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ABSTRACT Energymanagement system (EMS) is responsible for the optimal operation ofmicrogrids. EMS
adjusts its operational schedule for near future by using the available information. Market price signals are
generally used for the operation of microgrids, which are obtained by using estimation/ forecasting methods.
However, it is difficult to precisely predict the market prices due to the involvement of various complex
factors like weather, policy, demand, errors in forecasting methods, and fuel cost. Therefore, in this paper,
the uncertainties associated with the real-time market price signals (buying and selling) are realized via a
robust optimization method. In addition to market price signals, uncertainties associated with renewable
power sources and forecasted load values are also considered. Initially, a deterministic model is formulated
for an ac/dc hybrid microgrid. Then a min–max robust counterpart is formulated by considering the worst-
case uncertainties. Finally, an equivalent mixed integer problem is formulated by using linear duality and
other optimality conditions. The developed model can provide feasible solutions for all the scenarios if the
uncertainties fluctuate within the specified bounds. The effect of market price uncertainties on internal power
transfer and external power trading, operation cost, the state-of-charge of energy storage elements, and unit
commitment of dispatchable generators is analyzed. Taguchi’s orthogonal array (OA) method is used to
find the worst-case scenario within the specified uncertainty bounds. Then, Monte Carlo method is used to
generate various scenarios within the uncertainty bounds to evaluate the robustness of the selected scenario
via Taguchi’s OA method. Finally, a violation index is formulated to evaluate the robustness of the proposed
approach against the deterministic model. Simulations results have validated the robustness of the proposed
optimization strategy.

INDEX TERMS Forecasted price uncertainty, ac/dc hybrid microgrids, microgrid operation, optimal
operation, robust optimization, uncertainty modeling.

NOMENCLATURE
A. IDENTIFIERS AND BINARY VARIABLES
t Index of time, running from 1 to T .
g Index of dispatchable generators, running from

1 to G.
gac, gdc Identifiers for AC and DC side generators.
st,g Commitment identifier of dispatchable

generator g.
sut,g Start-up identifier of dispatchable generator g.
sdt,g Shutdown identifier of dispatchable

generator g.
ct,x , dt,x Charging/discharging identifiers for

x-side MG.
cDCt , dDCt Charging/discharging identifiers for EV.

B. VARIABLES AND CONSTANTS
C(PCDGt,g ) Generation cost of dispatchable unit g

(KRW/kWh).
PCDGt,g Amount of power generated by generator g

(kWh).
SUCCDG

t,g Start-up cost of dispatchable unit g (KRW).
SDCCDG

t,g Shutdown cost of dispatchable unit g
(KRW).

CBuy
t , CSell

t Power trading price with utility
grid (KRW/kWh).

PBuyt , PSellt Amount of power traded with utility grid
(kWh).

PLoadt,x Forecasted electric load of x-side microgrid
(kWh).
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PBECt,x , PBEDt,x Amount of electricity charged/discharged
to/from BESS of x-side MG (kWh).

PEVCt,DC , P
EVD
t,DC Amount of electrical energy charged/

discharged to/from EV (kWh).
PFACt , PTACt Amount of power received from AC side

MG and sent to AC side MG, respectively
(kWh).

PFDCt , PTDCt Amount of power received from DC side
MG and sent to DC side MG, respectively
(kWh).

PRDGt,x Output power of x-side renewable units
(kWh).

ILCcap, ηILC Capacity [kWh] and efficiency [%] of ILC.
BEcapx , EV cap

x Capacity of BESS and EV in
x-side MG [kWh].

SOCBE
x SOC of BEES in x side microgrid [%].

SOCEV
DC SOC of EV [%].

ηBECx , ηBEDx Charging/discharging loss of x side
BESS [%].

ηEVCDC , ηEVDDC Charging/discharging loss of
EV [%].

PEVCon, SOC
EV
Tar EV’s contribution [kWh] and target

SOC [%].
Buy
t , dBuyt Bounded buying price [KRW/kWh] and

associated uncertainty bound [kWh].
Sell
t , dSellt Bounded selling price [KRW/kWh] and

associated uncertainty bound [kWh].
Load
t,x , PRDGt,x Bounded load and renewable power [kWh].
1PLoadt,x Uncertainty bound for load [kWh].
1PRDGt,x Uncertainty bound for renewable power

[kWh].

P
Load
t,x , P

RDG
t,x Upper bound for load and renewable

[kWh].

d
Buy
t , d

Sell
t Upper bound for buying/selling price

[KRW/kWh].
PLoadt,x , PRDGt,x Lower bound for load and renewable

[kWh].

dBuyt , dSellt Lower bound for buying/selling price
[KRW/kWh].

ςt,b, λt,b Dual variables for buying price [KRW].
ςt,s, λt,s Dual variables for selling price [KRW].

π
Buy
t , πSellt Dual variables for buying and selling price

[KRW].
0b,t , 0s,t Budget of uncertainty for buying and

selling price.
0t , ςt Budget of uncertainty for load-renewable

pair and dual variable [kWh].

zLoadt,x , zLoadt,x Scaled deviations for load.
zRDGt,x , zRDGt,x Scaled deviations for renewables.

λl−t,x , λ
l+
t,x Dual variables for load [kWh].

λr−t,x , λ
r+
t,x Dual variables for renewables [kWh].

v Violation index for Monte Carlo
scenarios [%].

I. INTRODUCTION
Microgrids have the potential to sustain the penetration of
distributed energy sources and hence have the capability
to enhance the service reliability and reduce the operation
cost [1]. Microgrid operation faces new challenges due to
intermittent nature of renewable energy sources, increasing
demand, and weather-related events. A real-time market is
considered as one of the potential solutions to these prob-
lems, which is beneficial for both network operators and
the customers [2]. In such markets, the energy management
system (EMS) of a microgrid adjusts its operational schedule
for near future by using the available information. Generally,
forecasted market price signals are used for the operation
of microgrids, which are based on estimation/forecasting
methods. Several forecasting techniques are available in the
literature for forecasting of short time market prices [3]–[6].

In order to gain access to more recent data, instead of
using natural gas prices and electricity load historical data,
a regression model to forecast the evolution of natural gas
prices, and amodel based on artificial neural networks (ANN)
to forecast electricity loads, are used by [3]. The results of
these models are used as input for an electricity price fore-
cast model. The authors in [4] have developed a method for
forecasting the short time market price signals. The authors
have used local informative vector machine along with kernel
principal component analysis method to derive the forecast-
ing method. In [5], two methods are proposed to predict the
next-day electricity demand and daily price curves by using
the information of past curves. The process is based on robust
functional principal component analysis and nonparametric
models. The economic effect of forecast errors is conducted
by [6] and different industrial loads are examined.

As noted by [6], it is difficult to precisely predict the
market prices due to the involvement of various complex
factors like weather, policy, demand, and fuel cost. Therefore,
consideration of price uncertainty in the operation of micro-
grids is challenging. Recently, various studies have been con-
ducted for optimal operation and optimal bidding in the smart
grids considering price uncertainties [7]–[12]. The decision
making of generation companies under uncertain markets is
analyzed by [7] and an information gap decision theory-based
approach is developed. The developed scheme is capable of
providing a comprehensive decision insight under risk-averse
and risk-seeking behaviors. Optimal operation of demand
response and energy storage systems for minimization of
distribution losses are investigated in [8] under uncertain
electricity prices. Participation of microgrids in pool markets
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and operation of controllable loads with uncertain market
prices are considered in [9]. The uncertainties are realized
by using a two-stage stochastic method. A stochastic opti-
mization approach is used by [10] for analyzing the impact
of natural disasters on the operation of microgrids. In addi-
tion to market price uncertainties, uncertainties associated
with renewable energy sources and electric vehicles are also
considered by [10]. Effect of market price uncertainties on
the bidding of microgrids is analyzed by [11] and [12].
A robust optimization approach is suggested by [11] for
decision making of electricity retailers and optimal bidding
strategy is also proposed considering the demand response
programs. A hybrid stochastic/robust optimization approach
is used by [12] for minimizing net cost for optimal bidding of
microgrids considering uncertainties.

Various studies are available in the literature which
have considered the uncertainties associated with renewable
energy sources [13], [14], loads [15], [16], both renew-
ables and loads [17], [18], and demand response pro-
grams [19], [20]. The uncertainty modeling techniques used
by the researchers can be categorized as stochastic scenario-
based modeling [21], robust optimization methods [22], and
fuzzy modeling [23]. The merits and demerits of each mod-
eling technique can be found in [17] and [18]. Due to
the ability of the robust optimization method to provide
a guaranteed immunity against worst-case realization and
reduction in computational burden, it has gained popularity
among the researchers. Therefore, various forms of robust
optimization techniques are used by different researchers
for optimal operation of microgrids with given uncertainty
bounds [13], [17], [18].

Plenty of literature is available for operation of microgrids
while considering uncertainties associated with renewable
energy sources and/or forecasted loads, as mentioned in the
previous paragraph. However, studies considering market
price uncertainties are limited, as noted by [9]. The available
studies considering uncertainty in market price signals are
mostly concentrated on demand response programs and/or
bidding strategies. Studies considering the effect of market
price uncertainty on the operation of microgrids are lim-
ited. In addition, most of the studies have used stochastic
optimization techniques for realization of uncertainties asso-
ciated with market prices. The complexity of stochastic prob-
lems increases drastically with increase in the problem size
and they can only provide a probabilistic guarantee against
the feasibility of the solution. Therefore, mixed integer lin-
ear programming (MILP)-based optimization strategies are
required, which can be easily implemented by using commer-
cial optimization tools.

II. EXISTING LITERATURE AND CONTRIBUTIONS
As mentioned in the previous paragraphs, uncertainties in
loads and/or renewables are focused in the existing literature.
As noted by [9], studies considering market price uncertain-
ties are limited. Studies related to the impact of market price
uncertainties are also mainly focused on demand response

programs and/or bidding strategies. Therefore, the effect
of real-time market price uncertainties on the operation of
AC/DC hybridmicrogrids is analyzed in this paper. The effect
of market price uncertainties on the operation of dispatchable
generators, i.e. controllable distributed generators (CDGs),
battery energy storage system (BESS) units, internal power
transfer, and external power trading are analyzed.

In addition, most of the studies available in the literature
regarding market price uncertainties are based on stochastic
optimization techniques. In the case of robust optimiza-
tion, instead of accurate distribution functions, deterministic
uncertainty bounds are required. In addition, the final prob-
lem is tractable and can be implemented by using commer-
cial optimization tools. Therefore, uncertainties associated
with market price are realized by using robust optimization
method in this study. The validity of the proposed method
is evaluated by simulating three different cases. In the first
case, nominal values for selling price along with uncertain
buying price are considered. In the second case, nominal
values for buying price along with uncertain selling price
are considered. In the third case, uncertainty in both buy-
ing and selling prices is considered. Finally, the robust-
ness of the proposed method is evaluated using Taguchi’s
orthogonal array (OA) method to find the worst-case sce-
nario among various possible scenarios. Then, Monte Carlo
method is used to generate various scenarios within the
uncertainty bounds to evaluate the robustness of the selected
scenario.

The major contributions of this study in comparison with
the existing literature can be summarized as follows:
• In contrast to the existing literature, where uncertainties
associated with forecasted load values and output power
of renewables are focused, the uncertainties of market
price signals (buying and selling prices) are considered
for an AC/DC hybrid microgrid in this study.

• In the existing literature, the effect ofmarket price uncer-
tainties on demand response programs and/or bidding
strategies is focused while in this study; the effect of
market price uncertainties on the operation of CDGs,
BESS units, internal power transfer between AC & DC
sides, and external power trading with the utility grid are
analyzed.

• In contrast to the existing literature, where stochastic
optimization methods are used for realizing the uncer-
tainties of market price signals, the robust optimiza-
tion method is used to develop a mixed integer linear
programming formulation. In the case of robust opti-
mization, deterministic uncertainty bounds are required
and it can be easily implemented by using the available
commercial software.

• The robustness of the developed model is evaluated
by selecting a worst-case scenario via Taguchi’s OA
method among various possible scenarios. Finally, a vio-
lation index is formulated to evaluate the robustness
of the proposed approach against the deterministic
model.
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III. OPERATION OF AC/DC HYBRID MICROGRIDS
UNDER UNCERTAIN MARKET PRICES
EMS is responsible for the optimal operation of the resources
of a microgrid and it is also responsible for communication
with these components. Initially, due to the dominance of
conventional power system with AC form, AC microgrids
were developed [24]. Therefore, integration of renewable
distributed generators (RDGs) with the conventional AC sys-
tems was widely studied [25]. Recently, DC microgrids and
distribution systems are also taken into consideration due to
the widespread of DC sources and loads [26]. Therefore,
AC and DC microgrids were integrated to form AC/DC
hybrid microgrids in order to get benefit from both types of
microgrids. Due to above-mentioned merits, a AC/DC hybrid
microgrid is considered in this study.

FIGURE 1. A typical AC/DC hybrid microgrid.

A. SYSTEM CONFIGURATION
A typical AC/DC hybrid microgrid, which is considered in
this study also, is shown in Figure 1. The AC side micro-
grid contains CDGs, wind turbine, BESS, and AC loads.
Similarly, the DC side microgrid contains photovoltaic cell,
CDGs, BESS, electric vehicles (EVs), and DC loads. Utility
grid is connected to the AC side microgrid and AC & DC
microgrids are interlinked via an interlinking converter. Both
AC and DC side microgrids have BESS units to increase their
reliability even if there is any abnormal condition in the inter-
linking converter. The amount of power transferred between
AC and DC side microgrids and power traded by DC micro-
grid will be constrained by the capacity of the interlinking
converter.

EMS is primarily responsible for receiving information
from all the components of both AC and DC microgrids and
their operation. Market price signals are received from the
utility grid for the operation of the microgrid. The operation
horizon of EMS is taken as 24-hours (T) with a time step
of 1 hour (t). The operation horizon for an EV (τ ) is the time
between its arrival (ta) and departure (td).

FIGURE 2. (a) Stochastic modeling; (b) Fuzzy formulation;
(c) Deterministic modeling; (d) Robust optimization.

B. UNCERTAINTY MODELING
Several techniques are available in the literature for model-
ing uncertainties associated with microgrids. Broadly, these
techniques can be divided into three major categories,
i.e. stochastic scenario-based techniques (Figure 2a), fuzzy
modeling techniques (Figure 2b), and robust optimization
techniques (Figure 2d) [8]. In deterministic modeling tech-
niques (Figure 2c), uncertainties are not considered and
optimization is based on forecasted values. In stochastic
optimization, probability density functions of the uncertain
parameters are used and various scenarios are formulated.
In the case of fuzzy modeling, membership functions of
uncertain parameters are used to evaluate the degree of uncer-
tainty. Finally, in the case of robust optimization, upper and
lower bounds of uncertain parameters are used to provide a
feasible solution for the worst-case scenario. The pros and
cons of these techniques are summarized in [8] and [17] and
it is concluded that robust optimization is superior to other
uncertainty handling techniques.

C. PROPOSED METHOD
A modified robust optimization technique, as suggested
by [27], is used in this paper to realize the uncertainties
associated with market prices, loads, and renewables. The
step-by-step process of the proposed uncertainty handling
model is shown in Figure 3. The first step is to formulate
a deterministic model. Considering the worst-case scenario,
a robust counterpart is formulated in the second step. The
robust counterpart is usually a min-max problem. Therefore,
the inner max part is considered as a subproblem and its
dual is formulated in the third step. Finally, a robust tractable
problem is formulated using dual and the robust counterpart.

IV. PROBLEM FORMULATION
In this section, mathematical modeling of the proposed opti-
mization scheme is presented, in accordance with Figure 3.
The first step is to formulate a deterministic model, which is
explained in the following section. The control of microgrids
is divided into several levels due to the difference in time
scale and significance of each control level [28]. Optimal
operation of microgrids is considered as the uppermost level
of microgrid control. Each lower level of control is a prereq-
uisite for the upper-level control [17]. Therefore, constraints
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FIGURE 3. Uncertainty-modeling process in robust optimization.

related to the lower levels’ control are assumed to be sat-
isfied in each of the upper-level control. The proposed
approach is meant for optimal operation of microgrids, there-
fore, lower level controls like internal voltage and cur-
rent control of distributed generators, voltage and frequency
deviations compensation, and current levels, have not been
included(assumed to be fulfilled). The line losses in micro-
grids are negligible [29], therefore, lines losses are not
considered. However, the loss of interlinking converter is
incorporated in the optimization model.

A. DETERMINISTIC MODEL
1) OBJECTIVE FUNCTION
The cost function of the hybrid microgrid is the total
expenses occurred for the hybrid microgrid when external
trading of electricity is applied as given by (1). The first
term of the objective function contains the generation cost
(CCDG

gac (PCDGt,gac )), start-up cost (SUCCDG
t,gac ), and shut down cost

(SDCCDG
t,gac ) of AC side CDGs. The second term contains the

generation cost (CCDG
gdc (PCDGt,gdc )), start-up cost (SUC

CDG
t,gdc ), and

shut down cost (SDCCDG
t,gdc ) of DC side CDGs. The third and

fourth terms contain the profit gained by trading power with
the utility grid (CBuy

t .PBuyt − CSell
t .PSellt ). The total amount

of power trading between the hybrid microgrid and the utility
grid can be obtained by summing the power traded by individ-
ual AC and DC side microgrids. The amount of power traded
with the utility grid by the DC microgrid is

CMG
(
PCDGt,gac ,P

CDG
t,gdc ,P

Buy
t ,PSellt , st,gac , st,gdc

)
=

∑
t∈T

∑
gac∈Gac

(
CCDG
gac (PCDGt,gac )+ SUC

CDG
t,gac + SDC

CDG
t,gac

)
+

∑
t∈T

∑
gdc∈Gdc

(
CCDG
gdc (PCDGt,gdc )+ SUC

CDG
t,gdc + SDC

CDG
t,gdc

)
+

∑
t∈T

CBuy
t .PBuyt −

∑
t∈T

CSell
t .PSellt (1)

where,

PBuyt = PBuyt,AC +
PBuyt,DC

ηILC
, PSellt = PSellt,AC + η

ILC .PSellt,DC

constrained by the efficiency of the interlinking con-
verter (ηILC ). st,gac and st,gdc indicate the commitment status
of AC and DC side CDGs, respectively. The commitment
status of CDGs is used to compute the startup and shutdown
costs. Let PMGt =

{
PCDGt,gac ,P

CDG
t,gdc ,P

Buy
t ,PSellt , st,gac , st,gdc

}
be

the set of control variables for deciding the operation cost
of the hybrid microgrid by the deterministic model. Then,
the objective of the deterministic model is to minimize the
overall cost of the hybrid microgrid as follows:

PMG
∗

= argmin
{
CMG(PMG

∗

t )
}

2) LOAD BALANCING CONSTRAINTS
The AC side load should be balanced with the amount
of power generated by the AC side RDG, CDGs,
power charged/discharged to/from BESS, power transferred
between AC and DC side microgrids, and power traded with
the utility grid, as given by (2). Similarly, energy balancing
of DC side microgrid is given by equation (3). Power can be
sent from the AC side microgrid to the DC side microgrid and
vice versa in order to reduce the operation cost of the network
by sharing more economical components. This sharing of
power between the AC and the DC side microgrids is termed
as internal power transfer in this paper. The internal power
transfer can be modeled by using Equation (4). Interlink-
ing converter loss is considered for internal power transfer
between AC and DC side microgrids as given by (4). The
amount of power traded between DC side microgrid and the
utility grid is constrained by the capacity of the interlinking
converter as given by (5). It is the same case for power transfer
between AC and DC side microgrids, as depicted by (5).

PRDGt,AC +
∑

gac∈Gac

PCDGt,gac+P
BEC
t,AC − P

BED
t,AC + P

Tr
t,AC = PLoadt,AC

(2)

Where,

PTrt,AC = η
ILC .PFDCt − PTDCt + PBuyt,AC − P

Sell
t,AC

PRDGt,DC +
∑

gdc∈Gdc

PCDGt,gdc + P
BEC
t,DC − P

BED
t,DC + P

EVC
t,DC

−PEVDt,DC + P
Tr
t,DC = PLoadt,DC (3)

Where,

PTrt,DC = η
ILC .PFACt − PTACt +

PBuyt,DC

ηILC
− ηILC .PSellt,DC

PFDCt = ηILC .PTACt ,PFACt = ηILC .PTDCt (4)

PTDCt + PBuyt,DC ≤ ILCcap,PTACt + PSellt,DC ≤ ILC
cap (5)
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3) CONTROLLABLE GENERATOR CONSTRAINTS
The generation bounds for gth CDG unit are given by (6),
where g indicates the total number of CDGs in the hybrid
microgrid, i.e. g = gac + gdc. The binary variable st,g
shows the commitment status of CDG g at t . The value of
this binary variable is 1, if CDG is committed to operate
at time t , and 0 otherwise. The unit commitment status can
be used to determine the start-up and shut down time of gth

CDG by using (7). Equation (7) shows the relation between
the shutdown indicator (sdt,g) and start-up indicator (sut,g).
Equations (8) and (9) show the constraints for start-up and
shut down costs, respectively. Equation (10) shows that CDGs
cannot be started up and shut down simultaneously.

min[PCDGg ].st,g ≤ PCDGt,g ≤ max[PCDGg ].st,g; st,g ∈ {0, 1}

(6)

sut,g − sdt,g = st,g − st−1,g (7)

SUCCDG
t,g ≥ UCCDG

t,g .
(
st,g − st−1,g

)
; SUCCDG

t,g ≥ 0

(8)

SDCCDG
t,g ≥ DCCDG

t,g .
(
st−1,g − st,g

)
; SDCCDG

t,g ≥ 0

(9)

sut,g + sdt,g ≤ 1; sut,g, sdt,g ∈ {0, 1} (10)

4) BATTERY CONSTRAINTS
The constraints for power stored in the BESS of x side
microgrid are given by Equations (11) and (12), where ‘‘x’’
will be replaced with AC or DC for AC and DC side BESS.
Equations (13) and (14) show the charging and discharging
limits of x side BESS, respectively. Equation (15) shows
the constraints for initial and final steps of the simulation
period with SOC INIT

x as the initial SOC of x side BESS
unit. Equation (16) shows that simultaneous charging and
discharging of BESS is not allowed.

min[BEcapx ] ≤ SOCBE
x ≤ max[BEcapx ] (11)

SOCBE
t,x = SOCBE

t−1,x + P
BEC
t,x .ηBECx −

PBEDt,x

ηBEDx
(12)

0 ≤ PBECt,x ≤

(
max[BEcapx − SOCBE

t−1,x]
)

ηBECx
.ct,x

(13)
0 ≤ PBEDt,x ≤ η

BED
x .

(
SOCBE

t−1,x −min[BEcapt ]
)
.dt,x

(14)
SOCBE

t,x ≤ 0 if t = T; SOCBE
t−1,x = SOC INIT

x
if t = 1 (15)

ct,x + dt,x = 1; ct,x , dt,x ∈ {0, 1} ; 0 ≤ ηBEDx ,

ηBECx ≤ 1 (16)

5) ELECTRIC VEHICLE CONSTRAINTS
The constraints related to the charging, discharging, and SOC
computation of EVs are similar to those of BESS units,
as given by equations (17)-(20). However, EVs can only
be used between their time of arrival to time of departure,
as given by (21). The contribution of an EV during its period

of stay can be computed by using (23), wherem = 1 indicates
the vehicle-to-grid mode, m = −1 indicates grid-to-vehicle
mode, and m = 0 indicates the idle mode. The SOC of EV
needs to be above the target level before its departure time,
as depicted by equation (22). Similar to BESS, EVs can also
be in one of their operation modes (charging or discharging)
at a given time interval, as given by (24).

min[EV cap
DC ] ≤ SOCEV

DC ≤ max[EV cap
DC ] (17)

SOCEV
t,DC = SOCEV

t−1,DC + P
EVC
t,DC .η

EVD
DC −

PEVDt,DC

ηEVDDC

(18)

0 ≤ PEVCt,DC ≤

(
max[EV cap

DC − SOC
EV
t−1,DC ]

)
ηEVCDC

.cDCt ;

cDCt + d
DC
t = 1 (19)

0 ≤ PEVDt,DC ≤ η
EVD
DC

·

(
SOCEV

t−1,DC −min[EV cap
t ]

)
.dDCt (20)

SOCEV
t,DC = PEVCt,DC = PEVDt,DC = 0 (21)

SOCEV
td ,DC = SOCEV

ta,DC + P
EV
Con ≥ SOC

EV
Tar (22)

PEVCon =
∑

t∈[ta,td ]

(
PEVDt,DC − P

EVC
t,DC

)
.mt ;

mt ∈ {−1, 0, 1} (23)

cDCt + d
DC
t = 1, cDCt , dDCt ∈ {0, 1} ; 0 ≤ ηEVDDC ,

ηEVCDC ≤ 1 (24)

B. ROBUST COUNTERPART: MARKET PRICE
The uncertain parts in the objective function are buying
price (CBuyt ) and selling price (CSellt ). The uncertainty asso-
ciated with the buying part and the selling part can be treated
as two separate problems. The inner max problems inside
the objective function are identified and are treated as sub-
problems. Dual of these sub-problems is obtained to trans-
form the min-max problem into a tractable problem.

1) PRICE UNCERTAINTY MODELING
The objective function of the robust model needs to consider
the uncertainties associated with buying and selling price
signals. The electric power balance in the microgrid should
bemet when the worst-case of uncertainties occur. The uncer-
tainty associated with each entry of buying price CBuyt , t ∈ T
takes values in [CBuyt +d

Buy
t ], where dBuyt is the deviation from

the nominal price coefficient CBuyt [27]. The uncertain buying
price signal (Buyt ) at each time interval along with the bounds
of deviations is given by (25). Similarly, the uncertainty
associated with each entry of selling price CSellt , t ∈ T takes
values in [CSellt + d

Sell
t ], where dSellt is the deviation from the

nominal price coefficient CSellt . The uncertain selling price
signal (Sellt ) at each time interval along with the bounds of
deviations is given by (26). The constraints for upper and
lower bounds are given by (27), which can be computed by
using methods suggested by [30], [31]. The upper and lower
bounds can be obtained by taking a specified percentage of
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the nominal price values [11], [12], [18], i.e. ±20% of the
nominal values.

↔

C
Sell

t = CSellt + d
Sell
t (25)

where,

dSellt − CSellt ≤ dSellt ≤ d
Sell
t − CSellt

↔

C
Buy

t = CBuyt + d
Buy
t (26)

dBuyt − CBuyt ≤ dBuyt ≤ d
Buy
t − CBuyt

dBuyt , dSellt , d
Buy
t , d

Sell
t ≥ 0; dSellt , dBuyt free (27)

2) ROBUST COUNTERPART
The robust counterparts of both buying part and selling
part can be computed by using the method suggested
by [27]. The robust counterpart of buying part is given by
Equations (28), (29). Similarly, the robust counterpart of sell-
ing part is given by (30), (31). Both of the robust counterparts
are min-max problems, therefore, the inner sub-problemswill
be transformed to linearize the problems. 0b is the budget of
uncertainty parameter for buying price and 0s is the budget
of uncertainty parameter for selling price. The budget of
uncertainty can be used to control the conservatism of the
solution and to adjust the probability of infeasible solution.

min
{
CBuy,PBuy

}
+ max
{So|So⊆To,|So|≤0b}

∑
t∈So

dBuyt |P
Buy
t (28)

Subject toPBuymin ≤ PBuy ≤ PBuymax; Equations (2)-(5) (29)

min
{
CSell,PSell

}
+ max
{So|So⊆To,|So|≤0s}

∑
t∈So

dSellt |P
sell
t (30)

Subject to PSellmin ≤ PSell ≤ PSellmax; Equations (2)-(5) (31)

3) SUB-PROBLEM AND TRANSFORMATION
The innermaximization problem of buying part is taken as the
objective function with (29) and (2)-(5) as the constraints.

This type of problems have an equivalent mixed integer
problem (MIP) formulation as given by Equations (32)-(35).
The proof of this transformation can be found in [27]. In these
equations, ςt,b, λt,b, π

Buy
t are the dual variables, which are

introduced for transforming the inner sub-problem of buying
part into its dual.

min
{
CBuy.PBuy + ςt,b.0t,b +

∑
λt,b

}
(32)

Subject to ςt,b + λt,b ≥ d
Buy
t .π

Buy
t (33)

π
Buy
t ≥ 0; ςt,b ≥ 0 (34)

− π
Buy
t ≤ PBuyt ≤ π

Buy
t (35)

Similarly, the robust counterpart of selling part can also
be transformed into its equivalent MIP form as given by
Equations (36)-(39). These two transformed subproblems
can be inserted back to the original deterministic objective
function to form a tractable robust counterpart. In Equa-
tions (36)-(39), ςt,s, λt,s, πSellt are the dual variables for

transforming the inner sub-problem into its dual.

min
{
CSell .PSell + ςt,s.0t,s +

∑
λt,s

}
(36)

Subject to ςt,s + λt,s ≥ −dSellt .πSellt (37)

πSellt ≥ 0; ςt,s ≥ 0 (38)

− πSellt ≤ PSellt ≤ πSellt (39)

C. ROBUST COUNTERPART: RENEWABLES & LOAD
The load balancing equations of the deterministic
model, (2), (3), contain uncertain factor like output power
of renewables and forecasted load values. The uncertainty in
load can be modeled as (40), (41), where ‘‘x’’ represents the
AC or DC side of the microgrid. Similarly, the uncertainty in
the renewables can be modeled as (42), (43).

↔

P
Load

t = PLoadt,x +1PLoadt,x (40)

PLoadt,x − P
Load
t,x ≤ 1PLoadt,x ≤ P

Load
t,x − P

Load
t,x (41)

↔

P
RDG

t = PRDGt,x +1PRDGt,x (42)

PRDGt,x − P
RDG
t,x ≤ 1PRDGt,x ≤ P

RDG
t,x − P

RDG
t,x (43)

1) SUB-PROBLEM
The worst-case of uncertainty in the load balancing will
occur when the load takes the upper uncertainty bounds and
renewables take the lower uncertainty bounds. Therefore,
the following equation will be added to the load balancing
equation to cater the worst-case uncertainties.

max

(zLoadt,x .PLoadt,x + z
Load
t,x .P

Load
t,x

)
−

(
zRDGt,x .PRDGt,x + z

RDG
t,x .P

RDG
t,x

) (44)

Subject to PLoadt,x + P
Load
t,x + P

RDG
t,x + P

RDG
t,x ≤ 0t (45)

0 ≤ zLoadt,x , zLoadt,x , zRDGt,x , zRDGt,x ≤ 1 (46)

0t is the budget of uncertainty for the load-renewable pair.
It can be observed that Equation (44) is a new maximization
problem inside the cost minimization function. Therefore,
Equations (44)-(46) are considered as a sub-problem.

2) DUAL OF SUB-PROBLEM
Due to the presence of maximization sub-problem inside
the cost minimization function, the problem becomes a
min-max problem. Therefore, the dual of sub-problem
(Equations (44)-(46)) is computed as follows [17].

min
{
ςt .0t + λ

l+
t,x + λ

l−
t,x + λ

r+
t,x + λ

r−
t,x

}
(47)

Subject to ςt + λl+t,x ≥ P
Load
t,x ; ςt + λ

l−
t,x ≥ P

Load
t,x (48)

ςt + λ
r+
t,x ≥ P

RDG
t,x ; ςt + λ

r−
t,x ≥ P

RDG
t,x (49)

ςt , λ
l+
t,x , λ

l−
t,x , λ

r+
t,x , λ

r−
t,x ≥ 0 (50)

In the sub-dual, Equation (47) is the objective function of
the dual problem and Equations (48)-(50) are the constraints.
ςt , λ

l+
t,x , λ

l−
t,x , λ

r+
t,x , λ

r−
t,x are the dual variables used for trans-

forming the sub-problem into its dual.
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D. BUDGET OF UNCERTAINTY
In both of the transformed problems, a new variable named
as the budget of uncertainty (0b, 0s, 0) is added. This vari-
able is used to control the conservatism of the solution. The
relationship between the probability of a feasible solution and
budget of uncertainty is given by (51) [22], where8(θ ) is the
cumulative distribution function (CDF) of a standard normal
distribution function. However, this function is only valid
when 0i = θ

√
n. Therefore, a more general approximate

function is derived by [22], which is applicable for all cases,
as given by Equation (52). The conservatism of the solution
and the probability of an infeasible solution under the given
uncertainty bounds can be controlled by selecting a suitable
value of the budget of uncertainty. Equations (51) and (52)
show the relationship between the probability of an infeasi-
ble solution (B (n, 0i)) and the budget of uncertainty (0i).
By varying the values of 0i, the probability of infeasible
solutions can be evaluated.

lim
n→∞

B (n, 0i) = 1−8(θ ) (51)

Where,

8(θ ) =
1
√
2π

∫ θ

−∞

exp
(
−
y2

2

)
dy

B (n, 0i) ≈ 1−8(
0i − 1
√
n

) (52)

The budget of uncertainty has the following properties.
• It can take any value between 0 and T, where T is the
total number of time intervals.

• 0i = 0 indicates the nominal case (no uncertainty) and
0i = T is the worst-case realization (uncertainty in
all t).

• The higher the value of 0i the lesser is the probability of
the infeasible solution and vice versa.

For a single time interval t, 0t,i can take values between
0 and 1, i.e. 0t,i ∈ [0, 1], where 0t,i = 0 indicates that
uncertainty is not considered for that time interval (forecasted
value). 0t,i = 1 indicates that uncertainty has taken its worst
value at the given time interval t. Therefore, a tradeoff needs
to bemade by the decisionmakers by selecting an appropriate
value of 0i for a given system.

E. TRACTABLE ROBUST COUNTERPART
Finally, a robust tractable counterpart is obtained by replac-
ing the uncertain terms in the objective function by their
transformed robust counterparts as given by Equation (53).
It can be observed from equation (53) that, in addi-
tion to the control variables of the deterministic model
(PCDGt,g ,PBuyt ,PSellt , st,g), it also contains dual control vari-
ables (ςt,b, 0t,b, ςt,s, 0t,s, λt,b, λt,s). These dual variables are
used to cater the uncertainties associated with market buying

and selling prices.

CRMG
(
PCDGt,g ,PBuyt ,PSellt , st,g, ςt,b, 0t,b, ςt,s, 0t,s, λt,b, λt,s

)
=

∑
t∈T

∑
gac∈Gac

(
CCDG
gac (PCDGt,gac )+ SUC

CDG
t,gac + SDC

CDG
t,gac

)
+

∑
t∈T

∑
gdc∈Gdc

(
CCDG
gdc (PCDGt,gdc )+ SUC

CDG
t,gdc + SDC

CDG
t,gdc

)
+

∑
t∈T

(
CBuy
t .PBuyt + ςt,b.0t,b +

∑
λt,b

)
−

∑
t∈T

(
CSell
t .PSellt − ςt,s.0t,s −

∑
λt,s

)
(53)

Let

PRMGt = {PCDGt,g ,PBuyt ,PSellt , st,g, ςt,b, 0t,b, ςt,s
, 0t,s, λt,b, λt,s}

be the set of control variables for deciding the operation cost
of the hybrid microgrid by the robust model. The objective of
the robust model is to minimize the overall cost of the hybrid
microgrid as follows:

PRMG∗t = argmin
{
CRMG(PRMGt )

}
Similarly, the trackable robust counterpart of load balanc-

ing equations can be obtained as follows.

PRDGt,x +
∑
gx∈Gx

PCDGt,gx +P
BE
t,x + P

Tr
t,x + P

EV
t,DC

= PLoadt,x + ςt .0t + λ
l+
t,x + λ

l−
t,x + λ

r+
t,x + λ

r−
t,x

Where,

PBEt,x = PBECt,x − P
BED
t,x ,PEVt,DC = PEVCt,DC − P

EVD
t,DC (54)

The final trackable roust counterpart objective function is
constrained by the following constraints.
Equations (2)-(27), (33)-(35), (37)-(43), (48)-(50),

and (54).

F. ROBUSTNESS EVALUATION METHOD
The objective of this formulation is to make the system adapt
to various market price scenarios and less sensitive to random
deviations within the uncertainty bounds. If every variable
of buying and selling price were represented by the selected
levels, there would be many scenarios. It is computationally
expensive to test all the scenarios, especially for large sys-
tems [18]. Therefore, the Taguchi’s orthogonal array (OA)
testing method is introduced in the robust design theory
to select scenarios related to the uncertain variables [32].
Various methods for obtaining Taguchi’s OAs can be found
in [33] or can be obtained from [34]. A simple OA is shown
in (55), where the first entity (4) shows the number of sce-
narios, the second entity (3) shows the number of variables,
the third entity (2) shows the levels of each variable, and the
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fourth entity (2) shows the strength of the OA.

OA(4, 3, 2, 2) =


0 0 0
0 1 1
1 0 1
1 1 0

 (55)

The number of testing scenarios is drastically reduced by
Taguchi method, i.e. 23 scenarios are reduced to 4 in (55)
for each cycle. Based on the levels of the variables different
cycles could be produced by defining different rules. Accord-
ing to convex theory [35] and extreme solution theory [36],
the extreme solutions exist in the endpoints of a linear prob-
lem. Therefore, Taguchi method can be applied to robust
optimization by considering upper and lower bounds. In this
study also, a small number of scenarios have been selected
based on OA and corresponding rules. Finally, the worst-
case scenario is selected and is analyzed for the variations
of market price uncertainty.

By using the Taguchi method, the worst-case or most prob-
able worst-case scenario can be determined but all scenarios
cannot be tested. Therefore, Monte Carlo simulations are
used to check the robustness of the selected scenario. Similar
to [18], the robustness of the worst-case scenario is evaluated
by defining a violation index as given by (56), where N is the
total number of Monte Carlo simulations and N∗ is the num-
ber of scenarios violating the worst-case. A scenario violates
the worst-case if the operation cost of the given scenario is
greater than that of the worst-case scenario selected fromOA.
The worst-case for buying price occurs when it is close to
the upper bound and that of selling price occurs when it
is close to the lower bound. Therefore, the feasible region
for Monte Carlo scenarios of buying price is between the
forecasted values and the upper bounds. Similarly, the fea-
sible region for selling price is between the forecasted values
and the lower bounds. Finally, the feasibility of the robust
management can be acceptable if ν is within the acceptable
range, i.e. v ≤ v∗, where, v∗ is a predefined acceptable
criterion.

v =
N∗
N

100 (56)

V. NUMERICAL SIMULATIONS
The developed optimization scheme is applied to a AC/DC
hybrid microgrid, as shown in Figure 1. Generally, the oper-
ation of microgrids is carried out for one day [6], [8]–[12],
therefore, optimization in this study is also carried out for
an operation horizon of 24-h with a 1 hour time interval.
However, the time interval could be any uniform interval.
CPLEX 12.3 is used as an optimization tool by integrating it
with Java. The AC side microgrid contains two CDG units,
a BESS unit, a wind turbine, and AC loads. The DC side
microgrid contains two CDGs, a BESS unit, EVs, photo-
voltaic array, and DC loads. The voltage level of AC side
microgrid is taken as 0.3kV and that of DC side microgrid
as 0.7kV. The capacity of the interlinking converter is con-
sidered as 200kW with an efficiency of 97%.

TABLE 1. CDG parameters of the test system.

TABLE 2. BESS and EV parameters of the test system.

FIGURE 4. (a) Hourly renewable generation outputs; (b) Hourly electric
load of AC and DC microgrids.

FIGURE 5. Hourly feasible uncertainty bounds: (a) Buying price;
(b) Selling price.

A. INPUT DATA
The parameters related to CDGs are listed in Table 1 while the
parameters of energy storage systems are tabulated in Table 2.
The hourly output powers of renewable generators are shown
in Figure 4a and hourly load profiles of both AC and DC
microgrids are shown in Figure 4b. Figure 4 shows the worst-
case scenario values, nominal values can be obtained by using
the defined uncertainty bounds. The uncertainty bounds of
buying prices are shown in Figure 5a and those of selling
price are shown in Figure 5b. Where, buying price is the
price, which will be paid by the microgrid owner while buy-
ing power from the utility grid. Contrarily, the price, which
will be paid by the utility grid for buying power from the
microgrid is termed as selling price. Generally, the buying and
selling prices are different for microgrids [10], [11], [23]. The
uncertainty bound for load is taken as±10% for both AC and
DC side microgrids. The uncertainty bound for renewables
is taken as ±25% for both AC and DC side renewables. The
uncertainty bounds of market signals are taken as ±20% of
the nominal values in each time interval.

Theoretically, the market price signals can take any value
from −20% to +20% of the nominal values. However, the
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objective of the robust optimization is to provide immunity
against the worst-case realization. The worst-case occurs
when the buying price takes its upper bound and selling price
takes its lower bound. Therefore, buying price bound will
never take a negative value and selling price bound will never
take a positive value for a robust optimization formulation,
as shown in Figure 5. The arrival time of EVs is taken as 7am
with an SOC of 0.2 and departure at 7pm with a target SOC
of 0.8 for all the cases.

In order to visualize the impact of uncertainty of both
buying and selling prices, three cases are simulated in this
study. In the first case, uncertainty in only buying price is
considered while in the second case, uncertainty in only sell-
ing price is considered. In the third case, uncertainty in both
buying and selling prices are considered. Finally, operation
costs are compared against different values of 0t,b and 0t,s
for each case. The realization where 0t,b and/or 0t,s takes
their respective maximum values is termed as a worst-case
realization for that case.

B. UNCERTAINTY IN BUYING PRICE
In this section, four different cases are considered for eval-
uating the effect of uncertainty associated with the buying
price. Nominal values of selling price are considered for all
the cases in this section. In case a, nominal values of buying
price are considered, i.e. 0t,b = 0. In case b, buying price
uncertainty in the first 12 hours of the day is considered
(0t,b = 0.5, t ∈ [1, 12]). In case c, buying price uncertainty
in the last 12 hours of the day is considered (0t,b = 0.5,
t ∈ [13, 24]). Finally, in case d, buying price uncertainty
is considered in all time intervals of the day, i.e. 0t,b = 1.
Case a is the nominal case and case d is the worst-case for
this scenario.

FIGURE 6. (a) Internal power transfer; (b) External power trading;
(c) Power generation by CDGs.

It can be observed from Figure 6a that in nominal case,
a small amount of internal power transfer is carried out in
time intervals 20 and 22. In case b and case c, more power
transfer can be observed due to the elevated buying prices in
the respective uncertainty periods. In case d, internal power

transfer is highest among all the cases due to uncertainty
in all the time periods. In case b, external power trad-
ing and the generation amount of CDGs during time inter-
vals 14-24 is identical to that of the nominal case as shown
in Figure 6b and 6c. However, in the remaining 13 intervals
due to increase in the buying price, generation of CDGs is
increased to their fullest and buying from the utility grid is
reduced. Similarly, in case c, external power trading and the
generation amount of CDGs during time intervals 1-12 is
identical to that of the nominal case. However, during time
intervals 13-24, generation of CDGs is increased to their
fullest and buying from the utility grid is reduced. Finally,
in case d, generation of CDGs is increased to their fullest
during the entire day. Buying from the utility grid is reduced
and a small amount of power is bought when local CDGs
cannot suffice the entire load demand.

FIGURE 7. SOC of storage elements: (a) BESS units; (b) EVs.

It can be observed from Figure 7b that in all the cases,
SOC of EVs is set to the target value (80%) before the
departure time. The BESS charging pattern of case c is similar
to that of the nominal case as shown in Figure 7a. In all the
cases, BESS units are charged in the initial off-peak time
intervals. BESS units are either used to avoid buying from
the utility grid during the peak-price intervals or are used to
sell power to the utility grid during higher price intervals to
gain profit.

C. UNCERTAINTY IN SELLING PRICE
In this section, nominal values of market buying price along
with uncertain selling price are considered. Similar to the
previous section, case a is the nominal case, i.e. 0t,s = 0.
In case b, uncertainty is considered in the first 12 hours of
the operation horizon (0t,s = 0.5, t ∈ [1, 12]). In case c,
uncertainty is considered in the last 12 hours of the operation
horizon (0t,s = 0.5, t ∈ [13, 24]). In case d, selling price
uncertainty is considered during the entire day, 0t,s = 1.

The amount of internal transfer in case b and case c is
identical to that of the nominal case. However, in case d,
due to reduced selling prices throughout the day, the internal
transfer is increased, as shown in Figure 8a. In case a, CDGs
are set to their maximum generation level and electricity is
sold to the utility grid during higher selling price intervals
to increase the profit. In case b, due to lower selling prices
in the first 12 intervals, electricity is not sold to the utility
grid during these intervals, as shown in Figure 8b. However,
in the remaining intervals electricity is sold to the utility
grid. In case c, generation to CDGs is reduced during time
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FIGURE 8. (a) Internal power transfer; (b) External power trading;
(c) Power generation by CDGs.

FIGURE 9. SOC of storage elements: (a) BESS units; (b) EVs.

intervals 13-17 to avoid selling, due to lower selling prices.
In case d, due to lower selling prices throughout the day,
selling is reduced to zero, as shown in Figure 8b. Similar
to case c, generation of CDGs is equalized to the local load
demand during time intervals 13-17. Case a is the nominal
case and case d is the worst case for this scenario.

In all the cases, BESS units are charged during the
off-peak time intervals. BESS units are discharged in the
peak price intervals to reduce operation cost of the microgrid.
BESS units are discharged and electricity is either sold to the
utility grid or is used to suffice the local loads. Similar to the
previous case, SOC of EVs is set to the target value (80%)
before the departure time.

D. UNCERTAINTY IN BOTH BUYING & SELLING PRICE
In this section, uncertainty in both buying and selling prices
is considered and four cases are simulated. Case a is the
nominal case (0t,s = 0t,b = 0) and case d is the worst-case
(0t,s = 0t,b = 1). In case b, uncertainty in buying and selling
prices is considered during the first 12 intervals, i.e. 0t,s =
0t,b = 0.5, t ∈ [1, 12]. In case c, uncertainty in buying and
selling prices is considered during the last 12 intervals, i.e.
0t,s = 0t,b = 0.5, t ∈ [1, 12].
In nominal case, internal power transfer between

AC and DCmicrogrids is very low due to their ability to trade
with the utility grid for increasing the profit. In case b and
case c, electricity transfer can be observed during more time
intervals. In case d, electricity transfer takes places during
8 time intervals, which is highest in all the cases as shown

FIGURE 10. (a) Internal power transfer; (b) External power trading;
(c) Power generation by CDGs.

in Figure 10a. In case b, the generation amount of CDGs is
increased during first 12 intervals to avoid external trading as
shown in Figure 10b and 10c. During these intervals, buying
price has taken upper bounds and selling price has taken lower
bounds. Therefore, trading with the utility grid during these
intervals is not economical in case b. Similarly, in case c,
generation of CDGs is increased during last 12 hours and
external trading is reduced. Similar to case b, during the last
12 intervals trading with the utility grid is not economical in
case c. Finally, in case d, generation of CDGs is increased dur-
ing the entire day and trading with the utility grid is reduced.
In case d, buying price has taken the upper uncertainty bound
and selling price has taken the lower uncertainty bound during
the entire day. Therefore, trading with the utility grid is not
economical.

FIGURE 11. SOC of storage elements: (a) BESS units; (b) EVs.

Similar to the previous two cases, BESS units are charged
during the off-peak intervals as shown in Figure 11a. BESS
units are discharged and electricity is either sold to the utility
grid or is used to fulfill the local load demand. It can be
observed from Figure 11b that SOC of EVs is set to the
specified target value (80%) before the departure time.

E. BUDGET OF UNCERTAINTY & OPERATION COST
The relationship between the budget of uncertainty for buying
(0t,b) and selling (0t,s) prices and operation cost is tabulated
in Table 3. Table 3 shows that the rise in operation cost in
case of uncertainty in buying price is higher than that of the
corresponding selling price. A limited amount of power has
been sold to the utility grid in the nominal case; therefore,
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TABLE 3. Relationship between budget of uncertainty & operation cost.

the effect of uncertainty in selling price is not prominent.
Finally, the rise in operation cost is highest when both buying
and selling prices are uncertain due to the avoidance of trad-
ing with the utility grid. The operation cost of the simulated
hybrid microgrid will remain within the bounds of operation
cost created by the nominal case (0t,b = 0t,s = 0) and
the worst-case (0t,b = 0t,s = 1) scenarios, i.e. between
0.8845 million KRW and 0.9093 million KRW. This condi-
tion is valid, if the uncertainty bounds for buying and selling
prices remain same. Other than nominal and worst-case sce-
narios (first and last row of Table 3), 8 other scenarios have
been considered and simulated in this study. Table 3 shows
that the operation costs of all the other 8 scenarios (2nd to the
9th row of Table 3) are within the upper and lower operation
cost bound created by nominal and worst case scenarios.

FIGURE 12. Taguchi’s OA(96, 48, 2, 3) entries.

VI. ROBUSTNESS EVALUATION
The number of scenarios could be significantly high
depending on the number of uncertain variables and their
corresponding levels. It is not possible to test all the possi-
ble scenarios. In the simulated case, there are 24 uncertain
variables for buying price and 24 for selling price. Therefore,
there are total 48 uncertain variables in this study and two
levels (0 and 1) are defined for each level. There would be
a total of 248 ways to generate uncertain variables, which is
computationally expensive. Therefore, OA (96, 48, 2, 3) has
been selected to test only limited scenarios. The OA has been
taken from the online library [34] and each cycle contains
only 96 scenarios, as shown in Figure 12. In Figure 12, dots
represent a 1 and empty spaces represent a 0. Four different

cycles are used to find the worst-case scenario from the
selected OA. In cycle 1, buying price takes upper bounds and
selling price takes lower bound if the value of the correspond-
ing entity is 1 and take nominal values for 0. In cycle 2, 1 cor-
responds to upper bound for buying price and 0 corresponds
to lower bound for selling price. In cycle 3, 1 corresponds
to lower bound for selling price and 0 corresponds to upper
bound for buying price. Finally, in cycle 4 buying price takes
upper bounds and selling price takes lower bound if the value
of the corresponding entity is 0 and take nominal values for 1.
The operation cost for all the 96 scenarios in each cycle is
shown in Figure 13. It can be observed from Figure 13 that
the worst-case scenario occurred for cycle 2 and cycle 3 with
an identical operation cost of 904212.2KRW, as highlighted.

FIGURE 13. Operation cost of Taguchi’s under different cycles.

FIGURE 14. Ten thousand Monte Carlo scenarios: (a) Buying price;
(b) Selling price.

FIGURE 15. Operation cost of 10 Thousand Monte Carlo scenarios.

Monte Carlo simulations are used to generate 10000 sce-
narios for both buying and selling price signals. Asmentioned
in Section 4.1, the region between nominal values and upper
bounds is used for buying price scenario generation. Simi-
larly, the region between nominal values and lower bounds
is used for generating selling price signal scenarios. The
Monte Carlo-based scenarios for buying and selling prices
are shown in Figure 14. The operation cost for all the ten
thousand scenarios is shown in Figure 15. It can be observed
from Figure 15 that the maximum value of the operation
cost is for scenario number 1423, which is 899123.1KRW.
The value of daily operation cost obtained in the worst-case
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scenario of OAwould remain biggest in most of the scenarios
produced within the uncertainty bounds of buying and selling
prices. The maximum value among all the scenarios is lesser
than that of the OA’s worst-case scenario, i.e. ν = 0. This
indicates that the selected testing scenario based onOA is rep-
resentative and works well for robust worst-case selection in
the uncertain environment. On the other hand, the minimum
value of operation cost occurred at scenario number 3250,
which is 891552.1KRW. Even this minimum value is also
greater than the operation cost of the nominal case, which
is 884485.6KRW. The value of ν for the forecasted case is
100%, i.e. no robustness. The average cost deviation of all the
scenarios from the selected worst-case scenarios comes out to
be 4659.2KRW, which was 9978.2KRW for the deterministic
case. This shows the reduction of fluctuations in operation
cost by 53.31% for the proposed robust method.

VII. CONCLUSION
In order to access the effect of market price uncertainties
on the operation of hybrid microgrids, a robust optimization
method is utilized for optimal operation of hybrid micro-
grids. In contrast to the existing literature, where stochas-
tic scenario-based optimization techniques are used for the
realization of market price uncertainties, a worst-case sce-
nario based optimization technique is utilized in this paper.
Accurate information regarding the probability density of
the uncertain parameter is not required and only a deter-
ministic set of bounds are required. In addition, the com-
putational complexity and tractability of the problem are
assured, even for large systems. The developed mixed inte-
ger linear programming-based model can assure immunity
against the worst-case scenario if the uncertainty is within
the specified bounds. The determined unit commitment status
of CDGs and BESS units remains valid even if the buying
and/or selling prices fluctuate within the determined bounds
of uncertainties. There is an inverse relationship between
the operation cost and the probability of infeasible solution.
Therefore, a trade-off needs to be decided by the decision
makers by selecting an appropriate value for the budget of
uncertainty variable. Simulation results show that the effect of
uncertainty in buying price on operation cost of the microgrid
is more prominent as compared to the corresponding selling
price uncertainty. The rise in operation cost is highest when
both buying and selling prices are uncertain. The worst-case
scenario selected by the Taguchi’s OA method and its robust-
ness has been demonstrated by the Monte Carlo simulations.
The average cost fluctuations are reduced by 53.31% by the
proposed method.
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