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ABSTRACT Scene recognition is a significant and challenging problem in the field of computer vision.
One of the principal bottlenecks in applying machine learning techniques to scene recognition tasks is the
requirement of a large number of labeled training data. However, labeling massive training data manually
(especially labeling images and videos) is very expensive in terms of human time and effort. In this paper,
we present a novel multicriteria-based active discriminative dictionary learning (M-ADDL) algorithm to
reduce the human annotation effort and create a robust scene recognition model. The M-ADDL algorithm
possesses three advantages. First, M-ADDL introduces an active learning strategy into the discriminative
dictionary learning model so that the performance of discriminative dictionary learning can be improved
when the number of labeled samples is small. Second, different from most existing active learning methods
that measure either the informativeness or representativeness of unlabeled samples to select useful samples
for expanding the training dataset, M-ADDL employs both informativeness and representativeness to query
useful unlabeled samples and utilizes the manifold-preserving ability of unlabeled samples as an additional
sample selection criterion. Finally, a more effective representativeness criterion is presented based on the
reconstruction coefficients of the samples. The experimental results of four standard scene recognition
databases demonstrate the feasibility and validity of the proposed M-ADDL algorithm.

INDEX TERMS Active learning, dictionary learning, multicriteria of sample selection, scene recognition.

I. INTRODUCTION
Scene recognition is an important issue in the field of
computer vision since it helps reduce the semantic gap of
scene understanding between human beings and computers.
Moreover, scene recognition also plays a key role in the
success of many application areas such as human-machine
interaction, image retrieval, and autonomous driving [1].
However, scene recognition is still a challenging problem
because of the high variability of scale, illumination, view-
point and layout of objects in the images.

Numerous algorithms have been proposed to clas-
sify images into semantic categories of scenes [2]–[4].
Lu et al. [1] adopted Gaussian Mixture models to produce

the probability density response maps used for feature
extraction, and they applied a bagged LDA classifier to rec-
ognize different categories of scene images. Choi et al. [5]
proposed a hypergraph-based modeling method to extract
the higher-order relationship of semantic attributes for
scene recognition. Xie et al. [6] presented orientational
pyramid matching to model the orientational context of
scene images for indoor scene classification. Fei-Fei and
Perona [7] proposed a Bayesian hierarchical model, which
can learn the intermediate-level and the distribution of code-
words without supervision, to recognize natural scene cate-
gories. Zhang et al. [3] proposed an object-to-class distance
to model scene images, and they further adopted the
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distance representation for the final classification. Recently,
many scene recognition methods based on the deep learning
mechanism have been proposed to obtain better recognition
accuracy [8]–[11]. Although these methods achieve good
performance in scene recognition, they need massive datasets
to train the classifier. However, collecting the vast number of
datasets, especially the labeled data, is very time-consuming.
For example, 111 researchers spent 220+ hours labeling only
63 hours of Trecvid 2003 development corpus [12]. The
human vision system has a fascinating characteristic: we cat-
egorize images with only a few labeled training samples. Is it
possible for a computer to achieve this result with machine
learning techniques? This possibility is the motivation of this
paper. To relieve the tedious work of labeling the training data
and to build a competitive classifier with a limited amount
of labeled training data, we develop a novel active learning
algorithm based on discriminative dictionary learning for
scene recognition.

Active learning based on pool setting has been a topic of
recent interest. This type of active learning actively selects
the most useful samples from a candidate unlabeled dataset
(usually referred to as an active pool) and then asks humans
to label the samples for training [13]. The overall procedure
of active learning based on pool setting is shown in Fig. 1.
In recent years, researchers have proposed various active
learning algorithms and have applied them to visual concept
recognition [13]–[15]. The key issue in active learning is
how to decide whether a sample is ‘‘useful’’. There are two
main sample selection criteria, namely, informativeness and
representativeness [16], [17].

FIGURE 1. Schematic diagram of active learning based on pool setting.

The informativeness criterion is used to query the most
informative samples that can reduce the uncertainty of
the classifier. The most typical informativeness criteria
include the following [14]: 1) query by committee, which
chooses the instance for which several classifiers disagree
the most [18], [19]; 2) large margin heuristic-based methods,
which choose the most informative instance as the instance
that is closest to the classification boundary [15], [20], [21];
and 3) posterior probability-based methods in which the
posterior probability is used to measure the uncertainty of
candidates [22], [23]. These approaches only focus on infor-
mative instances and usually do not consider the distribution
information of unlabeled data, which may lead to serious

sample bias and consequently, undesirable performance [24].
The representativeness criterion is used to query the most

representative samples that can preserve the overall pat-
terns or underlying distributions of the unlabeled dataset [17].
The representativeness criterion usually adopts clustering
technologies [25], [26] to select samples from the highest
density clusters. The approaches that deploy the represen-
tativeness criterion alone may require querying a relatively
large amount of instances to label before converging to a good
solution [24].

Most active learning algorithms only adopt one of
the two criteria (informativeness or representativeness) for
query selection [16], which can significantly deteriorate the
performance of active learning because of the abovemen-
tioned drawbacks. Although several active learning algo-
rithms [14], [16], [27], [28] have been proposed to query the
unlabeled samples that are both informative and represen-
tative, they are usually heuristic in designing the specific
query criterion based on the traditional classifiers, such as the
support vector machine (SVM) [14], [16] and Gaussian Pro-
cess classifiers(GP) [27], [28]. In addition, these algorithms
do not consider the manifold-preserving ability of unlabeled
samples when selecting useful unlabeled data. According to
some researchers [29], [30], the manifold structure not only
is important to characterize the intrinsic distribution of input
data but also contributes to remove the outliers and noisy
samples. Thus, adopting the manifold-preserving ability as
a sample selection criterion is favorable.

In this paper, a novel multicriteria-based active discrimi-
native dictionary learning (M-ADDL) algorithm is proposed
for scene recognition. M-ADDL introduces an active learn-
ing mechanism into discriminative dictionary learning to
improve the recognition performance of discriminative dic-
tionary learning when the labeled samples are in smaller
quantities. When querying the useful unlabeled samples from
the dataset, it not only measures the informativeness and rep-
resentativeness of unlabeled samples but also considers the
manifold-preserving ability of unlabeled samples. Moreover,
a more effective representativeness criterion is presented
based on the reconstruction coefficients of the samples.

The rest of this paper is organized as follows.
Section 2 briefly reviews some of the related works.
Section 3 provides the details of the proposed algorithm.
Many experiments and comparisons are conducted in
Section 4, and Section 5 concludes the paper.

II. RELATED WORKS
A. DISCRIMINATIVE DICTIONARY LEARNING
Dictionaries play a crucial role in sparse coding or sparse
representation-based image classification and reconstruction.
Approaches to effectively learn dictionaries from training
data have attracted significant attention in recent years.
One representative dictionary learning method is k-singular
value decomposition (KSVD) [31], which achieves satis-
factory results in image restoration. However, KSVD is

VOLUME 6, 2018 4417



C. Zheng et al.: M-ADDL for Scene Recognition

unsuitable for classification tasks because it learns a dic-
tionary only by minimizing the residual error of recon-
structing the original signals and neglects the class label of
training data [32]. By exploring the class labels of training
instances, supervised dictionary learning methods have been
proposed to promote the discrimination capability of the
learned dictionary. Supervised dictionary learning methods
have achieved state-of-the-art performance in various tasks
of pattern recognition [33]–[35].

Existing discriminative dictionary learning algorithms can
be mainly divided into two categories [32]. The first type
of algorithms learns a shared dictionary for all classes and
enforces the representation coefficients to be discrimina-
tive [36], [37]. Jiang et al. [36] proposed a label-consistent
KSVD (LC-KSVD) method by applying a binary class
label sparse code matrix, which encourages samples from
the same class to have similar sparse coding coefficients.
Mairal et al. [37] proposed a task-driven dictionary learn-
ing (TDDL)method, which minimizes the different risk func-
tions of the representation coefficients for different tasks.
The second type of algorithm learns class-specific dictionar-
ies and computes the class-specific representation residual
for the classification [32], [38]. Yang et al. [32] developed
a fisher discrimination dictionary learning (FDDL) frame-
work in which both the representation residual and the repre-
sentation coefficients are discriminative. Ramirez et al. [38]
introduced an incoherence promoting term to force sub-
dictionaries associated with different classes to be indepen-
dent. However, most of the existing discriminative dictionary
learning methods adopt l0-norm or l1-norm to regularize the
representation coefficients, which often suffers heavy compu-
tational costs and makes both the training and testing phases
inefficient. To avoid this problem, Gu et al. [39] proposed
a projective dictionary pair learning (DPL) algorithm that
learns a discriminative synthesis and analysis dictionary pair
to reduce the time complexity in the training and testing
phases.

The abovementioned discriminative dictionary learning
methods achieve good performance for pattern recognition
tasks, but all these methods need a massive number of labeled
training samples to learn powerful dictionaries.

B. ACTIVE LEARNING
Active learning is an effective technique to reduce human
labeling efforts in image and video annotation; it achieves bet-
ter classification results when the number of labeled training
instances is small [40]. Active learning iteratively selects the
most useful instances to label in an interactive learning pro-
cess. Thus, the redundant and unnecessary labeling of non-
useful instances is avoided, which can significantly reduce
the cost and time of manual annotations. Moreover, active
learning can decrease the computational complexity of the
training phase [14].

Informativeness and representativeness are two types
of widely used sample selection criteria in active learn-
ing [41]. Since using either type of criterion alone

is insufficient to achieve optimal performance, several
researchers have attempted to query the unlabeled instances
with both high informativeness and high representative-
ness [17]. Huang et al. [16] provided a systematic way to
measure the informativeness and representativeness of an
instance based on the min-max view of active learning.
Freytag et al. [27], [28] proposed an active learning method
based on the Gaussian process regression that automati-
cally selects exploitative and explorative unlabeled exam-
ples for annotation. Donmez et al. [42] proposed a dynamic
approach that combines the uncertainty and density informa-
tion to query the unlabeled data; this approach adaptively
updates the strategy selection parameters based on the esti-
mated future residual error reduction. Wang et al. [14] and
Wang and Ye [17] introduced an empirical risk minimiza-
tion principle to active learning that employs the maximum
mean discrepancy to measure the distribution difference and
obtains an empirical upper bound for the active learning
risk. Although these active learning methods combine infor-
mativeness and representativeness as sample selection crite-
ria, they are restricted to a binary classification. Recently,
several active learning algorithms for multi-class classifica-
tion have been developed. Li et al. [43] proposed a serial
active learning algorithm that first measures the informa-
tiveness of unlabeled samples based on the difference of
probability and then queries representative samples from
the selected informative sample set based on the expected
error reduction. Li and Guo [13] presented an active learning
approach that selects the representative and informative unla-
beled samples based on mutual information and conditional
entropy. Ebert et al. [24] analyzed different sampling criteria
and formulated the criteria (informativeness and representa-
tiveness) selection as a Markov decision process based on
reinforcement learning. Aodha et al. [45] proposed a hierar-
chical subquery evaluation for active learning on a graph that
can balance exploration and exploitation to refine decision
boundaries as needed within the time budget that is specified
by the user. The abovementioned approaches have been pro-
posed for multi-class classification problems. Nevertheless,
because the manifold structure of the original data is ignored,
the samples selected by these approaches may all be from a
small region in the sample space, which decreases the gen-
eralization ability of the classifier [44], [46]. Furthermore,
most of the instance selection criteria in active learning are
designed based on traditional classifiers (e.g., SVM and GP).
Very few studies have focused on developing an appropriate
criterion for dictionary learning algorithms.

III. MULTICRITERIA-BASED ACTIVE DISCRIMINATIVE
DICTIONARY LEARNING
This section presents the details of our proposed M-ADDL
algorithm. In M-ADDL, DPL is employed as the classifier
because DPL exhibits a highly competitive classification
accuracy and a significantly higher efficiency. Other dis-
criminative dictionary learning algorithms can also be used
in our work. Specifically, the active learning mechanism

4418 VOLUME 6, 2018



C. Zheng et al.: M-ADDL for Scene Recognition

proposed in this paper can be applied to most of the existing
discriminative dictionary learning algorithms to improve their
performance when the quantity of labeled data is insufficient.
Fig. 2 shows a flow chart of M-ADDL. First, M-ADDL
learns an initial dictionary by using DPL from the labeled
training dataset. Second, M-ADDL selects samples from the
unlabeled dataset to construct a subset that can preserve the
manifold structure of the original unlabeled dataset. Finally,
M-ADDL queries the highly informative and representative
samples in the manifold-preserving subset to label to update
the labeled training dataset and learns a refined dictionary
based on the updated training dataset. This procedure of sam-
ple selection is iteratively performed to continuously improve
the discriminative power of the learned dictionary.

FIGURE 2. Flow chart of M-ADDL.

A. DPL ALGORITHM
The DPL algorithm [39] can learn discriminative dictionar-
ies but without the costly l0-norm or l1-norm sparsity con-
straint on the representation coefficients. Therefore, DPL can
achieve very competitive accuracies in visual recognition
tasks, and it significantly reduces the time complexity in the
training and testing phases. Because of the advantages of
DPL, we used it as the classifier in this paper.

Denote X = [X1, . . . ,Xc, . . . ,XC ] as a dataset that
includes m-dimensionality training samples from C classes,
and denote L = [L1, . . . ,Lc, . . . ,LC ] as the correspond-
ing label set, where Xc ∈ Rm×nr represents samples in
the c-th class, and Lc denotes the label of the c-th class.
DPL simultaneously learns an analysis dictionary P and
a synthesis dictionary D by using the following objective
function:

{P̂, D̂} = argmin
P,D

C∑
c=1

‖Xc − DcPcXc‖2F + λ
∥∥PcX c∥∥2F ,

s.t. ‖di‖22 ≤ 1, (1)

where P = [P1; . . . ;Pc; . . . ;PC ] ∈ RkC×m is used
for linear encoding the representation coefficients, D =

[D1, . . . ,Dc, . . . ,DC ] ∈ Rm×kC is used for the class-specific
discriminative reconstructing samples, Dc ∈ Rm×k and
Pc ∈ Rk×m are the sub-dictionary pairs that are learned from
class c, X c represents the complementary data matrix of Xc in

the entire training setX , λ � 0 is the scalar constant to control
the discriminative property of dictionary P, and di represents
the i-th atom of dictionary D.

The objective function in (1) is generally non-convex.
By introducing a variable matrix A, equation (1) can be
relaxed to the following form:

{P̂, Â, D̂} = argmin
P,A,D

C∑
c=1

‖Xc − DcAc‖2F + τ ‖PcXc − Ac‖
2
F

+ λ
∥∥PcX c∥∥2F ,

s.t. ‖di‖22 ≤ 1, (2)

where τ is the scalar constant. The objective function in (2)
can be solved using an alternatively updated manner; see [19]
for details.

When the optimal D and P have been learned, the class-
specific reconstruction residual is used to estimate the class
label of the test sample xt , as shown in the following formula:

label(xt ) = argmin
c
‖xt − DcPcxt‖2 . (3)

In general, DPL requires a massive number of labeled
training data to learn the discriminative dictionary pair to
obtain good classification results. However, it is difficult
and expensive to obtain a vast quantity of labeled training
data. If we can fully utilize the information provided by
the inexpensive unlabeled data, we would can learn a more
discriminative dictionary than the dictionary learned by using
only a limited number of labeled training data. To achieve
this, we introduce an active learning technique to DPL and
propose multicriteria of sample selection to actively query
the beneficial unlabeled samples from the unlabeled dataset
to improve DPL’s classification performance.

B. MULTICRITERIA OF SAMPLE SELECTION
The criterion of sample selection is crucial for active learning
methods. Different active learning methods have different
strategies in identifying which sample should be queried
for the current classifier. The proposed M-ADDL develops
multicriteria to select useful samples, which has the three
key components of a manifold-preserving ability criterion,
informativeness criterion and representativeness criterion.
We introduce each criterion below.

1) MANIFOLD-PRESERVING ABILITY CRITERION
In machine learning, the concept of manifold-preserving
means the selection of a small number of samples to rep-
resent the original manifold structure of a dataset. Specif-
ically, the samples with high space connectivity should be
selected to construct a manifold-preserving subset (MPS);
thus, the outliers and noisy samples can be removed. AnMPS
is beneficial to many machine learning tasks, for example,
recognition problems [29], [30]. Therefore, we introduce the
concept of manifold-preserving into active learning, which
can avoid oversampling on dense regions to a large extent.
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Sun et al. [30] proposed the technique of manifold-
preserving graph reduction for sparse semi-supervised learn-
ing. Inspired by their work, we apply manifold-preserving
graph reduction to construct anMPS to preserve the manifold
structure of the unlabeled dataset, and then we query highly
informative and representative samples from theMPS. There-
fore, the samples queried in active learning are more benefi-
cial for improving the generalization ability of the classifier.

When constructing the MPS, it must be ensured that the
samples in the MPS have highly similar properties and labels
to the samples outside of the MPS. Therefore, the classifier
learned from an MPS can generalize well to unseen samples
with a high probability. The graph G(V ,E,W ) comprises
unlabeled samples, where V represents the vertex set, E rep-
resents the edge set, and W represents the symmetric weight
matrix. If sample xi(i-th vertex) and sample xj(j-th vertex) are
k-neighbors, the weight wi,j is computed using the following
Gaussian kernel function or otherwise, wi,j = 0:

wij = exp
−
∥∥xi − xj∥∥2

2σ
, (4)

where σ is the parameter.
The connectivity of samples in an MPS to the samples

outside the MPS is defined as follows:

1
N − p

N∑
i=p+1

(
max

j=1,...,p
wij

)
, (5)

where N is the number of all vertices, and p is the number of
candidate vertices to construct the MPS. To construct an opti-
mal MPS, equation (5) should be maximized. The problem
of exactly seeking MPS graphs by using (5) is NP-hard [30].
Therefore, the connectivity degree d(i) of sample xi in graph
G is defined in the following form to replace (5):

d(i) =
∑

i∼j
wij. (6)

A larger d(i) indicates that sample xi has a higher con-
nectivity to other samples and has more useful informa-
tion [30], [46]. Therefore, it is more likely to be added into
the MPS.

2) INFORMATIVENESS CRITERION
The informativeness criterion is used to select informative
samples to reduce the classification uncertainty of the classi-
fier. The samples, which are not well-reconstructed by using
the current learned dictionary, are likely to provide more
information in further refining the dictionary. In M-ADDL,
we employ the reconstruction error of sample xj to compute
its informativeness Minfor .

Minfor = min
c

∥∥xj − DcPcxj∥∥2, (7)

whereDc and Pc represent the sub-dictionary pairs learned
by the DPL algorithm for class c. A larger Minfor means that
the current learned dictionaries do not reconstruct sample xj
well and should thus be queried in active learning to refine
the learned dictionaries.

3) REPRESENTATIVENESS CRITERION
The representativeness criterion is used to evaluate the
relations between the selected samples and the remaining
samples in the unlabeled dataset and aims to query highly
representative samples to label for expanding the training
dataset. Most of the existing active learning methods have
developed the representativeness measure based on the prob-
ability distribution of the dataset [13] or have selected the
samples near the center of clustering as highly representa-
tive samples [25]. The representativeness criteria in these
methods are designed based on the Euclidean space. In this
paper, a more appropriate representativeness criterion for
the discriminative dictionary learning is proposed. Since
discriminative dictionary learning adopts a class-specific
reconstruction residual to assign the class label of samples,
we propose a novel representativeness criterion based on the
reconstruction coefficients of the samples. Given one of the
unlabeled samples, it can be approximated using a linear
combination of other samples in an unlabeled dataset [47].
The highly representative samples are defined as the sam-
ples with larger reconstruction coefficients. Given a dataset
X = {x1, . . . , xi, . . . , xN }, the reconstruction coefficients
B = {b1, . . . , bi, . . . , bN } can be derived by solving the
following object function:

min ‖X − XB‖2 + α ‖B‖2,1 , (8)

where ‖X − XB‖2 is the reconstruction error, ‖B‖2,1 =∑N
i=1 ‖bi‖2 is the regularization term that enforces the group

sparsity on variable B, and α is the parameter. When the value
of α is larger, B has more zero rows.

Inspired by Wright et al. [48], the representativeness mea-
sure that is based on the reconstruction coefficients is defined
as

Mrep(xi) = −
max(bi)
||bi||1

. (9)

The largeMrep(xi) indicates that the sparse coefficient bi is
spread evenly over all samples, which demonstrates that xi is
a representative sample.

C. IMPLEMENTATION SCHEME of M-ADDL
Based on the proposed manifold-preserving ability, informa-
tiveness and representativeness criteria, we provide the imple-
mentation scheme of M-ADDL as shown in Algorithm 1.

IV. EXPERIMENTS
In this section, we evaluate the proposedM-ADDL algorithm
on different datasets and compare it with other algorithms.

A. DATASETS AND EXPERIMENTAL SETUP
1) Datasets
The proposed M-ADDL is evaluated on three small datasets
that include an 8-Scene dataset [48], a UIUC-Sports
dataset [49] and a 15-Scene dataset [50], which are the most
frequently used scene recognition datasets in the literature
thus far. The 8-Scene dataset contains 2,688 outdoor scene
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Algorithm 1 Multicriteria-Based Active Discriminative
Dictionary Learning (M-ADDL)

1. Inputs: Labeled training dataset X l with a label set L l ,
unlabeled dataset Xu, the number (It ) of iteration in active
learning, the total number (Nu) of unlabeled samples in
each iteration, the number (Ns) of unlabeled samples to be
queried for expanding the training dataset in each iteration,
and the number (p) of samples selected for constructing the
MPS (Xmps);
2. Initialization: Learn an initial dictionary pair D and P
through the DPL algorithm from X l ;
3. For t = 1 to It , do
4. For j = 1 to p, do
5. Compute the degree d(i), i = 1, 2, . . . ,Nu − j + 1
through (6);
6. Remove the samples in Xu with a larger d(i) to Xmps;
7. End for
8. Compute Minfor and Mrep for each sample in Xmps

through (7) and (9);
9. Query Ns samples (noted by X s) with a higher sum of
Minfor and Mrep from Xmps to label and then add them
to the training dataset X l , update Xu = Xu − X s and
X l = X l ∪ X s;
10. Learn the refined dictionary pair Dtnew and Ptnew from
the updated dataset X l ;
11. End for
12. Outputs: Final learned dictionary pair DItnew and PItnew.

images across 8 categories, and the size of each image is 256
× 256. The UIUC-Sports dataset consists of 1,579 images
that are labeled into 8 complex sport scene categories, and
the resolution of the images is from 800 × 600 to thou-
sands of pixels per dimension. The 15-Scene dataset includes
4,485 gray scene images with 15 categories, and the average
resolution of the images is 300 × 250. In addition, we eval-
uate the proposed M-ADDL on a larger scale dataset MIT-
Indoor [51]. The MIT-Indoor dataset contains 15,620 images
of 67 indoor scene classes, and all images have a minimum
resolution of 200 pixels in the smallest axis. Fig. 3 shows
example images from the different datasets. These datasets
are very challenging for the scene recognition task because
1) the backgrounds of the images in the same category of
a scene are highly diverse and 2) within the same class, the
sizes, appearances and numbers of objects are different.

2) EXPERIMENTAL SETUP
Three types of descriptors that include GIST [48], PHOW
[52] and bag-of-words [53] of LBP [54] are extracted as
the feature representation of the images. In each dataset,
the images are randomly split into a labeled training set,
unlabeled set and testing set according to proportions of 10%,
60% and 30%, respectively. Random splitting is repeated
10 times, and the average accuracy and standard deviation
are reported.

FIGURE 3. Example images from different datasets. (a) 8-Scene[48],
(b) UIUC- Sports[49], (c) 15-Scene[50], (d) MIT-Indoor[51].

The proposed M-ADDL is compared with several state-
of-the-art algorithms including: active learning by querying
informative and representative examples (QURIE_SVM for
short) [55], active learning for large multi-class problems
(PKNN for short) [56] and active discriminative dictionary
learning for weather recognition (ADDL for short) [57].
These algorithms are the general recognition algorithms that
are mainly focused on developing an effective active learning
mechanism. QURIE_SVM [55] is proposed based on the
min-max view of active learning, which measures the infor-
mativeness and representativeness of a sample by using its
prediction uncertainty. PKNN [56] learned an accurate kernel
function over the input space and provided a natural notion of
uncertainty over class labels for active learning. ADDL [57]
actively queried the informative and representative samples
based on the entropy of the probability distribution over the
class-specific reconstruction error and the distribution of the
unlabeled dataset. To verify that the proposed M-ADDL can
effectively improve the performance of the original DPL
algorithm when the labeled training samples are limited,
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FIGURE 4. Comparison of the average recognition accuracy obtained by
various methods on four different datasets. (a) 8-Scene. (b) UIUC-Sports.
(c) 15-Scene. (d) MIT-Indoor.

we also compare M-ADDL with the original DPL algorithm,
which randomly selects samples from the unlabeled dataset
to expand the training dataset. Each algorithm starts with

the labeled samples and iteratively selects samples from the
unlabeled set to label, namely, 100 samples for the 8-Scene,
UIUC-Sports and 15-Scene datasets and 200 samples for the
MIT-Indoor dataset in each iteration. The maximum num-
ber of iteration is set to 10 for the 8-Scene, 15-Scene and
MIT-Indoor dataset, while it is set to 8 for the UIUC-Sports
dataset because the number of samples in this dataset is small.

B. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the experimental results are presented to
demonstrate the effectiveness of the proposed M-ADDL
framework in scene recognition problems. Fig. 4 shows the
average recognition accuracy obtained using various methods
on four different datasets. From Fig. 4, the following points
can be observed. First, the performances of the methods that
are based on discriminative dictionary learning (M-ADDL,
ADDL and DPL) are better than the methods based on
SVM (QURIE_SVM) and KNN (PKNN) in most cases. The
reason for this phenomenon may be that the discrimina-
tive dictionary learning method is more effective for scene
recognition tasks. Second, the proposed M-ADDL outper-
forms DPL, which demonstrates that the introduction of an
active learning mechanism into DPL can effectively improve
the performance of DPL. Finally, the proposed M-ADDL is
generally superior to other active learning methods because
M-ADDL measures not only the informativeness and rep-
resentativeness of unlabeled samples but also the manifold-
preserving ability of unlabeled samples. Therefore,M-ADDL
can actively query more useful unlabeled samples to label to
further improve the classifier performance.

From Fig. 4, we also note that on the UIUC-Sports dataset,
the performance of M-ADDL is inferior to the performance
of ADDL in the first couple of iterations. The reason to
this phenomenon may due to that the number of training
samples in the previous iterations is small in this dataset,
so themanifold structure cannot bewell captured by theMPS.

In order to demonstrate that the proposed M-ADDL can
achieve better recognition performance than the discrimina-
tive dictionary learning algorithms when the labeled training
data are in smaller quantities, we also compare M-ADDL
with FDDL [32] algorithm. Since FDDL is a supervised
algorithm which cannot use the information of the unlabeled
training data, we only utilize the labeled samples for FDDL
training in this experiment. Table 1 lists the scene recognition
results of M-ADDL and FDDL. From Table 1, it can be
seen that M-ADDL can gain higher accuracies by integrating
active learning into discriminative dictionary learning.

TABLE 1. Average recognition rates (%) and standard deviations (%) of
M-ADDL and FDDL.
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TABLE 2. Average recognition rates (%) and standard deviations (%) of
M-ADDL with different k values.

TABLE 3. Average recognition rates (%) and standard deviations (%) of
M-ADDL with different λ values.

Then, the performance of our algorithm under different
parameters was compared. There are three important param-
eters, k , λ, and τ , in (2) and α in (8), where k is the size of
each sub-dictionary Dc, λ is the parameter that controls the
discriminative property of dictionary P, α is the scalar con-
stant in a DPL algorithm, and α is the parameter that controls
the sparsity of the reconstruction coefficients B. As shown
by the experimental results in Table 2, the highest average
classification accuracy is obtained when k = 25, 75 or 100.
This finding indicates that the proposedM-ADDLhas a better
performance when learning a relatively compact dictionary,
which is highly beneficial for reducing the time during the
testing phase. Tables 3 and 4 show that the values of param-
eters λ and τ have an important effect on the performance of
the proposedM-ADDL. This importance is because a λ value
that is too large will cause the reconstruction coefficient in
M-ADDL to be too sparse. However, if the λ value is too
small, this will lead to the reconstruction coefficient to be
too dense. A very sparse or dense reconstruction coefficient
will deteriorate the classification performance of M-ADDL.
Likewise, if τ is too large, the influence of the reconstruc-
tion error constraint (the first term in (4)) and the sparse
constraint (the third term in (4)) is weakened, which will
decrease the discrimination ability of the learned dictionary.
In contrast, if τ is too small, the second term in (4) will be
ignored during dictionary learning, which will also reduce the
performance of M-ADDL. Table 5 shows the classification
results under different values of α. This table indicates that

TABLE 4. Average recognition rates (%) and standard deviations (%) of
M-ADDL with different τ values.

TABLE 5. Average recognition rates (%) and standard deviations (%) of
M-ADDL with different α values.

the value of α should not be too large or too small because it
leads to the reconstruction coefficients to be too sparse or too
dense, respectively, and this will degrade the performance
of M-ADDL.

FIGURE 5. Average recognition rates of M-ADDL with different values of θ .

To identify the importance of the informativeness and
representativeness criteria for discriminative dictionary
learning-based active learning, we use the 8-Scene dataset
as an example to analyze different combinations of the infor-
mativeness and representativeness criteria. The combination
formula isMsum = θMinfor + (1− θ )Mrep, and the unlabeled
samples with a largeMsum are queried to expand the training
dataset. Fig. 5 shows the average recognition rate under
different values of θ . From Fig. 5, we can make the following
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observations. First, using the informativeness criterion alone
works better than using the representativeness criterion alone
in M-ADDL because the informativeness criterion is directly
computed based on the recognition results of the learned
dictionary. Second, combining the informativeness and rep-
resentativeness criteria in M-ADDLwith a proper weight can
obtain the best recognition results, which indicates that both
informativeness and representativeness are necessary in our
proposed algorithm.

V. CONCLUSION
This paper presents an active learning algorithm (M-ADDL)
for discriminative dictionary learning-based scene recogni-
tion. Because M-ADDL adopts multicriteria (informative-
ness, representativeness and a manifold-preserving ability)
to query unlabeled samples to expand the training dataset,
it achieves better performance than other algorithms. In the
experiments, four public scene databases are utilized to eval-
uate M-ADDL. By comparing the performance of M-ADDL
with other state-of-the-art algorithms, the effectiveness and
advantages of M-ADDL are demonstrated.
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