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ABSTRACT To reduce energy consumption and balance the resource load of physical machines (PMs) in
cloud data centers, we present a game-based consolidation method of virtual machines (VMs) with energy
and load (applied load) constraints. First, we test every measured value of the resource load using a t-test
to filter outliers. Based on these values, the future resource load is forecast using gray theory. Second, all
online PMs are grouped by the number of VMs on them and their future load values. Based on the groupings,
a pre-processing algorithm for selecting destination PMs is proposed to determine a set of destination PMs
for a VM awaiting migration. Finally, we select the final destination PM for the VM using game-based
methods aimed at optimizing overall energy consumption. The experimental results show that our method
can reduce energy consumption as well as balance loads without unnecessarily increasing the number of VM
migrations.

INDEX TERMS Cloud data center, VM migration, load, energy, game.

I. INTRODUCTION
With the rapid development of information technology, infor-
mation applications in enterprises are increasing, and their
service requirements are constantly growing. An information
platform that has been built based on traditional technology
does not work for their growing business needs. The rise of
cloud computing provides a better way to solve this problem.
Virtualization technology [1], [2] is a core infrastructure com-
ponent of cloud computing. Therefore, a virtual resource pool
using virtualization technology, which is freely adjustable
and can be configured on-demand [3], has become an urgent
need of many enterprises.

Driven by user requirements, the number of VMs has
increased so that new challenges to the resource scheduling
technology of virtual machines have emerged. In a large-
scale VM cluster, the number and the load of VMs changes
constantly with user requirements. As more or all VMs on a
PM (hereinafter referred to as a PM) are performing com-
putational tasks, there is a strong possibility that resource
contention will increase the execution time of tasks and
reduce the quality of services. Meanwhile, some PMs may

be underload, be idle, or be single resource-intensive; that
is, all kinds of resources or some sort of resource in them is
not being utilized effectively. In addition, when the VMs on
PMs are not performing computing tasks, these computing
resources are still taken up, and other tasks block access
to them. The use of static resource management tends to
cause resource waste or inadequacy, which results in more
energy consumption or load imbalance. Furthermore, the
energy consumption of a data center determines its power
costs. Worldwide, the cost of power has been estimated to
be more than $30 billion every year [4]. A Google data
center consumes the energy equivalent to that used by a
city such as San Francisco [5]. Therefore, the reduction in
energy consumption and load balancing are primary areas
of research. However, most research efforts focus only on
balancing load [6]–[10], [12]–[15], [41], or only on saving
energy [16]–[23], [25], [27]–[29], [39], [40]. Because these
two goals contradict each other, less research has considered
both load balancing and energy saving.

In this paper, inspired by the leaving and keeping processes
in [34] and [35], we propose a game based consolidation
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method of VMs in cloud data centers with energy and load
constraints.We forecast the resource load using gray theory to
reduce the delay of load throttling (i.e., timely adjust the load
by migration in case of the higher degree of load balance).
Then, we group PMs based on the number of VMs and
the feature of the future load (i.e., higher load, imbalance
load, and normal load) to help to determine the destination
PM set of each VM awaiting migration with the goal of
balancing loads. If a VM awaiting migration is on a PM with
imbalance load, then we try to select another eligible PMwith
imbalance load as the destination PM. Lastly, we choose the
final destination PM by estimating the energy variation of
the VM before and after migration, and using game based
methods aimed at optimizing overall energy consumption.

The main contributions of this paper are as follows:
1) a new energy consumptionmodel for estimating the energy
variability of the VM before and after migration, 2) a new
method for selecting the destination PM of a VM awaiting
migration, 3) a method for predicting future resource loads,
and 4) a game based consolidation method of VMs in cloud
data centers with energy and load constraints.

The rest of the paper is organized as follows. In Section II,
we introduce related work. We note which models and
algorithms for balancing load and saving energy exist. After-
wards, we state the problem and put forth an energy consump-
tion model and a method of predicting resource load. Our
game based consolidation strategy is proposed in Section IV.
Section V analyzes the time complexity of our method.
In Section VI, we evaluate our method. Finally, our conclu-
sions and recommendations for future work are summarized
in Section VII.

II. RELATED WORK
In this section, we review relevant literature on load balancing
and energy saving.

A. LOAD BALANCING
In recent years, some scholars have proposed methods based
on task scheduling [6]–[10]. In [10], a weighted round robin
load balancing method was proposed, which considers both
PM processing power and load and can balance the load
performance when users log on simultaneously. These meth-
ods adjust the number of tasks performed by different PMs
to change their loads. Most researchers have used methods
based on VM live migration [11]. Wu et al. [12] proposed a
method of prediction-based elastic load balancing resource
management in cloud computing, which can dynamically
add or delete VMs based on the applied load. Gutierrez-
Garcia and Ramirez-Nafarrate [13] proposed an agent-based
load balancing method. In this method, the agents can deter-
mine which VMs should be migrated, their destination PMs,
and when they should be migrated. In [14], a method is
introduced for the deployment and scheduling of VMs, which
is based on a multi-attribute analysis to solve the problem
of uneven loads among PMs. A resource scheduling strategy
based on ant colony optimization is given in [15]. Li et al. [41]

proposed a multiple-objective optimization method to bal-
ance the load of multiple resources across host machines and
in each PMs.

B. ENERGY SAVING
To save energy, researchers have put forward two kinds
of methods: one changes the processor frequency or volt-
age [16], [17], and the other reduces the number of online
PMs [18]–[26], [40]. In [18] and [19], resource provisioning
and allocation algorithms for energy-efficient management
were proposed taking QoS expectations into account. A new
CPU re-allocation algorithm was proposed that combines the
DVFS concept with live migration techniques to improve
the efficiency of energy management and adaptation with
real-time service [20]. Van Do and Rotter [21] presented
an allocation method of virtual machines based on the pri-
ority. Abda et al. [22] designed an energy-aware allocation
mechanism that employs DNA-based scheduling strategies
to minimize overall energy consumption. Mazumdar and
Pranzo [23] presented a snapshot-based solution for the server
consolidation problem to save energy; it considers issues such
as reducing the number of VM migrations and consolidating
the loads of running PMs. In [24], a three-dimensional virtual
resource scheduling method for energy saving was proposed,
which includes three stages: virtual resource allocation, vir-
tual resource scheduling and virtual resource optimization.
Ghribi et al. [25] presented an optimal allocation algorithm
that uses a linear and integer formulation to resolve the
replacement of VMs. Jin et al. [26] presented a resource-
use-status-driven resource reconfiguration scheme to balance
loads and save energy, which employs a greedy method to
select the destination PM that owns enough idle resources
and where the number of idle resources is most similar to
the request of the VM awaiting migration. These methods all
use VM migration to reduce the number of online servers.
In [40], a custom branch-and-bound algorithm is proposed to
save energy by reducing the sum of the number of active PMs
and migrations.

In addition to these methods, a new energy-saving
scheduling method was put forward in [27], which ranks
PMs within the cloud based on their application-specific
energy efficiency and assigns the whole load to the most
energy-efficient machine while maintaining performance.
Duan et al. [28] proposed an improved ant colony algorithm
for saving energy, which includes a prediction model based
on fractal mathematics and a scheduler based on an improved
ant colony algorithm. [29] used virtualization technology to
increase the utilization of the PMs and hence reduce the total
number of active PMs.Ahvar et al. [39] proposed aVMplace-
ment method based on cost and carbon emission efficient
in distributed clouds by a prediction-based A∗ algorithm
with Fuzzy Sets technique, which considers geographically
varying energy prices and carbon emission rates as well as
optimizing both network and server resources.

In the above methods, either only load balancing is con-
sidered or only energy saving is performed; little research
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TABLE 1. Comparisons of the existing methods and our method.

on both methods together has been conducted. Therefore,
we present a game based consolidation strategy of VMs
in cloud data centers with energy and load constraints.
Table 1 shows the comparisons of the existing methods,
which are load balancing methods by migration and energy
saving methods by reducing the number of online PMs, and
our method.

III. PROBLEM DESCRIPTION AND MODELS
A. PROBLEM DESCRIPTION
Suppose that there are N PMs in a cloud data center:
p1, p2, . . . , pi, . . . , pN . At some time, there are K VMs:

v1, v2, . . . , vj, . . . , vK . We define a distribution matrix of
VMs, denoted by D = (dij)N×K . If VM vj is placed in
PM pi, then let dij = 1; otherwise, dij = 0. Every col-
umn in the matrix D only has a 1-digit number, and the
number of ‘‘1s’’ in line i is the number of VMs on PM pi.
To reduce energy consumption and balance the load, the prob-
lem of consolidating VMs is abstracted as the following
problem.

Max (Uall(·)) (1)

s.t.
N∑
i=1

dij = 1, j = 1, 2, . . . ,K (2)

4666 VOLUME 6, 2018



L. Guo et al.: Game Based Consolidation Method of VMs in Cloud Data Centers

K∑
j=1

dij > λ1, i = 1, 2, . . . ,N (3)

ucpupi ≤ �cpu & umempi ≤ �mem & unetpi ≤ �net ,

i = 1, 2, . . . ,N (4)

dij = {0, 1} , i = 1, 2, . . . ,N , j = 1, 2, . . . ,K (5)

In (1),Uall(·) is the total income after consolidation, which
is the sum of the changes in the energy consumption before
and after migrations during time T (the change is defined
by (9)). We need to achieve the optimal global energy con-
sumption. Constraint (2) ensures each VM belongs to only
one PM. Constraint (3) ensures the number of VMs on a PM is
greater than λ1. If the number is not greater than λ1, we must
reduce the number of online PMs to save energy consoli-
dation. Finally, Constraint (4) bounds the load of each PM.
�cpu, �mem, and �net are the upper bounds of resources
(CPU, memory, and network bandwidth), respectively. ucpupi ,
umempi , and unetpi are the future loads of the CPU,memory and
network. If the future load of a PM cannot meet (4), then we
must reduce its load by migration.

B. ENERGY CONSUMPTION MODEL
In addition to cooling and lighting, the energy consumed by a
cloud data center is consumed mainly by the CPUs, memory,
and other physical equipment on the PMs. The energy con-
sumption of each piece of equipment is different. The CPU
in a PM accounts for at least one-third of the total energy
consumption [30]. The number depends on the CPU load:
the higher the load is, the more energy is consumed. However,
the energy consumption of the other equipment aside from the
CPU is relatively stable and is only determined bywhether the
PM is turned on [36], [37].

At time t , the power (energy) consumption of a single PM
is denoted by (6):

P(t) = Pcpu(t)+ Pother (t). (6)

where Pother (t) is the sum of the power consumed by other
equipment. It tends to stabilize after the PM starts.We assume
this value is the same for any of the running PMs. Pcpu(t) is
the energy consumption of the CPU for a single PM, which
can be calculated according to (7).

Pcpu(t) = Pno−virtual(t)+
β1

T

∫ t0+T

t0

a∑
i=1

urcpu(vi, t)dt

+
β2

T

∫ t0+T

t0

b∑
j=1

urcpu(vj, t)dt (7)

where Pno−virtual(t) is the energy consumption when
there is no VM in the PM and has a constant value.
β1
T

∫ t0+T
t0

a∑
i=1

urcpu(vi, t)dt is the average power consump-

tion of a CPU-intensive VM during the time period

[t0, t0 + T ], and β2
T

∫ t0+T
t0

b∑
j=1

urcpu(vj, t)dt is the average

power consumed by a low-CPU-intensiveVMduring the time
period [t0, t0 + T ]. urcpu(vi, t) and urcpu(vj, t) represent the
100-times-higher CPU utilization of vi and vj, respectively.
a and b represent the number of CPU-intensive VMs and low-
CPU-intensive VMs. β1 and β2 are regulatory factors, and
β1 + β2 = 1.
During time period T , a PM’s energy consumption is accu-

rately estimated by (8).

E =
∫ t0+T

t0
P(t)dt (8)

Suppose that1Ev is the change in the energy consumption
before and after migration, which can be computed by (9).

1Ev =
∫ t1

t1−T
Ps(v)(t)dt +

∫ t1

t1−T
Pd(v)(t)dt

−

∫ t2+T

t2
Ps(v)(t)dt−

∫ t2+T

t2
Pd(v)(t)dt − Es v

→ d
(9)

where t1 and t2 are the start and end times of the migra-
tion.

∫ t1
t1−T

Ps(v)(t)dt and
∫ t2+T
t2

Ps(v)(t)dt represent the energy
consumption of the source PM before and after VM v is
migrated from source PM. If there is no VM on the PM
and close it, then

∫ t2+T
t2

Ps(v)(t)dt is zero.
∫ t1
t1−T

Pd(v)(t)dt

and
∫ t2+T
t2

Pd(v)(t)dt represent the energy consumption of
the destination PM before and after VM v is migrated
to it. E

s
v
→ d

represents the energy consumption during the
process of VM v migration. It is calculated according
to (10).

E
s
v
→ d
=

∫ t2

t1
1Ps(t)dt +

∫ t2

t1
1Pd (t)dt + Edest−on (10)

where
∫ t2
t1
1Ps(t)dt and

∫ t2
t1
1Pd (t)dt are the increased

energy consumption of the source and destination PM,
respectively. Edest−on is the increased energy consumption
as a result of turning on a PM, which is a constant value.
If we do not need to turn on a new PM as the destination PM
when VM v is migrated, then Edest−on = 0.1Pd (t) is usually
constant too.

C. LOAD PREDICTION MODEL
The historical load of PMs will have an effect on their future
load [31], so it is reasonable to predict their future load based
on their historical load. In this paper, we use an unbiased
GM(1, 1) model [32] to predict future load. This model is an
exponential smoothing model without inherent bias. It uses a
moving weighted average method. The corresponding weight
is decreasing according to the index law. It gives higher
weight to the load near the predicted point. Therefore, it can
predict accurately. The procedure is as follows:
Step 1: Take the sequence (u(0)1 , u

(0)
2 , u

(0)
3 , . . . , u

(0)
n ), where

u(0)i is the average load measured in the i-th time period.
To improve the accuracy of the measured value, the load
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in each interval will be measured k times, denoted by
{u(0)i1 , u

(0)
i2
, . . . , u(0)ik }. Normal distribution is a common dis-

tribution. The limits of distributions such as Poisson dis-
tribution, the binomial distribution and other distributions
are normal distribution. These distributions can be approx-
imated by normal distribution. In addition, the trace
of load has often multimodal distribution [31]. There-
fore, we suppose that {u(0)i1 , u

(0)
i2
, . . . , u(0)ik } is an approxi-

mate normal distribution. Then, we can use the t-test to
eliminate errors in the data. If u(0)ij is questionable and

|u(0)ij −
1

k−1

∑
x 6=j

u(0)ix |/
√

1
k−1

∑
y 6=j

(u(0)iy −
1

k−1

∑
x 6=j

u(0)ix )2 > t(α),

then it is an outlier and will be eliminated. t(α) is a t-test
threshold where α is a significance level; normally α = 0.05.
Using the above procedure, the average of the remaining data
is the load during the time period.
Step 2: Obtain the sequence (u(1)1 , u

(1)
2 , u

(1)
3 , . . . , u

(1)
n ) after

one accumulation, where u(1)m =
m∑
i=1

u(0)i , m = 1, 2, . . . , n.

Step 3: Compute the unbiased GM(1,1) model:

u(1)m = α
m−1
1 u(1)1 +

1− αm−11

1− α1
× α2, m = 1, 2, . . . , n.

(11)

Step 4: Compute the estimate of α1 and α2:

(α̂1, α̂2)T = (BTB)−1BTYn, (12)

where

B =


u(1)1 1

u(1)2 1
. . . . . .

u(1)n−1 1

, and Yn =


u(1)2

u(1)3
. . .

u(1)n

.
Step 5: Based on step 4, we get the approximation of u(1)m :

û(1)m = α̂
m−1
1 u(1)1 +

1− α̂m−11

1− α̂1
× α̂2. (13)

Step 6: Suppose û(0)1 = u(0)1 , then we get û(0)m by using (13):

û(0)m = (α̂1 − 1)α̂m−21 u(1)1 + α̂
m−2
1 α̂2, m = 2, 3, . . . , n.

(14)

According to (14), we can calculate the load û(0)n+1 in the
(n+ 1)th time period, so we can determine the future load of
the CPU, memory and network: ucpu, umem, and unet .

IV. GAME BASED CONSOLIDATION OF VMS WITH
ENERGY AND LOAD CONSTRAINTS
Consolidation of VMs is only possible with the help of
VM migration. Therefore, we need to consider the following
three aspects: 1) the time of migration, which can be chosen
based on numerous tests; 2) which VMs should be migrated.
In this paper, migrated VMs usually occupy less memory,
have maximum CPU utilization, or have minimum CPU uti-
lization; 3) the selection of the destination PM, which is the

basic problem this paper seeks to resolve, as discussed in the
following section.

A. PREPROCESSING OF DESTINATION PM SELECTION
When selecting a destination PM, the remaining resources on
the PM must be more than what the VM awaiting migration
requires. To make the best use of the resources on the PM
and reduce negative effects on its performance, which are
generated when a VM is migrated to it, all current PMs are
organized in ascending order of the number of VMs on them.
Suppose the number of VMs on PM pi is xpi . If xpi ≤ λ1, then
the PM pi is placed into set R1, and if λ1 < xpi < λ2, then
pi is placed into set R2. Otherwise, pi is placed into set R3.
According to this method, all online PMs are divided three
groups (R1, R2, and R3). In general, the load of the PMs in
R1 is lower, and the VMs on them can be migrated to other
PMs to reduce the number of online PMs. Some PMs in R3
may have higher loads, and one or more VMs on them can be
migrated to reduce the load.

The PMs in R3, aside from the ones where migration
was performed, are further divided into three groups accord-
ing to the size relationship between the future load of
resources (CPU, memory, and network bandwidth) and the
upper bounds �cpu, �mem, and �net of their load: Grouphigh,
Groupimbalance, and Groupnormal . Grouphigh is a group with
a higher load, Groupimbalance is a group with a load imbal-
ance, and Groupnormal is a normal group where the load of
each PM is relatively balanced. The grouping algorithm is as
follows.

Algorithm 1 Grouping of PMs
1: procedure Grouping_PM(R3)
2: for every PM pi in R3 do
3: if pi is not performing migration then
4: if ucpupi > �cpu & umempi > �mem & unetpi >

�net then
5: pi ∈ Grouphigh
6: else
7: if ucpupi > �cpu|umempi > �mem|unetpi >

�net then
8: pi ∈ Groupimbalance
9: else
10: pi ∈ Groupnormal
11: end if
12: end if
13: end if
14: end for
15: end procedure

Based on the set to which a source PM belongs, the pre-
processing of a destination PM selection (algorithm 2) is
performed to choose the preliminarily qualified PMs (line 3
in algorithm 3). Thus, we can determine a corresponding
candidate set of destination PMs for each VM waiting for
migration. If V = {v1, v2, . . . , vi, . . . , vz} is a set of VMs
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Algorithm 2 Pre-Processing of Destination PMs
1: procedure Pre-processing_PM_selection(vi, ps)
2: if ps ∈ R3 then //to reduce the load
3: if ps ∈ Groupimbalance and |Groupimbalance| > 1 then
4: si = Filtering_PM(Groupimbalance except for ps)
5: if |si| = 0 then //select PMs from R2
6: si = Filtering_PM(R2)
7: if |si| = 0 then //select PMs from R1
8: si = Filtering_PM(R1)
9: end if
10: end if
11: else
12: if ps ∈ Grouphigh then
13: si = Filtering_PM(R2)
14: if |si| = 0 then
15: si = Filtering_PM(R1)
16: end if
17: end if
18: end if
19: end if
20: if ps ∈ R1 then //to save energy consumption
21: si = Filtering_PM(R2)
22: if |si| = 0 then
23: si = Filtering_PM(R1 except for ps)
24: end if
25: end if
26: end procedure

Algorithm 3 Filtering of PMs in the Set R
1: procedure Filtering_PM(R) //to select qualified PMs
2: for every PM p in R do
3: if ucpup + ucpuvi < �cpu

& umemp +umemvi < �mem & unetup +unetvi < �net then
4: put p in destination PM candidate set s
5: end if
6: end for
7: return s
8: end procedure

waiting for migration at time T , then their candidate sets
are s1, s2, . . . , si, . . . , sz. Suppose that ps, which normally
belongs to R1 or R3, is the source PM of vi. Then, the pre-
processing algorithm (algorithm 2) is as follows.

If ps ∈ Groupimbalance and |Groupimbalance| > 1, then select
the eligible PMs from Groupimbalance except for ps, and put
them into si. If there are no eligible PMs (|si| = 0), then select
the eligible PMs from R2, and perform the above processing.
If |si| = 0, then select the eligible PMs from R1. If ps ∈
Grouphigh or ps ∈ R1, then select the eligible PMs from R2,
and if there are no eligible PMs, then from R1.

B. GAME MODEL
To achieve the best energy consumption as a whole, which
occurs when every VM waiting for migration competes for

destination PMs, we suppose that the problem belongs to a
cooperative game.

For all vi ∈ V , suppose the PM pi that can maximize
1Ev is selected from vi’s corresponding candidate set. If any
pj(j = 1, 2, . . . , i − 1, i + 1, . . . , z) and pi are not the same
PM, then pi is the destination PM of vi. Otherwise, the cor-
responding destination PM should be chosen by a game with
the aim of achieving the optimal global-energy-consumption.
The game process is as follows:
Step 1: Every VM waiting for migration, that is

v1, v2, . . . , vj, . . . , vk1 (k1 ≤ z), is a participant. The policy
set of vj is STj = {cooperation, competition}, where ‘‘cooper-
ation’’ indicates vj aims to achieve the optimal global-energy-
consumption, and ‘‘competition’’ indicates that vj aims to
achieve the optimal energy consumption itself. Suppose the
income Uvj (·) = 1Evj , which is generated by vj’s migration.
Step 2: During time T , the total income Uall(·) =

∑
1Ev

after consolidation.With the aim ofmaximizingUall(·), every
VM waiting for migration can be matched with a PM that is
the VM’s destination PM.
Step 3: If a VM vj fails to match with the PM that can

maximize 1Evj , then the other PM, which can make 1Ev
the second largest, will be selected from its candidate set sj.
If there is competition at this point, then perform step 1 and
step 2. If it fails again, then the other PM will be selected,
which can make 1Ev the third largest change in energy con-
sumption, and so on, until the destination PM is found. If such
a PM is not found from sj, then the migration fails, and a new
candidate set needs to be established. If the candidate set is
empty, then open a new PM as the destination PM. Otherwise,
the pj in the new candidate set may be the destination PM
of vj.

TABLE 2. Income matrix.

For example, vi and vj contend for a PM p. Table 2 shows
their income matrix. 1Evi and 1Evj are the incomes gen-
erated by vi and vj migrating to p independently. 1E ′vi and
1E ′vj are the incomes generated by migrating to suboptimal
PM independently. qi1 , qi2 , and qi3 are respectively prob-
ability when p is as vi’s destination PM in the following
three kinds of conditions: 1) vi cooperates, and vj competes;
2) vi competes, and vj cooperates; 3) vi and vj both compete.

If 1Evi + 1E
′
vj > 1E ′vi + 1Evj , then the total income

of vi and vj is 1Evi + 1E
′
vj when they cooperate with each

other. Therefore, we can obtain (15), where the equality hold
up if qi1 = 1, qi2 = 1, and qi3 = 1. In addition, only when
they cooperate is the total income largest. If 1Evi +1E

′
vj <

1E ′vi + 1Evj , the same procedure may be easily adapted to
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obtain.

1Evi +1E
′
vj ≥ qi11Evi + (1− qi1 )1E

′
vi + qi11E

′
vj

+ (1− qi1 )1Evj

1Evi +1E
′
vj ≥ qi21Evi + (1− qi2 )1E

′
vi + qi21E

′
vj

+ (1− qi2 )1Evj

1Evi +1E
′
vj ≥ qi31Evi + (1− qi3 )1E

′
vi + qi31E

′
vj

+ (1− qi3 )1Evj

(15)

C. GAME BASED CONSOLIDATION PROCESS OF VMS
Assume that there are z VMs waiting for migration in a
certain time period T : v1, v2, . . . , vi, . . . , vz. The process of
consolidation is as follows:
Step 1: All current PMs are sorted in ascending order of

the number of VMs on them.
Step 2: According to the relationship between the number

of VMs and thresholds (λ1 and λ2), these PMs are divided
into three sets: R1, R2, and R3.
Step 3: Calculate the future load of the CPU, memory and

network of the PMs in R3: ucpu, umem, and unet .
Step 4: The PMs in R3 are grouped using algorithm 1.
Step 5: Based on the set which the source PM belongs

to, we apply algorithm 2 to gain a candidate set of
destination PMs for every VM waiting for migration:
s1, s2, . . . , si, . . . , sz.
Step 6: Compute the change in their energy consumption

1Ev using energy consumptionmodel. Suppose when the PM
pi is the destination PMofVM vi,1Evi is largest. Then, do the
following:
Step 6.1: If any pj (j = 1, 2, . . . , i− 1, i+ 1, . . . , z) and pi

are not the same, then vi will be migrated to pi.
Step 6.2: Otherwise, carry out the above game (in B

of section IV) to determine the optimal global-energy-
consumption.

V. COMPLEXITY ANALYSIS
The time cost of sorting the PMs according to the number of
VMs depends on the number of online PMs, denoted by N ,
so the time cost is O(N logN ). The cost of the step 2 in C
of section IV is O(N ). The computing of the future load of
CPU, memory and network is O(n), where n is the length of
sequence. The cost of algorithm 1 is O(|R3|). If we suppose
ps ∈ Groupimbalance, ps ∈ Grouphigh, and ps ∈ R1 have equal
probability of appearing, then the largest cost of gaining a
candidate set for aVM isO( 13 |Groupimbalance|+|R2|+|R1|) =
O(|Groupimbalance|+|R2|+|R1|). If any pj(j = 1, 2, . . . , i−1,
i + 1, . . . , z) and pi are not the same, then the time cost of
determining the destination PM of vi is O(|s1| + |s2| + . . .+
|sz| + z). Otherwise, if we can find the destination PM of
vi in si, the time cost of determining its destination PM is
O(|s1| + |s2| + . . . + |sz| + z + k1 + k2 + . . . + ky), where
k1, k2, . . . , ky are the number of VMs competing with vi, and

FIGURE 1. Degree of load balance (SCE 1).

FIGURE 2. Degree of load balance (SCE 2).

y ≤ |si|. We assume the probability of the former case is x.
Therefore, the total cost for z VMs is O(NlogN + z[x(|s1| +
. . .+|sz|+z)+(1−x)(|s1|+. . .+|sz|+z+k1+k2+. . .+ky)]) =
O(N logN + z2N ).

VI. EXPERIMENTS
Experiments were performed to evaluate our proposed
method, the agent-based load balancing method (abbrevi-
ated as ALB method) [13], the three-dimensional scheduling
method for energy saving (abbreviated as TES method) [24]
and the greedy method (abbreviated as GR method) [26].
To save experimental costs, we used CloudSim toolkit [33]
to implement the experiments. CloudSim is one of the most
commonly used cloud simulators. Researchers and develop-
ers can extend its functionality through programming. It can
be used to help quantify and compare the performance of
various resource scheduling and allocation strategies.

In the experimental evaluation, we mainly focused on ana-
lyzing the effectiveness of our proposed method from the
following perspective: the degree of load balance, the num-
ber of migrations, the number of online PMs, and accuracy
of prediction, etc. We considered two scenarios, a stable
load (SCE 1) and an unstable load (SCE 2). In SCE 1, the load
varies within a small range over a short time period. In SCE 2,
the load varies within a wide range over a short time period.
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FIGURE 3. Number of migrations (SCE 1).

FIGURE 4. Number of migrations (SCE 2).

TABLE 3. Distribution of VMs.

A. PARAMETER SETTINGS
Some experimental parameter settings are as follows.

1) There are eight PMs in the experiments, three of
which are activated in the beginning. In addition,
there are eight virtual machines and twenty cloud
tasks. Based on the CloudSim, the configuration for
CPU, memory and network bandwidth of each PM is
1000MIPS, 2 GB, and 10000Mbps. The configuration
for CPU, memory, and network bandwidth of each
VM is 300 MIPS, 512 MB, and 1000 Mbps. In the
beginning, the distribution of the virtual machines and
the tasks is as shown in Table 3 and Table 4. For
example, the virtual machine 0, 3, and 5 are on PM 0.
Tasks 0, 8, and 16 are run on virtual machine 0.

2) Based on the capacity of a PM and the resource allo-
cated to VMs on the PM, we roughly set λ1 and λ2 to
1 and 3 respectively.

FIGURE 5. Migrations to mitigate resource competition.

TABLE 4. Distribution of tasks.

3) In the experiments the CPU and network load we gen-
erate fluctuates between 0 and 0.5. The memory load
fluctuates between 0 and 0.2. Therefore, we suppose
�cpu, �mem, and�net are 0.3, 0.1, and 0.3 respectively.
That is, when ucpupi > 0.3 & umempi > 0.1 & unetpi >
0.3, the PM pi belongs to Grouphigh.

4) The load of PM pi in R1 satisfies the following condi-
tions: ucpupi < 0.15 & umempi < 0.03 & unetpi < 0.15.

5) T is 5 seconds.
6) The length of time of every migration is 3 seconds.
7) To reduce the consolidation error, β1 and β2 are

0.5 [38].
8) Pno−virtual(t) is 20 watts, and Pother (t) is 30 watts.
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FIGURE 6. Processing for the group with load imbalance.

FIGURE 7. Number of online PMs (SCE 1).

9) If the historical load data are sufficient when predicting
the future load, set n = 5; if the historical data are
limited (less than 5), set n = 2; otherwise, we don’t
predict, and deal with the actual load instead.

B. ANALYSIS AND COMPARISON
1) DEGREE OF LOAD BALANCE
Weuse the standard deviation of the load to express the degree
of load balance (b_degreeload ), as shown in (16). Loadi is
the load of PM i, and N is the number of online PMs. The
smaller the degree of load balance, the more balanced the

FIGURE 8. Number of online PMs (SCE 2).

TABLE 5. Mean value and standard deviation of degree of load balance

load. Fig. 1 and Fig. 2 show the load balance of our method,
the ALB method, the TES method and the GR method. From
Fig. 1 and Fig. 2, we can see that our method balances
the loads better. This is because in our method the PMs
are grouped according to their loads. Then, the loads of
the corresponding PMs in different groups are adjusted by
migration, with the selection of the destination PMs based on
the groupings. Table 5 shows the mean value and standard
deviation of the degree of load balance. From Table 5 we can
see that ourmethod is slightly better than other threemethods,
and the degree of load balance is relatively stable. Only in
SCE 1, our method is slightly inferior to the ALB method.
In addition, although the mean of the TES method is lower
than our method in SCE 1, its standard deviation is larger than
our method; that is to say, the degree of load balance for our
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TABLE 6. Some migrations.

method is relatively stable.

b_degreeload =

√√√√ 1
N − 1

N∑
i=1

(Loadi − 1
N

N∑
i=1

Loadi)2 (16)

2) MIGRATION OF VMS
Fig. 3 and Fig. 4 show the number of migrations of the above
four methods during the period 0 to 210 seconds. In SCE 1,
the total number of migrations is 9 by the ALB method,
the total number of migrations is 21 by the TES method, the
total number of migrations is 20 by the GR method,
and the total number of migration is 23 by our method.
In SCE 2, the total number of migrations is 18 by the ALB
method, the total number of migrations is 24 by the TES
method, the total number of migrations is 57 by the
GR method, and the total number of migration is 21 by our
method. That is, for both scenarios the number of migrations
for our method is similar, but the number of migrations for
the other three methods is different. The results indicate the
number of VM migrations for our method is stable in both
scenarios. This is because our method can select the destina-
tion PMs for VMs more accurately. We can also see that the
total number of migrations for the ALB method is less than
our method in both scenarios. This is because an overload
PM keeps a VM awaiting migration for the ALB method
when the other online PMs will not accept the VM. Fur-
thermore, we can also see that our method can timely adjust
the load by migration in case of the higher degree of load
balance.

Fig. 5 shows the actual load variation of some PMs for
some migrations. To observe the variation clearly, they are
shown in Fig. 5 (a) and Fig. 5 (b). When the predicted load of

TABLE 7. Load of PM 0 and PM 1.

a PM exceeds the threshold, the load is transferred by migrat-
ing it at the appropriate time in order to mitigate resource
competition. Some migrations and the trigger condition for
the migration during this period are as shown in Table 6.
During the period of 45 to 53 seconds, the load of PM 0
is adjusted twice. This is because our method adjusts PM
loads depending on the predicted value of load, and there
are errors between the predicted values and the actual values.
Fig. 6 shows the load adjustment of some PMs with a load
imbalance. At 35 seconds, a migration on PM 1 is occurring.
Table 7 shows the load of PM 0 and PM 1. We know PM 1
belongs to the groupwith a load imbalance, and PM0 belongs
to the set R2. According to the above game based consolida-
tion strategy, some VM on PM 1 needs to migrate to PM 0.

3) NUMBER OF ONLINE PMS
Fig. 7 and Fig. 8 show the number of online PMs during
the period 0 to 210 seconds in both scenarios respectively.
In Fig. 7(a) and Fig. 8(a), our method prescribes the new
PMs (i.e., they were turned on recently) can be consolidated
after 25 seconds. The reason for the delay (i.e., 25 seconds)
is so adequate historical load data can be obtained for
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FIGURE 9. Number of online PMs. (a) SCE 1. (b) SCE 2.

TABLE 8. Mean value and standard deviation of online PMs.

prediction. In Fig. 7(b) and Fig. 8(b), we adjusted the delay
to 10 seconds to adapt to the following situation: the load of a
new PM is lower. If its load is lower, it can be transferred

FIGURE 10. Predicted values and actual values of the load. (a) SCE 1.
(b) SCE 2.

TABLE 9. Accuracy of predicted value.

by migration. When a PM is idle, it can be turned off to
save energy. In addition, in 10 seconds, we can get two load
data updates for prediction with our method. From Fig. 7 and
Fig. 8, we can see that the number of online PMs using our
method is relatively stable. This is because the selection of the
destination PMs depends on the result of grouping and the
game, and our method considers the PMs with load imbal-
ance. However, our method is slightly inferior to the TES
method. This is because our method considers the balance of
load. For the ALBmethod, because a new PM is not turned on
when no online PMwould accept the VM awaitingmigration,
the delay is not applicable.

For the GR method and the TES method, the delay is not
necessary, as it uses the actual load to consolidate. Therefore,
we compared our method (the delay is 25 s and 10 s respec-
tively) to the GR method and the TES method (the delay is
0 s). The results are as shown in Fig. 9. From Fig. 9, we can
see that our method works better than the GR method when
the delay is 10 s. For the ALB method, the number of online
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PMs remains constant. The reason has been introduced in
the previous paragraph. For the TES method, the number of
online PMs is lower than our method. This is because our
method considers the balance of load. Table 8 shows themean
value and standard deviation of online PMs. It can also be
seen our method performs better than the GR method, but is
slightly inferior to the TES method.

4) PREDICTION OF LOAD
Fig. 10 shows the predicted and actual values of the load.
From Fig. 10, we can see the difference between them is
not large. Table 9 shows the accuracy of prediction. The
prediction accuracy was computed using (17) and (18), where
actli and predi represent the actual value and the predicted
value at the i-th test point respectively, and X is the total
number of test points.MAE is the mean absolute error of the
predicted value. RMSE is the root mean squared error of the
predicted value. From Table 9, we see the prediction accuracy
is high.

MAE =
1
X

X∑
i=1

|actli − predi| (17)

RMSE =

√√√√ 1
X

X∑
i=1

(actli − predi)2 (18)

VII. CONCLUSIONS AND FUTURE WORKS
This paper proposed a game based consolidation method
of virtual machines in cloud data centers with energy and
load constraints in a cloud data center. We first predict the
future load values of resources using gray theory to timely
adjust the load by migration in case of the higher degree of
load balance. PMs are grouped according to the number of
VMs and their future load to help to select destination PMs.
Then, we use a pre-processing algorithm for destination PM
selection to determine a destination PM set of a VM waiting
for migration. Finally, we select the final destination PM
through the game based method aimed at the optimal overall
energy consumption. Experiments show that our method can
reduce energy consumption as well as balance loads, without
unduly increasing the number of VM migrations.

Our method does not consider the relevance of the VMs.
For example, the VMs that need to communicate with each
other should be placed in the same PM or adjacent PMs.
We will further optimize the migration cost and improve the
prediction accuracy for SCE 2 in future work. The cost is
connected with the migration time that is spent transferring
the memory data. In the future, we elaborate the experimental
environments and use continuous real-time load to further
improve the accuracy of the experimental data.
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