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ABSTRACT In order to achieve perfect trajectory-tracking performance over the entire time interval at a
higher convergence speed, this paper proposes a suboptimal learning control scheme for a class of nonlinearly
parametric time-delay systems under alignment condition. The controller is designed by integrating the
robust learning control with the suboptimal control, in which, the control Lyapunov function and Sontag
formula are employed in generating a suboptimal controller for the nominal system, while robust learning
control mechanism is applied to deal with nonlinearly parametric time-delay uncertainties. As the iteration
number increases, the system state can follow its reference signal over the full time interval. The proposed
method extends some existing results. Numerical simulations demonstrate that our suboptimal iterative
learning control scheme improves the convergence performance in comparison with traditional solutions.

INDEX TERMS Suboptimal control, iterative learning control, time delay, nonlinearly parametric systems,
alignment condition.

I. INTRODUCTION
Nowadays people’s living standard is continuously rising,
which intensifies the need of high-precision control method-
ology for improving the performance of the automation
systems. In the presence of complicated uncertainties and
inaccuracy in modeling, those control systems adopting
traditional design techniques, such as PID control, optimal
control, etc., can hardly achieve satisfactory tracking perfor-
mance. As an effective control technique to overcome the
limitation of traditional control designs, iterative learning
control (ILC), which is good at tackling repetitive control
tasks over a finite time interval, has been proposed and
well developed for more than three decades [1]–[4]. ILC
has attracted increasing attention for its perfect trajectory-
tracking performance over the full time interval. So far, it has
been widely applied in many industries [5]–[9], including
robotic manipulators, hard disk drives, servo control system,
and so on.

In most existing studies of ILC, it is commonly assumed
that the initial system state in each iteration should be reset
to the exact beginning of the desired trajectory; that is to

say, the initial system error is necessarily equal to zero [10].
Otherwise, a slight initial system error will lead to divergence
of the tracking error. However, this identical initial condition
is very hard to meet in practical industries. For this reason
researchers have come up with various solutions, such as
initial impulsive compensation [11], [12], time-varying
boundary layer [1], initial rectifying action [13]–[15], aver-
age operator [16], and error-tracking method [17]–[19], to
mitigate the tough initial condition. Among them, the align-
ment condition is applicable to the controlled systems whose
reference trajectories are spatially closed. While ILC systems
operate under alignment condition, the final state of the pre-
vious iteration is directly employed as the initial state at the
current iteration, instead of initial resetting at each iteration
in traditional ILC algorithm. Some promising results have
been proposed in [2], [20], and [21] respectively for uncer-
tain robot manipulators [2], multiple-output nonparametric
systems [20], and state-constrained systems [21].

Time delay is often encountered in many applications
inherently, such as batch processes, turbojet engine, electrical
networks. The time delays in controlled systems may degrade
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system performance, and even lead to system divergences
in serious cases. The early results on ILC for time-delay
system mainly belong to contraction mapping ILC area,
see [22]–[25]. Recently, time delay is still a hot research topic
in the study of ILC. As reported in [26], an iterative learning
controller was developed on the basis of 2-D system theory
for linear continuous multi-variable systems with time delay.
A robust ILC design for uncertain time-delay systems was
proposed in [27], by using LMI approach. Some promising
ILC results have been derived for nonlinearly parametric sys-
tems with unknown time-varying delays, including adaptive
ILC [28], [29] and adaptive repetitive learning control [30].

So far, most ILC algorithms aim at achieving precise
tracking performance after a large number of iterations. It is
noteworthy that the convergence speed of the algorithms is
an important factor in practical industries [31]. In order to
improve the convergence speed of ILC systems, researchers
have developed optimal ILC methods since the early
1990s, with many meaningful results reported in [32]–[37].
However, in the controller design for nonlinear systems, few
ILC schemes have been proposed by integrating adaptive
learning control with standard optimal control. A main
reason behind this is that, as an indispensable step in stan-
dard optimal control algorithms, solving Hamilton-Jacobi-
Bellman (HJB) equations is of great difficulty, especially
when the controlled systems are general nonlinear systems.
In view of this, suboptimal ILC solutions have been presented
as an alternative. A suboptimal ILC control scheme was
firstly proposed for a class of MIMO nonlinear paramet-
ric system with time-varying uncertainties in [38]. In this
scheme, the feedback term corresponding to nominal system
is given by Sontag formula, while time-varying uncertain-
ties are compensated by using the learning method. Inspired
by [38], later on [39] designed a suboptimal iterative learning
controller and a suboptimal repetitive learning controller for
a class of SISO non-parametric systems, with robust con-
trol and learning control synthetically applied to cope with
nonparametric uncertainties.

We remark that the above-mentioned ILC results can only
either apply to the systems with time-delays, or design con-
trollers under alignment condition, or investigate suboptimal
ILC algorithms. Though improving the convergence speed
of time-delay systems under alignment condition is useful in
modern industrial processes, to the best of our knowledge,
there has been little literature focusing on suboptimal ILC
under alignment condition. This motivates us to undertake
the current research.

In this paper, we present a suboptimal ILC scheme for
a class of nonlinearly parametric time-delay systems under
alignment condition, so as to meet the practical needs. The
contribution of this paper is threefold: (1) A suboptimal
adaptive iterative learning controller, consisting of a sub-
optimal feedback term, a parameters updating law and a
robust feedback term, is developed to achieve perfect track-
ing performance; (2) A novel control Lyapunov functional
based on filtering errors, state and parameter estimation

information is constructed during the controller design and
convergence analysis; (3) The proposed suboptimal learning
control approach can tackle nonlinearly parametric time-
delay systems under alignment condition, without requiring
the initial condition, and improve the convergence speed
in comparison with traditional ILC algorithms. Theoretical
analysis and numerical simulations synthetically show the
effectiveness of the proposed scheme.

The remainder of this paper is organized as follows. The
problem formulation is presented in Section II. A suboptimal
controller is designed in Section III, with detailed conver-
gence analysis being given in Section IV. Simulation results
are shown in Section V. Finally, Section VI concludes the
work.

II. PROBLEM FORMULATION
Consider a class of nonlinearly parametric systems with time-
delays, 

ẋi,k = xi+1,k , i = 1, 2, . . . , n− 1,
ẋn,k = f (xxxk )+ η(xxxk (t − τ (t)), θ(t), t)

+ g(xxxk )
(
uk + ϑϑϑT (t)ψψψ(xxxk , t)

)
,

xxx0(t) =$$$ (t), ∀t ∈ [−τmax, 0],

(1)

in which, k = 0, 1, 2, . . . is the iteration index, t ∈ [0,T ].
xxxk , [x1,k , x2,k , . . . , xn,k ]T ∈ RRRn is the system state,
ϑϑϑ(t) ∈ RRRm is an unknown time-varying part that is iteration-
independent, ψψψ(xxxk , t) ∈ RRRm is a known state dependent
function, uk ∈ RRR is the system input, and f (xxxk (t −
τ (t)), θ(t), t) ∈ R is an unknown smooth nonlinear function
with τ (t) ∈ [−τmax, 0] being the unknown time-delay of the
system state xxxk . The nominal system corresponding to (1) is{

ẋi,k = xi+1,k , i = 1, 2, . . . , n− 1,
ẋn,k = f (xxxk )+ g(xxxk )uk ,

(2)

where, g(xxxk ) ≥ g holds with g an unknown positive con-
stant. Without loss of generality, we make the following
assumptions:
Assumption 1: ∀ξξξ1, ξξξ2 ∈ RRRn, the inequality

|η(ξξξ1, θ(t), t)− η(ξξξ2, θ(t), t)| ≤ ‖ξξξ1 − ξξξ2‖h(θ, t), (3)

holds, where h(θ, t) > 0 is an unknown smooth positive
function.
Assumption 2: The time delay τ (t) satisfies τ̇ (t) ≤ φ < 1,

i.e.,

−
1− τ̇ (t)
1− φ

≤ −1.

The nominal system corresponding to (1) is{
ẋi,k = xi+1,k , i = 1, 2, . . . , n− 1,
ẋn,k = f (xxxk )+ g(xxxk )uk .

(4)

For the given reference signal xxxd (t) = [xd , ẋd , . . . , x
(n−1)
d ]T ,

xxxd (t) ∈ Cn[0,T ], our control objective is to let the system
state xxxk (t) track its reference signal xxxd under alignment con-
dition, i.e. xxxk (0) = xxxk−1(T ) and xxxd (T ) = xxxd (0).
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Throughout the paper, for brevity we abbreviate f (xxxk (t −
τ (t)), θ(t), t) and g(xxxk ) to fk (t − τ (t)) and gk , respectively,
and we often omit arguments as long as no confusion arises.

III. CONTROL SYSTEM DESIGN
Let us define eeek (t) = [e1,k , . . . , en,k ]T = xxxk (t)− xxxd (t) and

sk = (
d
dt
+ λ)n−1e1,k , (5)

where λ is a positive constant. Expanding the right side of (5)
yields

sk = c1e1,k + . . .+ cn−1en−1,k−1 + en,k , (6)

where cj =
(n−1)!

(j−1)!(n−j)!λ
n−j, j = 1, 2, . . . , n− 1.

From (1), we can easily obtain{
ėi,k = ei+1,k , i = 1, 2, . . . , n− 1,

ėn,k = fk + ηk (t − τ (t))+ gkuk − x
(n)
d .

(7)

Then we choose a candidate control Lyapunov function at the
kth iteration as

Vk =
1
2
s2k + eee

T
k Peeek , (8)

with eeek (t) = [e1,k , . . . , en−1,k ]T . Vk is a control Lyapunov
function if and only if it complies with the condition that
while eeek 6= 0,

bk = 0⇒ ak < 0, (9)

with

bk =
∂Vk
∂eeeTk

βββTg , ak =
∂Vk
∂eeeTk

βββTe , (10)

βββg = [0, . . . , 0, gk ]T , βββe = [e2,k , . . . , en,k , fk − f (xxxd )]T .
Taking the time derivative of Vk yields

V̇k =
∂Vk
∂eeeTk

βββTe dτ (t)+
∂Vk
∂eeeTk

βββTg (uk + ηk (t − τ (t))+ ϑϑϑ
Tψψψk )

= ak + bk
(
uk + g

−1
k (ηk (t − τ (t))

+ f (xxxd )− x
(n)
d )+ ϑϑϑTψψψk

)
. (11)

By Assumption 1, we have

g−1k ηk (t − τ (t))

= g−1k (ηk (t − τ (t))− ηd (t − τ (t))+ ηd (t − τ (t)))

≤ |g−1k |‖eeek (t − τ (t))‖h(θ, t)+ g
−1
k ηd (t − τ (t))

≤
1
2
g−2k h2(θ, t)+

1
2
eeeTk (t − τ (t))eeek (t − τ (t))

+ g−1k ηd (t − τ (t)). (12)

Combining (11) with (12) gives

V̇k ≤ ak + bk (uk + pppTϕϕϕk )+
1
2
eeeTk (t − τ (t))eeek (t − τ (t)),

(13)

with ppp =
( 1
2h

2(θ, t), ηd (t − τ (t)) + f (xxxd ) − x(n)d ,ϑϑϑT
)T and

ϕϕϕk = (g−2k , g−1k ,ψψψT
k )
T . On the basis of (13) and by Sontag

formula, we propose the following suboptimal ILC law for
system (1) as

uk = uok − pppTk ϕϕϕk −
skeeeTk (t)eee(t)

gk (1− φ)(s2k + ε
2
2 )
, (14)

in which,

uok = −(µ+
ak +

√
a2k + b

4
k

b2k + ε1β(sak )
)bk (15)

and

pppk = sat(pppk−1)+ γ1bkϕϕϕk ,ppp−1 = 0. (16)

Here, ε1 = ε3 + ε4e−γ2k , sak , |sk |, β(sak ) =
( 10(ε2−sak )3

ε32
−

15(ε2−sak )4

ε42
+

6(ε2−sak )5

ε52

)
ϑ ,

ϑ =

{
0, sak > ε2,

1, otherwise.
(17)

sat(pppk−1) ,
(
sat(p1,k−1), sat(p2,k−1)

)T , and
sat(pi,k−1) ,

{
p̄sgn(pi,k−1), |pi,k−1| > p̄,
pi,k−1, otherwise.

(i = 1, 2)

with p̄ the bound of elements in vector ppp, µ > 0, ε2 > 0,
ε3 > 0, ε4 > 0, γ1 > 0, γ2 > 0.
Remark 1: In order to suppress the possible flutter, (15) is

a substitute for (18), which is designed according to Sontag
formula.

uok =

−(µ+
ak +

√
a2k + b

4
k

b2k
)bk bk 6= 0

−µbk bk = 0

(18)

IV. CONVERGENCE ANALYSIS
In this subsection, we will analyze stability and error conver-
gence of the closed-loop system. Here we present the main
result in the following.
Theorem 1: Given the dynamic system (1) satisfying

Assumptions 1 and 2, the proposed suboptimal learning con-
troller given in (14) - (16), ensures

|sk (t)| ≤ ε2, ∀t ∈ [0,T ] (19)

and

|e(i)1,k (t)| ≤ (2λ)i
ε2

λn−1
, ∀t ∈ [0,T ], i = 0, 1, . . . , n− 1

hold as the iteration number increases, and all system vari-
ables in the closed-loop system are guaranteed to be bounded.

Proof: part i: Test of control Lyapunov function
Through direct calculation, we have

bk =
∂( 12 s

2
k + eee

T
k Peeek )

∂eeeTk
βββTg = gksk . (20)
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Since gk > 0, when bk = 0, from(20) we conclude that
sk = 0, and hence that

ėeek = [e2,k , . . . , en−1,k ,−
n−1∑
i=1

ciei,k ]T = Aeeek . (21)

From (21), we obtain

ak =
∂(eeeTk Peeek )

∂eeeTk
βββe =

∂(eeeTk Peeek )

∂eeeTk
ėeek =

d(eeeTk Peeek )

dt

= eeeTk (A
TP+ PA)eeek = −eee

T
k Qeeek .

Therefore, from eeek 6= 0 and bk = 0 we get ak < 0, i.e., Vk is
a control Lyapunov function.
part ii: Analysis of error convergence
Denoting V2,k = Vk + 1

2(1−φ)

∫ t
t−τ (t) eee

T
k eeekdσ , we choose a

Lyapunov functional at the kth iteration as

Lk = V2,k +
1
2γ1

∫ t

0
p̃ppTk p̃ppkdσ, (22)

with p̃ppk = ppp− pppk .
Firstly, let us examine the finiteness of L0(t). Taking the

derivative of V2,k , from (13) we obtain

V̇2,k ≤ ak + bk (uk + pppTϕϕϕk )+
1

2(1− φ)
eeeTk (t)eeek (t). (23)

When |sk | > ε2, ε1β(sak ) = 0 holds, so we can further assert
that

ak −
ak +

√
a2k + b

4
k

b2k + ε1β(sak )
)b2k ≤ −

√
a2k + b

4
k (24)

and

1
2(1− φ)

eeeTk (t)eeek (t)(1−
2skbk

gk (s2k + ε
2)
) ≤ 0 (25)

hold. On account of (24) and (25), substituting (14) to (23)
yields

V̇2,k ≤ −µb2k + bkp̃pp
T
k ϕϕϕk , (26)

which implies that

V̇2,0 ≤ −µb20 + b0p̃pp
T
0ϕϕϕ0. (27)

Now we take the time derivative of 1
2γ1

∫ t
0 p̃pp

T
k p̃ppkdσ , the 2rd

term on the left side of the equation (22), we obtain

(
1
2γ1

∫ t

0
p̃ppTk p̃ppkdσ )

′

=
1
2γ1

p̃ppTk (ppp− pppk )

= −
1
2γ1

p̃ppTk pppk +
1
2γ1

(ppp− pppk )
Tppp

= −
1
2γ1

p̃ppTk pppk +
1
2γ1

pppTppp−
1
2γ1

pppTk (pppk + p̃ppk )

= −
1
γ1
p̃ppTk pppk +

1
2γ1

pppTppp−
1
2γ1

pppTk pppk . (28)

When k = 0, by (16), we know ppp0 = γ1b0ψψψ0. From this
and (28), we have

(
1
2γ1

∫ t

0
p̃ppT0 p̃pp0dσ )

′
= −p̃ppT0 b0ψψψ0 +

1
2γ1

pppTppp−
1
2γ1

pppT0 ppp0.

(29)

On account of (26) and (29), when |sk | > ε2, we have

L̇0(t) ≤ −µb20 +
1
2γ1

pppTppp−
1
2γ1

pppT0 ppp0 ≤
1
2γ1

pppTppp. (30)

Then by (30), we can easily draw a conclusion that

0 ≤ L0(T ) < +∞. (31)

Next, let us consider the difference of Lk (t) between two
adjacent iterations. While k > 0,

Lk − Lk−1

≤ V2,k (0)−
∫ t

0

(
µb2k +

√
a2k + b

4
k

)
dσ +

∫ t

0
bkp̃pp

T
k ϕϕϕkdσ

−V2,k−1 +
1
2γ1

∫ t

0
(p̃ppTk p̃ppk − p̃pp

T
k−1p̃ppk−1)dτ (t). (32)

Applying (16) and the property (ppp − (pppk−1))
T (ppp − (pppk−1) ≥

(ppp− sat(pppk−1))
T (ppp− sat(pppk−1), we have

1
2γ1

(p̃ppTk p̃ppk − p̃pp
T
k−1p̃ppk−1)+ bkp̃pp

T
k ϕϕϕk

≤ bkp̃pp
T
k ϕϕϕk +

1
2γ1

(
(ppp− pppk )

T (ppp− pppk )

− (ppp− sat(pppk−1))
T (ppp− sat(pppk−1)

)
=

1
2γ1

(2ppp− pppk − sat(pppk ))
T (sat(pppk )− pppk

)
+ bkp̃pp

T
k ϕϕϕk

≤
1
γ1

(ppp− pppk )T (sat(pppk )− pppk + γ1bkϕϕϕk
)

= 0. (33)

Combing (33) with (32) yields

Lk − Lk−1

≤ V2,k (0)−
∫ t

0

(
µb2k +

√
a2k + b

4
k

)
dσ − V2,k−1. (34)

It follows that

Lk (t) ≤ V2,k (0)−
∫ t

0

(
µb2k +

√
a2k + b

4
k

)
dσ

+
1
2γ1

∫ t

0
p̃ppTk−1p̃ppk−1dσ

≤ Lk−1(T )−
∫ t

0

(
µb2k +

√
a2k + b

4
k

)
dσ (35)

Under the alignment condition, we have xxxk−1(T ) = xxxk (0)
and xxxd (T ) = xxxd (0). Hence, we can obviously obtain eeek (0) =
eeek−1(T ). Applying this conclusion, from (34) we also can get

Lk (T )− Lk−1(T ) ≤ −
∫ T

0

(
µb2k +

√
a2k + b

4
k

)
dσ, (36)
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which further yields

Lk (T ) ≤ Lk−1(T ) ≤ . . . ≤ L0(T ). (37)

Combining (35) with (37) gives

Lk (t) ≤ L0(T )−
∫ t

0

(
µb2k +

√
a2k + b

4
k

)
dσ (38)

Owing to the property (31), it follows from (38) that

0 ≤ Lk (t) < +∞. (39)

Therefore, by the definition of Lk , we can draw a conclusion
that sk and eeek are bounded, which furthermore leads to the
boundedness of eeek , ‖ėeek‖. Therefore, we assert that |ṡk | <
+∞ while |sk | > ε2, which implies that sk is continuous
while |sk | > ε2. According to the above-mentioned facts,
all other system signals can easily be proved to be bounded.
From (36) and (37), we obtain

Lk (T ) ≤ L0(T )− g2
k∑
i=1

∫ T

0
s2i (σ )dσ. (40)

Suppose that after k iterations, there still exists |sk (tε)| > ε2 at
any time point tε ∈ (0,T ). By the continuity of sk , there must
exist a little positive constant tδ , satisfying that |sk (t)| > ε2
holds for t ∈ [tε −

tδ
2 , tε +

tδ
2 ]. From this and (40), we obtain

Lk (T ) < L0(T )− µkε22 tδg
2. (41)

From this inequality we can conclude that

Lk (T ) < 0 (42)

holds while k > L0(T )
µε22 tδg

2 . It is easily seen that (42) is contrary

to the positiveness of Lk . Hence, while k >
L0(T )
µε22 tδg

2 ,

|sk (t)| ≤ ε2, t ∈ (0,T ). (43)

Similarly, we can prove |sk (t)| ≤ ε2 holds for t = 0 and
t = T . Hence, |sk (t)| ≤ ε2,∀t ∈ [0,T ] holds as the iteration
number increases, which further implies

|e(i)1,k (t)| ≤ (2λ)i
ε2

λn−1
, i = 0, 1, . . . , n− 1 (44)

as the iteration number increases [40].

In view of (44), through choosing an appropriate small
positive number ε2, we can get the pre-specified control
precision.

V. ILLUSTRATIVE EXAMPLE
Consider the following system:

ẋ1,k = x2,k ,

ẋ2,k = f (xxxk )+ e
−θ (x21,k (t−τ (t))+x

2
2,k (t−τ (t)))

+ g(xxxk )
(
uk + ϑ(t)ψ(xxxk , t)

)
,

[x1,0(t), x2,0(t)]T = [1.5, 0.2], t ∈ [−τmax, 0],

(45)

where θ = | cos(2t)|, τ (t) = 1 − 0.5 sin2 t , f (xxxk ) =
−0.1x2,k − 0.1x31,k , g(xxxk ) = 1 + 0.1x21,k , ϑ = 12,

FIGURE 1. System state x1 and its reference signal x1,d .

FIGURE 2. System state x2 and its reference signal x2,d .

ψ(xxxk , t) = cos t
1+0.1x21,k

, τmax = 1 and τ̇ (t) ≤ 0.5.

We can easily verify that system (45) satisfies Assump-
tions 1 and 2. The control objective is to make the system
state [x1,k , x2,k ]T track its reference trajectory [x1,d , x2,d ]T =
[cos(π t),−π sin(π t)]T over [0,T ].
Choosing Vk = 1

2 s
2
k + e21,k with sk = 2e1,k + e2,k ,

the learning control law (14) is implemented with T = 4,
µ = 5, γ1 = 2, ε1 = ε2 = 0.001 + 1.5e−0.2k , c1 =
2, p̄ = 30. After 35 cycles, the simulation results are shown in
Figs. 1–7. As shown in Figs. 1–2, x1 and x2 respectively
follow their reference trajectories over [0,T ] at the 35th
iteration. Figs. 3–4 show the state tracking error profiles
over [0,T ] at the 35th iteration. According to Figs. 1–4, we
conclude that xxxk (t) can precisely track xxxd (t) over [0, T] as
the iteration number increases. The control input signal at the
35th iteration is shown in Fig. 5. In Figs. 6–7, profile ilc2
represents the error convergence of suboptimal ILC algorithm
proposed in this paper, where |e1|sup , maxt∈[0,T ] |e1k (t)|,
|e2|sup , maxt∈[0,T ] |e2k (t)|.
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FIGURE 3. State error e1.

FIGURE 4. State error e2.

FIGURE 5. Control input.

For comparison, a non-optimal ILC law is given as follows:

uk =−γ3eeeTk Pbbb−
1
gk

(f (xxxk )+ α1e1,k + α2e2,k )− pppTn,kϕϕϕn,k ,

(46)

FIGURE 6. Profile of e1k convergence.

FIGURE 7. Profile of e2k convergence.

pppn,k = sat(pppn,k−1)+ γ4eee
T
k Pbbbϕϕϕn,k ,pppn,−1 = 0, (47)

in which ϕϕϕk = (eeeTk Pbbb/gk , 1/gk ,ψψψk )T , α1 = 2, α2 = 1,
γ3 = 5, γ4 = 2 and

P =
(
3 1
1 1

)
. (48)

For

A =
(

0 1
−α1 −α2

)
, Q =

(
2 0
0 2

)
, (49)

ATP + PA = −Q holds. In Figs. 6–7, profile ilc1 represents
the error convergence of normal ILC algorithm given in (46).
We see that both ilc1 and ilc2 approach zero as the iteration
number increases, and the latter converges to zero faster than
the former. This means that the suboptimal ILC algorithm
proposed in this paper has a higher converge speed. The
simulation results effectively verify the theoretical analysis
in this paper.
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VI. CONCLUSION
This paper has proposed a suboptimal iterative learning
control scheme for nonlinearly parametric time-delay sys-
tems under alignment condition. The controller is designed
by integrating adaptive learning control with suboptimal
control. While the closed-loop system operates as the iter-
ation number increases, the filtering error may converge
to a pre-specified neighborhood of the origin at a higher
convergence speed, and the system state can precisely track
its reference signal over the full time interval. Simulation
results show that, compared with the traditional non-optimal
adaptive learning control, our algorithm can improve the
convergence speed.
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