracking error and
the elastic deflection increased only slightly as a result of speeding
up the trajectory.

Next, we carried out another set of experiments by extending the
range of joint motion (Fig.10). The back-and-forth joint path was
set to ±60◦ from the center with a 4-second tracking time. This
means that the tension of one tendon at the extreme joint angle would
become high while that of the other tendon would be much lower.
Again, we employed the rigid-only controller and the proposed
composite controller in order to compare their effectiveness. Fig.11
presents the experimental results for the rigid-only controller. As can
be seen in Fig.11(b), the joint tracking error was characterized by far
higher peaks when the direction of joint motion changed compared
to that observed in the experiment with the smaller joint angle range,
i.e., in Fig.6(b). The tendon deflection also became larger, as shown
in Figs.11(c)-(d). The required magnitude of the torques was also
larger than that in the previous experiment; refer to Figs.6(e)-(f) and
Figs.11(e)-(f) for comparison.

When the proposed composite controller was applied, overall
control performance was improved (Fig.12). The proposed con-
troller was able to reduce the peaks in the joint error and tendon
deflection, compared to the rigid-only controller (Figs.12(b)-(d)).
The severity of the chattering in the control input torques eased as
well (Figs.12(e)-(f)).

FIGURE 13. Experimental results using the rigid-only joint controller for
the extended range of joint motion (faster trajectory). (a) Trajectory
tracking. (b) Trajectory tracking error. (c) Elastic deflection in l1. (d) Elastic
deflection in l2. (e) Torque 1. (f) Torque 2.
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FIGURE 14. Experimental results using the proposed controller for the
extended range of joint motion (faster trajectory). (a) Trajectory tracking.
(b) Trajectory tracking error. (c) Elastic deflection in l1. (d) Elastic
deflection in l2. (e) Torque 1. (f) Torque 2.

FIGURE 15. Two possible configurations of antagonistic TDJ system.
(a) Upright configuration. (b) Suspended configuration.

The above control tasks were tested again for the extended joint
path (i.e., a path range of ±60◦), but this time for 2 seconds. In
this case, the rigid-only controller exhibited noticeable performance
degradation, with significant joint error and vibrations in the tendons
due to the uncontrolled fast sub-dynamics. As displayed in Fig 13,
the maximum tracking error reached nearly 1.0E-2[rad], the tendons
were severely wobbling with higher amplitudes, and the control
torques did not react adequately to the error, often being clipped
off at their physical limits. In contrast, the proposed composite
controller still managed to control the total motion in this faster task
with an extended range. As presented Fig.14, the tracking error and
tendon deflection were kept reasonably low, though their magnitude
was slightly larger due to the faster trajectory. The control torques,
even when reaching their physical limits, reacted to the error and
deflection, unlike with the rigid-only controller.

FIGURE 16. Regulatory torques for tension before and after the
application of a tip load of 2[kg]. (a) Upright configuration. (b) Suspended
configuration.

Overall, these experimental results demonstrate that the compos-
ite controller is effective and capable of minimizing joint error and
vibration during tracking tasks of an antagonistic TDJ system.

C. LOAD-CARRYING CAPABILITY
The antagonistic TDJ system in Fig.3 allows different load-handling
capacities depending on how it is aligned with respect to the grav-
itational direction. This directional characteristic is unique to TDJs
with direct pulls in comparison to prismatic or rotary joints. In
this subsection, we verify the differences in load-carrying capacity
through experimentation.

First, let us consider two possible arrangements for the antago-
nistic TDJ system, suspended or upright (Fig. 15). For a tip load
of mg, which generates the same moment about the joint axis
in both configurations, l2 works as the main tendon holding the
load, while l1 becomes the conjugate minor tendon. From (1),
the required amount of tension in l2 for both cases, if t1 = 0,
is t2 = mglr/l0 cos θ2, where the denominator, l0 cos θ2, which
represents the effective moment arm of tension, grows as θ2
decreases. As indicated in Fig. 15, the suspended configuration
requires less tension to hold the tip load than the upright configu-
ration due to a smaller θ2. The suspended configuration, enjoys this
structural advantage for most of the workspace range of the joint,
as does the human elbow.

In order to verify the above observation, additional experiments
were conducted to compare the load-carrying capacity of the upright
and suspended configurations after placing a load of 2[kg] at the
tip. In these experiments, the TDJ system was initially set to hold
an equilibrium position despite the non-zero action of the internal
tendons. Amass of 2[kg] was then placed at the tip about 3.5[s] later.
Because the control actionwas active, themotors driving the tendons
managed to adjust their torques to settle on a new equilibrium
position and statically balance the added load. The torque profiles
before and after the load was added were recorded (Fig.16). The
torque for the main tendon (t2) underwent a step change in its value
for both the upright and suspended configurations, while the torque
for the conjugate tendon (t1) was kept constant. The size of the
step change in t2, needed to counteract the external load, differed
noticeably for the upright and the suspended configurations. That
is, four time more torque was needed for t2 in the upright config-
uration than in the suspended one. This experimental result high-
lights the benefit of suspended configurations in load carrying and
handling.
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FIGURE 17. Antagonistic TDJ system: Analogy with the human arm. (a) Robotic arm with antagonistic TDJs. (b) Human arm.

This advantage of suspended configurations in antagonistic TDJs
can be utilized to build multi-DOF systems like the one shown
in Fig.17(a), which is very similar to the human arm (Fig.17(b)).
A serial connection of antagonistic TDJs, suspended as shown
in Fig.17(a), can produce a large mechanical moment with minimal
effort (i.e., tension) in each tendon that is involved in a lifting task,
although workspace volume may have to be sacrificed compared
to conventional rotary-jointed robotic arms. Because of the resem-
blance to the human arm and the significant advantage in load-
carrying capacity, antagonistic TDJs are appealing design candidates
for efficient robotic arms destined to handle heavy loads.

V. CONCLUSION
This paper described the dynamic modeling and controller design
of an antagonistic tendon-driven joint (TDJ) system that utilizes
elastic tendons. The elasticity of tendons has a negative impact on
the performance of TDJ systems due to vibration and poor control-
lability. In order to cope with this issue, the singular perturbation
approach was applied to develop a practical control scheme. Firstly,
the equations for the complete dynamics of an antagonistic TDJ
system were derived and then the equations for the slow and fast
subsystems were extracted from the overall system. A composite
controller was then designed that consisted of slow and fast sub-
controllers. The stability of the closed loop system was analyzed
by applying Tikhonov’s theorem. We took into account the internal
force to ensure there was no slack in the tendons. The effectiveness
of the proposed control scheme was verified through experiments.
The experimental results demonstrated that the proposed controller
was effective in trajectory tracking tasks under various conditions.
The superior load-carrying capacity of the antagonistic TDJ system
was also confirmed through experiments.
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