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ABSTRACT Accurately predicting future service traffic would be of great help for load balancing and
resource allocation, which plays a key role in guaranteeing the quality of service (QoS) in cloud computing.
With the rapid development of data center, the large-scale network traffic prediction requires more suitable
methods to deal with the complex properties (e.g., high-dimension, long-range dependence, non-linearity,
and so on). However, due to the limitations of traditional methods (e.g., strong theoretical assumptions and
simple implementation), few research works could predict the large-scale network traffic efficiently and
accurately. More importantly, most of the studies took only the temporal features but without the services’
communications into consideration, which may weaken the QoS of applications in the data center. To this
end, we applied the gated recurrent unit (GRU) model and the interactive temporal recurrent convolution
network (ITRCN) to single-service traffic prediction and interactive network traffic prediction, respectively.
Especially, ITRCN takes the communications between services as a whole and directly predicts the
interactive traffic in large-scale network. Within the ITRCN model, the convolution neural network (CNN)
part learns network traffic as images to capture the network-wide services’ correlations, and the GRU part
learns the temporal features to help the interactive network traffic prediction. We conducted comprehensive
experiments based on the Yahoo! data sets, and the results show that the proposed novel method outperforms
the conventional GRU and CNN method by an improvement of 14.3% and 13.0% in root mean square error,
respectively.

INDEX TERMS Network traffic prediction, interactive traffic representation, interactive temporal recurrent
convolution network, gated recurrent unit, convolution neural network.

I. INTRODUCTION
As cloud computing continues to grow in size and complexity,
many different services (e.g., Email, Video, etc.) compete
for the shared network and thus suffer the significant unpre-
dictability of performance. Service traffic prediction is an
essential need to make better route choices and resource
allocation, which results in the performance guarantee and
the QoS (Quality of Service) improvement.

More importantly, rather than predicting the single service
traffic (temporal), understanding the communication pattern
of the entire service space can capture real traffic interaction
behaviors among different services (interactive), which may
help guide resource managers use more efficient load balanc-
ing strategies, and therefore make better use of computing
resources.

However, for a network with thousands of servers, cap-
turing the temporal and interactive traffic features of any
service is very difficult. Specifically, from the perspective
of temporal analysis, a strong correlation usually exists
among traffic series, where previous traffic conditions likely
have a large impact on future service traffic, which is
called Long Range Dependency (LRD) in traffic predic-
tion [1]–[3]. Meanwhile, from the perspective of interac-
tive analysis, some network services often communicate
with each other, while others seldom send messages to
peers.

In brief, the large-scale traffic prediction needs more rep-
resentational capabilities for prediction models, such as the
capability to extract the LRD in network traffic sequences,
the capability to deal with the huge amount high-dimensional
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data, and the capability to deal with high-computational situ-
ation of the non-linear data.

Unfortunately, traditional network traffic prediction meth-
ods cannot provide those capabilities due to their strong
theoretical assumptions, simple implementation, etc. They
cannot adapt to the changing traffic data and once the data do
not meet the assumptions, the prediction accuracy could be
very poor [4], [5]. Thus, traffic prediction methods have been
gradually shifting from traditional statistical models to Com-
putational Intelligence (CI) approaches due to their strong
representational capability of dealing with non-linearity of
input data. Although CI approaches exhibit a superior capa-
bility of modeling non-linear time series problem in an effec-
tive fashion, we still have several issues to be addressed
before use the CI approach, such as the difficulties in dealing
with high-dimensional data and LRD property.

To fill this gap, we construct a novel end-to-end model
called Interactive Temporal Recurrent Convolution Net-
work (ITRCN), which is an image-based approach config-
ured mainly by deep learning architectures of Convolution
Neural Networks (CNNs) and Gated Recurrent Units (GRUs)
Neural Network. Inspired by the motion prediction in the
domain of computer vision [6], we represent the service
traffic as images, and take network-wide communications
between different services as an entirety to predict the future
traffic directly. Within the ITRCN model, CNNs are utilized
to mine the interactive features among all service pairs in
the entire network that adopts layers with convolution filters
to extract local features through sliding windows, whereas
GRUs are employed to capture the temporal features of ser-
vice traffic sequences.

To implement this method, we are faced with two major
challenges. The first challenge is the transformation from
network-wide traffic matrices to a collection of images. Since
the network traffic of communications between each pair
of services can be formulated as traffic matrices, it can be
further converted into one-channel images. The more salient
imaged features will be more easily to be captured by the
prediction model, resulting in higher prediction accuracy [7].
To construct salient imaged features, we calculate the pair
correlation of each service and put the strong correlation ser-
vices pair on the neighborhood area of traffic matrix, finally
transform matrices into one-channel images.

The second challenge is how to build a model that can
extract both the temporal and interactive features from the
sequence of images. ITRCNs combine CNNs and GRUs
to solve the interactive network traffic prediction problem.
The ITRCN model converts the network traffic between dif-
ferent services into images, and employs the CNN part to
extract global interactive features. Then, these output vectors
are put into the GRU part to learn the temporal features.
Consequently, the ITRCN model can make an effective pre-
diction of the complicated interactions among all services
traffic.

The contributions of this paper can be summarized as
follows:

(a) So far, to our best of knowledge, this is the first work
that employs the image-based method to network traffic pre-
diction in large-scale data centers. It is different from existing
deep learning methods in the network prediction that only
take the time series data as model inputs, but ignore the
correlation between different traffic sequences.

(b) We construct a novel end-to-end model, namely
ITRCN, which combines CNNs and GRUs deep learning
approaches. The temporal evolutions and interactive correla-
tions are both considered in this hybrid model. More specifi-
cally, we use the entire transformed image as the input and can
directly estimate the future demands in large-scale network.

(c) We conduct a comprehensive experiment on real-world
network traffic traces of Yahoo! data centers. For the non-
interactive network traffic, GRU made higher accuracy in
most services than other prevailing methods. For the inter-
active network traffic, the result showed that our model out-
performs the CNN and GRU method by 14.3% and 13.0% in
RMSE respectively.

The rest of the paper is organized as follows. Section II
gives an overview of the related work. Section III models
the problem and describes how to convert network matrices
into images. The model is shown in Section IV and the data
description as well as extended data analysis are shown in
Section V. In Section VI, we present the experiment results
and comparisons. Finally, we conclude this paper and outline
future works in Section VII.

II. RELATED WORK
Many works indicated that the network traffic always carry
the properties of LRD and self-correlation [2], [8], [9]. Unlike
these two properties exhibiting in all the trace, non-linearity
is also an important feature to most of network traffic in the
complex network environment nowadays [10]. These char-
acteristics make it difficult to achieve an accurate prediction
for network traffic, which has attracted numerous attentions
from researchers for a long time, and many works of them
were presented.

Traditional network prediction methods, such as the Auto
Regressive (AR) [11], the Auto Regressive Moving Average
(ARMA) [12] and the Auto Regressive Integrated Moving
Average (ARIMA) [12] are most common models applied
to network traffic prediction problems, of which models can
capture inherent correlations and the short range dependence,
via the moving average and the autoregression respectively.
KuanHoong et al. [13] applied the ARMA model to the
prediction of six days real data from bit torrent application
point to point network. Sadek and Khotanzad [14] predicted
the high speed network traffic of different applications by the
K-factor ARMA model. Yu et al. [15] applied the ARIMA
model to predict the mobile network data from Heilongjiang
province in China. Due to the difficulty of extracting LRD
features, these models cannot achieve a high accuracy in pre-
diction. Therefore, the Fractional ARIMA (FARIMA)model,
which has the ability to capture such dependence, is intro-
duced in many works, such as the Wireless network traffic
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and video network traffic prediction [16], [17]. However, all
the methods listed above are based on the oversimplified
theoretical assumption (e.g., linearity) with the simple imple-
mentation, and therefore cannot capture features of non-linear
traffic data effectively in large-scale networks.

Hence, some researchers gradually shifted their attentions
to the models which are more flexible and suitable for the
complex non-linear data. Support Vector Machine (SVM) is
one of the most popular prediction models. Bermolen and
Rossi [18] explored the use of the SVMmodel in network link
load forecasts. The results showed that SVM model exhibits
good robustness and flexibility in network prediction, but
consumes long time and large computer memory when deal-
ing with the big data, thus it might not suitable for the large-
scale network. Neural Network model is another widely used
model in the network traffic prediction because of its advan-
tages of the generalization capability, the strong forecasting
capability, the ability of processing the high dimensional
and big amount data. Cortez et al. [19] used the ANN to
forecast the amount of traffic in the TCP/IP based network.
Katris and Daskalaki [20] also applied the ANN to predict
9 different network traffic datasets. Due to the simplicity,
the ANN achieved lower accuracy than deep learning meth-
ods, thusmany researchers appliedmore advanced and deeper
models. Park [5] employed the BiLinear Recurrent Neu-
ral Network (BLRNN) to the real-world Ethernet network
traffic data set, and the experimental result showed a high
accuracy. Although deep learning models present complex
architectures and achieve better results than other prevailing
methods, they only focus on the temporal correlation pre-
diction of independent network traffic flows, ignoring the
interactive correlations or communications between different
flows, and still hard to deal with the co-existence of LRD and
non-linearity.

With the development of Internet, the prediction on the
certain network traffic or simple links is unable to pro-
vide enough useful information for the network manage-
ment. While the network traffic matrix prediction is able
to solve this problem because traffic matrices reflect the
values of traffic flows between different sources and desti-
nations in networks, which can provide rich information and
global view of how the traffic flow transmit in the networks.
Vardi [21] firstly proposed tomography methods to traf-
fic matrix predictions, which modeled each traffic flow as
the independent and identically-distributed Poisson model
and applied the EM algorithm to solve this problem.
Soule et al. [22] proposed a linear dynamic system, which
applied the Kalman filter to predict the traffic matrices in net-
works, and evaluated by the real network data fromTier-1 ISP.
Unfortunately, due to the the complex statistical inference
process in the prediction, these models are unable to deal with
the big data in large-scale networks. In order to overcome
the complicated computation, the Long Short-Term Mem-
ory (LSTM) structure was introduced to the traffic matrices
prediction where Azzouni and Pujolle proposed a LSTM
end-to-end method [4], which outperformed the traditional

predictionmethods and achieved a higher accuracy. However,
due to the aforementioned complex properties of the network
traffic and limited methods on matrix predictions, the previ-
ous researches still cannot comprehensively capture temporal
correlations and interactive correlations at the same time.

III. PROBLEM FORMULATION
A. PROBLEM DESCRIPTION
We assume there are multiple data centers, each of which
connects to several other Internet service providers (ISPs)
to reach its clients through border routers. These data cen-
ters can provide clients multiple services, including Email,
Messenger, News, Music, Video, etc. Different services are
distributed across different data centers and can be identified
by the ports of transport layer. The network traffic volumes
of each service always change over time (temporal), and
different types of services are also likely to interact with each
other (interactive) [23].

For temporal features, the traffic of each service is viewed
as one-dimensional time series. Suppose that the history traf-
fic is x = (xt , xt−1, xt−2, . . . , xt−n), where n is the time lag
before current time t . To predict the next moment traffic xt+1,
a natural way is to find a map function f between the history
traffic and future traffic,

xt+1 = f (xt , xt−1, xt−2, . . . , xt−n) (1)

Due to the complicated characteristics of the network traf-
fic, we choose the GRU model, which is one of the most
powerful deep learning model for the time series predic-
tion, to solve self-correlation, LRD and non-linearity in this
paper. [24].

For interactive features, services are likely to communicate
with others. And these traffic of communications are strongly
correlated [23]. Moreover, within the data center, different
ports are corresponding to different services. Thus the con-
gestion, caused by the service communication, in one port
not only affects its own service but also may propagate to
other far-side ports’ services. To capture the communication
of each service (port) pair, we use the interactive trafficmatrix
to represent the exchanged traffic from the resource port
(indexed by the rows) to the destination port (indexed by
the columns). The matrix at a certain time is mathematically
denoted as:

M (t) =


m11 m12 · · · m1n
m21 m22 · · · m2n
...

...
. . .

...

mn1 mn2 · · · mnn

 (2)

where n is the number of ports served for the services.
Motivated by the video prediction and motion prediction
in the computer vision [6], we model the interactive traffic
matrix of each time interval as the image of each frame in the
video ormotion, and then use it as the input of CNNmodel for
prediction [25]. Details about how to transform the interactive
traffic matrices into images is discussed in the next section.
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FIGURE 1. Traffic-image conversion. Interactive traffic between services could be formulated as traffic matrix (shown in the
subfigure b). Traffic matrix can be visualized into images and further scaled to [0,1] (shown in the subfigure c), where
non-interactive traffic is set to white.

FIGURE 2. The typical architecture of CNN with convolution layers, pooling layers and full-connected layer.

B. CONVERTING TRAFFIC MATRICES TO IMAGES
The interactive traffic matrices can be converted into the
one-channel images, which are valued by the network traffic
data of different services. Fig. 1 illustrates the converting
process between the raw service traffic, the traffic matrix and
the final image. Firstly, the raw network traffic of different
services is transformed into the interactive traffic matrices,
each of whose element represents the traffic value exchanged
between certain services. Secondly, the values of the matrices
are normalized and scaled to (0, 1). Finally, we serve matrices
as images, where the color of non-interactive traffic is set to
white and the highest value is set to the black color (as shown
in Fig. 1c).

Distinct features and strong spatial correlations can be seen
equally as the simple features in the images, which could be
easily and accurately extracted by the shallow layers of the
CNNs [26]. In order to enhance the model’s performance in
feature extracting, it is necessary to calculate the correlation
coefficient between the network traffic of different services’
port pairs in advance, and put the strong correlated services’
port pairs in the neighborhood area of the traffic matrix
to construct the salient features [27]. More details will be
discussed in the experiment.

IV. METHODOLOGY
Our novel ITRCN model is configured mainly by deep learn-
ing architectures of CNN and GRU, which converts the

FIGURE 3. An illustration of interactive traffic features captured by CNN
model.

network traffic matrices of each time interval into the col-
lection of one-channel images, and takes the global network
traffic as an entirety to extract the temporal and interactive
correlations simultaneously.

A. CNN FOR CAPTURING INTERACTIVE FEATURES
Though services in data center can be categorized into dif-
ferent groups, some of them are strongly correlated due to
communication behaviors. To capture the interactive features
among services, we construct CNNs to extract features of
traffic images. Fig. 2 shows the structure of CNNs with four
parts and three kinds of layers. The four parts are Input,
Feature extraction, Prediction, and Output part.

Fig. 3 shows the process of extracting image features in
network traffic images. The CNN model first learns the local
salient correlations as the lower features, and abstracts these
features together to the higher level (as shown in subfigures a
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and b). With the number of model layers increases, the global
correlations will be extracted and higher features can be
learned (as shown in subfigures c and d).

The core part of the CNN model is the feature extracting
layer combining convolution and pooling layers. Convolution
layer has many convolution filters, all of which can extract
and group the lower features into higher and more abstract
network traffic features. The process can be described as:

okl = σ (
c(l−1)∑
j=1

(W jk
l o

j
(l−1) + b

k
l )) (3)

where the input, output, weights and additive bias of the
l th convolution layer are denoted as ojl−1, o

k
l , W

kj
l and bkl

respectively, and j, k are the indices of the convolutional
filters, cl−1 is the number of convolutional filters in (l − 1)th

feature extracting layer, and σ is the activation function.
Pooling layers are used to downsample and aggregate the

data in the neighborhood region, so as to reduce the scale of
the network structure and extract the most salient features.
The function can be written as:

Okl = σ (β
k
l down(o

k
(l−1))+ b

k
l ) (4)

where β is the multiplicative bias. down(·) represents the
downsampling function. We use the Max Pooling operation
as the downsampling function, which defines a spatial neigh-
borhood (2x2 in this paper) that slides on the feature mapwith
stride 2, and take the largest element from each neighborhood
region. Fig. 4 shows an example of Max Pooling operation on
a feature map.

FIGURE 4. An illustration of Max Pooling operation.

Finally the features extracted by the pooling layers and
convolution layers are transformed into one dimension vec-
tors by the fully-connected layer, and taken as the input of
GRUs. These features captured by CNNs are significant for
prediction on interactive pattern.

B. GRU FOR CAPTURING TEMPORAL DEPENDENCY
Services in data centers have distinct temporal dependencies,
and the earlier traffic even have a long-term impact on the
current traffic. In fact, effectively extracting temporal features
is the key to improve the prediction accuracy. One of the most

successful methods for capturing temporal dependency is the
GRU [24].

FIGURE 5. The typical architecture of GRU with two gates: reset gate and
update gate.

The GRU is a special type of the RNN, where recur-
rent units can adaptively capture the dependencies of dif-
ferent time scales. Compared with the traditional RNN,
the GRU avoids vanishing and exploding gradients prob-
lems, which also has been shown to be more effective than
LSTM [28], [29]. Fig. 5 shows the structure of the GRU
with two gating units, namely, the update gate zt and the
reset gate rt . These gating units are used to modulate flows
of information inside the units. The steps of the GRU are
formulated as:

rt = σ (Wrxt + Urht−1 + br )

zt = σ (Wzxt + Uzht−1 + bz)

h̃t = g(Whxt + Uh(rt � ht − 1)+ bh)

ht = (1− zt )ht−1 + zt h̃t (5)

where rt , zt , h̃t and ht are the state of reset gate, the state
of update gate, updating activation, and hidding activation at
time interval t respectively,W ,U and b denote the weights of
input, the weights of hidden units and the bias respectively,
� represents the element-wise multiplication, σ represents
the Sigmoid function [30], and g represents the Rectified
Linear Units (ReLu) function [31], [32].

C. ITRCN MODEL FOR INTERACTIVE NETWORK
TRAFFIC PREDICTION
In this work, we present a hybrid network model
named Interactive Temporal Recurrent Convolutional Net-
works (ITRCN), which has strong capability of extracting
features on interactive and temporal patterns of the network
traffic.

As shown in Fig. 6, features are passed in the order of the
CNN layers, the fully-connected layer, and the GRU layers in
the model. During the training process, the CNNs capture the
interactive features, which are stacked by two CNN feature
extracting layers.

The output of the CNNs can be obtained from the
last extracting layer, and concatenated into a dense vector.

5280 VOLUME 6, 2018



X. Cao et al.: ITRCN for Traffic Prediction in Data Centers

FIGURE 6. The framework of the proposed ITRCN model.

These processes can be written as follows:

OkL = pool(σ (
c(L−1)∑
j=1

(W jk
L O

j
(L−1) + b

k
L)))

OflattenL = flatten([O1
L ,O

2
L , · · ·,O

c2
L ]) (6)

where L is the last layer of the CNNs, the pool(·) represents
the pooling operation, and the flatten(·) stands for the con-
catenated operation mentioned above.

And then, the vector is transformed into the input of GRU
layers through the fully-connected layer. The process can be
described as:

Ot+1cnn = WFO
flatten
L + bF (7)

where Ot+1cnn is the output of the CNNs for time interval t + 1.
WF and bF are the weights and bias of the fully-connected
layer.

The three-layer GRU part takes the output of fully-
connected layer, and extracts the temporal features from the
network traffic vector that derived from the fully-connected
layer. Denote the GRU procedure as gru, the output of the
eth GRU layer can be written as:

Oe = grue(Ot+1cnn ) (8)

thus the overall output of the ITRCN model is:

ŷt+1 = gruG(Ot+1cnn ) (9)

where G is the last layer of the GRUs.
Our ITRCN model takes traffic images of previous five

time intervals as the inputs, which can be written as:

Mt = (mt ,mt−1,mt−2,mt−3,mt−4) (10)

where mt is the network traffic image of time interval t . The
ITRCN model can extract the features from these historical
traffic and make an accurate one-step ahead prediction for
the interactive network traffic.

D. TRAINING METHOD FOR ITRCN
The mean squared error (MSE) is employed as the cost func-
tionC in our work, which canmeasure the effectiveness of the
model training process by calculating the distances between
the predictions and the ground truth. The cost function is
defined as follow:

MSE = C =
1
n

N∑
i=1

(ŷi − yi)2 (11)

where i is the prediction time interval.
The set of the training parameters (weights and bias) can

be grouped as:

�= (W jk
L ,Wr ,Wz,Wh,WF ,Ur ,Uz,Uh, br , bz, bh, bkL , bF )

(12)

where these parameters are dynamically learned from the
historical traffic data by the model. The goal of the training
is to minimize the value of MSE and find the corresponding
optimal set �.

The input-output relationship between each layer in the
neural network model can be simplified as the following
formula:

ol = σ (wlol−1 + bl) (13)

where ol , wl , bl are the output, weights, bias of the l th layer
respectively. And we denote zl as the weighted input to the
l th layer, which can be defined as:

zl = wlol−1 + bl (14)

We apply the Adaptive Moment Estimation (Adam) opti-
mizer to cost optimization, which learns the optimal variables
and minimize the cost in each layer [33]. The processes are
written as:

mt = β1mt−1 + (1− β1)∇Ct
vt = β2vt−1 + (1− β2)∇C2

t

m̂t =
mt

1− β t1
m̂t =

vt
1− β t2

�̂t+1 = �̂t −
η√
v̂t + ε

m̂t (15)

where β1 and β2 are the decay rates, ε is a constant, vt and
mt are the exponentially decaying average of past squared
gradient and the exponentially decaying average of past gra-
dient respectively, v̂t and m̂t are the corrected estimates for
vt and mt , ∇Ct is the gradient vector of the cost function C ,
(·)t stands for the variable at t th iteration, and η is the learning
rate.

In order to compute the gradient of the cost function C to
each layer, we employ the standard backpropagation method
to our training in this work. The gradient vector can be
written as:

∇C = (
∂C
∂v1

,
∂C
∂v2

, · · · ,
∂C
∂vn

)T (16)
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where v = v1, v2, · · · , vn represents the variables (weights
and bias) of the C , and T denotes the transposing operation.
Then, the intermediate quantity error δ is used to calcu-
lated the gradient, and the procedure can be described as
follows:

δl = ∇oC�σ
′

(zl)

δl = ((wl+1)T δl+1)�σ
′

(zl)
∂C
∂bl
= δl

∂C
∂wl
= ol−1δl (17)

where the δl is the error of the l th layer. ∇aC is defined as a
vector whose components are the partial derivatives ∂C

∂olj
.

After repeatedly apply these chain rules mentioned above,
the model could learn all the optimal parameters and achieve
good performance on the traffic prediction. The optimization
result can be described as:

�̂ = argmin
�

1
n

N∑
i=1

(ŷi − yi)2 (18)

V. DATA DESCRIPTION
A. DATASET
In this paper, we use traces from Yahoo! production work-
loads to test the effectiveness of different models. The traces
come from five Yahoo! data centers, which are located at
Dallas (DAX), Washington DC (DCP), Palo Alto (PAO),
Hong Kong (HK) and the United Kingdom (UK). Most of
the core services, such as Web, Email, Messenger, etc., are
provided in DAX, DCP and PAO. Chen et al. [23] divided the
traffic into two categories: 1) D2C, that the traffic between
servers and clients, 2) D2D, that the traffic between different
Yahoo! servers at different locations.

Our study is based on D2C Netflow datasets collected at
the border router of DAX. It contains an one-day period data
from April 30th, 2008, 8:00 am to May 1st , 2008, 8:00 am,
which includes both the inbound and outbound traffic. Each
record in the Netflow data includes: a) timestamp, b) source
and destination IP addresses, c) transport layer port numbers,
d) source and destination interface on the router, e) IP proto-
col, f) number of bytes and packets exchanged. By developing
a pre-analysis on the D2C Netflow traffic data in this paper,
we aim to figure out how the single service traffic and the
interactive traffic change over time in the D2C data of DAX.

B. STATISTIC TRAFFIC OVERVIEW
Statistic traffic is the aggregation of raw services’ D2C traffic.
The statistic traffic values are defined as the amount of bytes
transmitting during oneminute. Thenwe totally get 1440 time
intervals with the values of each minute in the 24 hours
period. Table 1 presents a part of the transformed data with
four basic attributes.

To have a first look at overall variation trend of traffic
during one day, we aggregate the D2C traffic, which contains

TABLE 1. A part of transformed data with basic four attributes.

FIGURE 7. The changing bytes of the total network traffic over time
interval 0 to 1440.

FIGURE 8. The network traffic of eight different services over time
interval 0 to 1440.

all the services traffic. As shown in Fig. 7, the total traffic
changes quickly and has an obvious down trend during the
time interval 800 to 1100, followed by an up trend during
1100 to 1440.

C. SERVICE TRAFFIC ANALYSIS
The total traffic is the sum of D2C traffic in the data center,
which could be divided into 8 types of different services,
including DNS, Email, Game, Message, News, Video, SMTP
and Web. The traffic of different services show significant
fluctuations at different times. As shown in Fig. 8, some
of services have long and slightly trends, such as Web,
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TABLE 2. The result of exploratory analysis for different services network traffic data.

Mess, Email and DNS, while others present regular fluctu-
ations (e.g., SMTP). However, the other network traffic of
services, including Game, Video and News services, show
violent and irregular fluctuations in the certain period. Espe-
cially, News has an explosive high traffic value from time
interval 650 to 900.

1) STATISTICAL TEST
For each service type, we conduct a statistical test for the nor-
mality, randomness, stationarity, and autocorrelation. Table 2
displays the results and the corresponding P-values from dif-
ferent tests. It can be seen that all services are deviated from
normality, indicating that the traditional prediction method
(e.g., ARIMA), which relys on the assumption for normal
distribution error, are insufficient. Further, each service can
be seen as non-random, which means that it can be pre-
dicted and described explicitly by suitable models. Based
on the Augmented Dickey-Fuller (ADF) test and the Ljung-
Box test, we conclude that most services are non-stationary
and auto-correlated, except Game is stationary. Importantly,
the autocorrelation means models with dependency structure
are needed for this kind of traffic.

Lastly, we employ the Hurst exponent test and the White
test to check the LRD and the non-linearity of services’
traffic. It can be observed that all the Hurst exponent is
between 0 and 0.5, which means the anti-persistence and
indicates that high values are more likely to be followed by
low values and vice versa. On the other hand, only News
accepts linearity, while the other services tend to show the
non-linear feature. Analysed by the exploratory and statistical
test, it is a strong suggestion that prediction approaches in
Section III are highly suitable for all service types.

2) INTERACTION ANALYSIS
As some of services are more likely to communicate with
each other, we developed an analysis about the changing
rate of services and the interactive network traffic matrix.
First, the changing rate of eight different services at each
minute (60s) were calculated orderly (DNS, Email, Game,
Messenger, News, Smtp, Video, Web) by the following
equation:

Rqt = |Tq(t +1)− Tq(t)|/|Tq(t)| (19)

where Rqt is the changing rate of the qth service network
traffic. Tq(t) and Tq(t + 1) are the network traffic values at
time interval t and t + 1 respectively. The| · | denotes the
absolute value function.

Then we calculate the changing rate of the interactive
network trafficmatrices at eachminute as the equation below:

Rt = |M (t +1)−M (t)|/|M (t)| (20)

where M (t) and M (t +1) are the interactive network traffic
matrices at t and t + 1. The details of the matrix have been
presented in Section III. The numerator and the denominator
can be written as:

|M (t +1)−M (t)| =
n∑

I=1

n∑
J=1

|mt+1IJ − mtIJ |

|M (t)| =
n∑

I=1

n∑
J=1

|mtIJ | (21)

where I and J are the numbers of rows and columns in the
matrices. n is the number of ports, which is equal to 17.
mtIJ is the element in the matrixM (t).

As shown in Fig. 9 and 10, the changing rate of the inter-
action is compared to the services’ changing rate. It can be
seen from the figure that the region from time interval 0 to
400 was surrounded by the red square, where the changing
rates of services were less than 0.25 in most of time, while
the changing rate of News was slightly higher, but the average
rate was still only 0.18. Compared to the different services’,
the changing rate of interaction remain a high level with an
average rate 0.37, which is larger than 0.4 in most of the time.

We can conclude that even when the single service traffic
remains the same (changing rate relatively small region),
the interactive traffic still changes appreciably. If only the
non-interactive service traffic is considered in the resource
allocating, ignoring the service interaction, the integrity of
some applications or services in data center may be cut apart.
Thus, it is necessary to predict the overall network traffic of
the interaction between different services.

VI. EXPERIMENTS
The experiment of this study includes two parts: a) prediction
for traffic of single service, and b) prediction for interactive
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FIGURE 9. The changing rate of eight different services’ traffic over time interval 0 to 1440.

TABLE 3. The RMSE results of the single service network traffic prediction.

FIGURE 10. The changing rate of interactive traffic between different
services over time interval 0 to 1440.

traffic between different services. More details are described
as follows.

A. SINGLE SERVICE PREDICTION
The single service prediction aims to make the one-step pre-
diction for the certain service network traffic in data centers.

1) TEMPORAL DATA GENERATION
In this work, the input of single service prediction is the
one-dimension traffic data from eight services in Yahoo!
data center. Due to the traffic characteristics of day and
night are significantly different, we divided the traffic data
of each service into two parts: a) April 30th, 2008, 8:00 am to

April 30th, 2008, 8:00 pm and b) April 30th, 2008, 8:00 pm
to May 1st , 2008, 8:00 am. Further, the first 80% of each part
is used as training set for features learning, and the last 20%
is testing set for model test.

2) EXPERIMENTAL SETUP
In this experiment, we evaluate our temporal prediction part
GRU, and compare it with other time series prediction meth-
ods, including the ARIMA, SVM, and simple RNN (SRNN).
The GRU is trained based on the optimizer Adam [33],
which has been proven to work well. The learning rate is
set to 0.01, the number of hidden units is set to 140, and
the loss function is the Mean Squared Error (MSE). The
dropout layer is used to prevent over-fitting. All parameters
of the model are depended on numerous experiments to find
an optimal structure. The parameter setting of the SRNN
is exactly the same as the GRU, whereas details of other
two models (the ARIMA and the SVM) are described as
following.

For the ARIMA model, the optimal auto regressive
parameter p, difference parameter d and moving average
parameter q are determined according to the best Akaike
Information Criterion (AIC) value [34]. For the SVM model,
the kernel function is the Radial Basis Function (RBF),
the optimal cost parameter c and the width parameter g
are determined on numerous experiments. The parameters
of these two models that resulted after applying the fitting
process on the training set of each service are displayed
in Table 3.
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3) METRICS
To measure the accuracy of different prediction models,
we calculate Root Mean Square Errors (RMSE), which can
be formulated as:

RMSE =

√√√√ 1
ns

ns∑
s=1

(D̂s − Ds)2 (22)

where ns is the prediction steps, D̂s and Ds denote the pre-
dictive traffic and real traffic at sth prediction time interval
respectively. In our experiment, ns is 144, which indicates
that we test the traffic data with 144 time labels for both two
testing sets. We tested the models separately and calculated
the average RMSE of these two parts as the final prediction
results.

FIGURE 11. Traffic characteristics for News service over time interval
0 to 1440.

4) PERFORMANCE COMPARISON
As shown in Table 3, we can observe that the GRU yields the
best accurate results for most traffic prediction in terms of
RMSE, except for a little lower accuracy than the ARIMA in
News. The SVM model shows the poorest prediction perfor-
mance, whereas the ARIMA model outperforms the SRNN
on the most services traffic prediction except for Game and
Web. One possible reason is that the traffic dataset we used
only contains an one-day period data, which significantly
limits the ability of the SRNN to learn day-cycled behav-
iors. Compared with the GRU, the average RMSE values
for the other models increased by 13.1%. One thing to be
noted is that both the GRU and the SRNN perform poorer
than the ARIMA on News prediction. Fig. 11 depicts the
News traffic characters from time table 1 to 1440. We can
observe that there are large fluctuation ranges in the time
interval [660, 780] and [800, 900], which display explosive
features compared to the rest of the day. Due to the internal
mechanism, such as the autoregressive function, integrated
function, moving average function, the ARIMAmakes better
predictions for these explosive traffic. However, if we have
enough data and the traffic can be valued in a long time
range (e.g., a week, a month or years), it’s more likely to

show a cyclical pattern instead of explosive characteristic.
Thus, theGRU and the RNNcan achieve better performances.
We also leave the explosive short-term prediction for further
works.

B. INTERACTIVE NETWORK TRAFFIC PREDICTION
Interactive network traffic prediction aims to make the one-
step prediction for the services’ communications in the data
centers.

TABLE 4. The correspondence between service types and ports.

1) INTERACTIVE NETWORK TRAFFIC IMAGE GENERATION
As shown in the work [23], there are 17 popular server ports
observed in Yahoo! trace. All the services can be categorized
into 8 groups. The mapping of each service group and its
corresponding ports are listed in Table 4.

As described in Section III, we transfer the interactive
traffic of these ports into network traffic matrices. As image
features become more salient, the accuracy of prediction
model will be improved. One simple way to construct dis-
tinctive images is to put the traffic with strong correlation
together in the traffic matrix. Motivated by this, we get a
clear view by calculating the correlation of each service.
Fig. 12 (a) shows the correlation between each pair of ser-
vices in the Yahoo! Dallas data center. As shown in this
figure, service port numbers are listed on both x-axis and
y-axis. The colored square corresponding to the correlation
between different services that served by the certain ports.
It can be seen that there is one significant cluster from port
995 to port 5100, including Email, Web, SMTP, DNS, Video,
Messenger and Game, while the other ports do not show
significant clustering features. Thus we could arrange the
service ports in the traffic matrix with the order of (465,
119, 143, 110, 587, 995, 443, 25, 53, 1935, 80, 5000, 5001,
11999, 5050, 5061, 5100) and finally convert the matrices
into images. In order to compare with the input images
of orderly arranged ports, we also generated the images
with randomly arranged ports and the correlation is shown
in Fig. 12 (b). There are 1440 interactive traffic images for
each time interval in our study. The first 80% of the images
are used as training set, and the other are used as testing
set. The details of the performance comparisons are showed
later.
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FIGURE 12. The cross-correlation between each pair of services. The ports with strong correlation are put together in (a). The ports are
randomly arranged in (b).

TABLE 5. The parameters of ITRCN model.

2) EXPERIMENTAL SETUP
The parameters and details of our ITRCN model are given
in Table 5. The model is trained on Adam optimizer [33]. It is
worth noting that the time lag is set to 5, which indicates that
the interactive traffic states of the previous five time intervals
are used to predict the interactive traffic state one time interval
ahead. During the training process, the learning rate was set
to 0.001.

We also compare our ITRCNmodel with CNNs and GRUs
individually. For CNNs, we test the three-hidden-layer struc-
ture with 256, 128, 64 units. For GRUs, we test the three-
hidden-layer structure with 32, 32, 289 units. To the similar
way of the ITRCN, we select these parameters through a large
number of tests. All of these models are trained on Adam
optimizer [33].

3) METRICS
Same as the former experiments, the RMSE is used to mea-
sure the accuracy of different methods. In this experiment,
the RMSE is defined as follows:

RMSE =

√√√√ 1
m · d

d∑
I=1

m∑
K=1

(ĈKI − CKI )2 (23)

where m and d are the total order number of ports, and both
of them is equal to 17. I and K are the order of ports. ĈKI and
CKI are the interactive value between theK th port and I th port
of prediction and truth respectively.

4) PERFORMANCE COMPARISON OF DIFFERENT MODELS
To give an insight for prediction accuracy of different meth-
ods, the RMSE is calculated and displayed in Table 6. It can
be seen that the ITCRNmade the most accurate prediction for
interactive network traffic with the RMSE value of 1080. One
possible reason is that the ITRCN takes both the interactive
features and temporal features into considerations, which
enhances the ability of the model to predict the communi-
cation among the network traffic. Compared with the ITRCN
structure, the RMSE values of these two models increased
by 14.3% and 13.0% respectively. Thus it can be concluded
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FIGURE 13. The images of interactive traffic prediction. (a) is the prediction images for 1177th time interval and the true
network interaction images from time interval 1172 to 1177. (b) is the prediction images for 1302nd time interval and the
true network interaction images from time interval 1297 to 1302.

TABLE 6. The RMSE comparison among three models.

that both interactive and temporal features are important to
the interactive traffic prediction.

In order to explain the results more clearly, we show the
prediction results of different models and true network inter-
action images at 1177th and 1302nd time interval respectively
in Fig.13, as well as the ground truth of previous five time
intervals are displayed. We set the non-communication to
white color and communication value larger than 5000 to
deep blue in the color bar, so as to more details can be
displayed in the images. From these images, we can category
the interactive features into temporal patterns and relatively
inherent patterns, which mean the interactive pairs that some-
times appeared and always appeared in the true network
interaction images respectively.

As shown in the Fig. 13 (a), we depict the relatively
inherent patterns on the network interaction image of time

interval 1177 by the red circle, and compared ground truth
with the results of the ITRCN, CNNs and GRUs. We find
that GRUs lost the relatively inherent patterns as the green
circle 1 displayed, and CNNs lost the temporal patterns as
the green circle 2 and 3 shown. As for the Fig. 13 (b), we can
make the similar conclusion as the green circle 1 to 3 shows
in the prediction results of GRUs and CNNs models.

These experimental results show that neither can the GRUs
capture all the correlations between different services and
inherent characteristics of the interactive network traffic,
nor can the CNNs effectively extract the temporal features.
Meanwhile, the ITRCN can catch both the temporal and
interactive features, thus achieve a fairly good performance.

5) PERFORMANCE COMPARISON OF DIFFERENT
PORTS’ ARRANGEMENT
In order to verify the effect of the orderly arrangement in the
trafficmatrix, we put the images of orderly arranged ports and
images of randomly arranged ports into the ITRCN model
respectively. The prediction results of different inputs are
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TABLE 7. The RMSE comparison among two kinds of inputs.

presented in Table 7. Compared with orderly arrangement,
the RMSE value of randomly arrangement is improved by
4.2%, which indicates that the method of gathering ports with
strong correlations fits CNNs feature extracting mechanism
well. This is because CNNs can accurately extract the image
features with strong spatial correlations during the training
process. However, randomly arrangement makes the features
scattered in the image, thus the correlation between the adja-
cent pixels is weak, which make it difficult for models to
achieve accurate prediction.

VII. CONCLUSION
In this paper, we predicted the network resources for both
the non-interactive network traffic and interactive network
traffic. For non-interactive network traffic, we compared the
GRU model with other prevailing methods. The GRU model
made better predictions in the experiment by an average
accuracy improvement of 13.1% in RMSE. For interactive
side, we presented a novel end-to-end model, named ITRCN,
which transformed the interactive network traffic into images
and applied CNNs to capture the interactive features in the
network traffic of data center. And the GRU model was used
to extract the temporal features. The ITRCN model took
advantages from both of the CNN and the GRUmodel, which
outperformed the CNN and the GRUmodel in the experiment
of Yahoo! data center network traffic by an average accuracy
improvement of 13.6% in RMSE, showing a strong ability
in extracting temporal features and interactive features of
network traffic data.

For the future works, we will test our hybrid ITRCNmodel
on more network traffic datasets. And we will also try to
figure out how the variance of the days influences the effec-
tiveness of our model. To sum up, this work provides a new
insight into researches of the network traffic prediction, and
can greatly help solve resource allocation problems in the data
center.
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