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ABSTRACT Smart Internet of Things has greatly improved the quality of human life with increasingly
intelligent sensor networks. Efficient and accurate human motion time series segmentation is the key issue
in human motion analysis and understanding. To realize human motion sequence segmentation, a compre-
hensive human motion description and an intelligent segmentation algorithm are required. Hence, this paper
proposes a sensor network-based human motion sequence segmentation framework. With the facilitation of
sensor network and sensor network-based feature fusion method, human motions can be comprehensively
described. Based on the comprehensive description of motion data, a new motion change variation-based
segmentation method is proposed to realize human motion sequence segmentation. Moreover, to satisfy the
time efficiency demand in the applications of large scale sensor networks, a hashing algorithm is introduced
to compress the original captured sensor data, which can effectively represent the human motions with short
binary codes and facilitate the motion change measurement. Experiments on real-world human motion data
sets validate the effectiveness of our proposed sensor network-based human motion sequence segmentation
framework compared with other state-of-the-art human motion segmentation methods.

INDEX TERMS Sensor networks, human motion sequence segmentation, hashing learning, motion change

measurement.

I. INTRODUCTION

With the enormous development in the field of Internet of
Things (IoT), smarter IoT systems have greatly promoted
the development of society and raised the living standards
of mankind [1]-[4], [8]. Different IoT systems have been
applied to many walks of life [5]-[7]. In the fields of athletic
training, medical diagnostics, and security monitoring, etc,
smart [oT systems are utilized to analyze human motion time
series. Based on the analysis, motion information which is of
great significance to improve the quality of human life can
be obtained [8]-[10]. For instance, in the process of medical
diagnostics for heart diseases, monitoring the condition of
heartbeat, breath, and motions through sensor networks can
effectively facilitate the evaluation of the illness. Human
activities can be effectively analyzed and deep mined through
the facilitation of smart IoT systems, especially sensor
networks [8], [12], [13].

Analysis on human motions by sensor networks not only
focuses on the relations of different sensors, but also on
the relations of the states of sensor networks in different
moments [10], [11], [14]. The analysis on human motions
and the derived technologies have improved the intelligence
of the IoT [15], [16]. The fundamental issue in human motion
research is Human Motion Sequence Segmentation (HMSS).
The segmentation results significantly influence the analysis
of human motion sequence. Hence, analyzing the time series
generated by sensor networks and segmenting the human
motion sequence are key in human motion analysis and
understanding. HMSS has attracted more and more attention
in research fields [17], [19], [22].

Various types of pattern recognition methods have been
proposed to realize HMSS. For instance, clustering methods
are employed by researchers to realize HMSS [18], [19],
which are based on correlations of motions in the

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission. 9281

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-8257-1429

IEEE Access

Y. Liu et al.: Sensor Network Oriented Human Motion Segmentation With Motion Change Measurement

same class. Aligned Cluster Analysis (ACA) combined ker-
nel k-means with the generalized dynamic time alignment
to realize HMSS by clustering the time series data [18].
Moreover, an unsupervised hierarchical bottom-up frame-
work is adopted to embed the the low-dimensional human
motion sequences. The bottom-up framework facilitates the
efficiency of the clustering based HMSS methods [19].
However, clustering-based motion sequence segmentation
methods require that the intra-cluster variance of time series
should be low, which is quite difficult for real world appli-
cations. Furthermore, if the initial number of clusters is
not perfectly set, the segmentation performance will be
limited. To solve these problems, neighborhood similarity
information of the time series is employed to construct a
similarity graph to enhance the clustering performance [20].
Apart from clustering methods, classification methods are
also considered in HMSS, which distinguish motion classes
from each other [21]. Data Point Classification (DPC) labels
data points as either segment points or non-segment points by
using an online classifier. Based on the online classifier, data
points labeled with segment points are detected as transition
frames of the human motion time series. Inspired by DPC,
detecting transition frame methods are adopted in HMSS.
Kernelized Temporal Cut (KTC) is proposed to cut struc-
tured sequential data into different regimes sequentially [22].
KTC can detect the transition frames as well as repetitive
frames in a human motion time series simultaneously.

Apart from the aforementioned segmentation methods,
dimensional reduction methods are also adopted in HMSS
process [17], [23]. For example, the Principle Component
Analysis (PCA) [24] approach to human motion segmenta-
tion employs the intrinsic dimension of human motion to
realize segmentation, and assigns a cut when the intrinsic
dimension of a local neighborhood in the motion time series
suddenly increases [23]. Locality Linear Projections (LPP)
approach to HMSS utilizes the local neighborhood structure
to detect segment points [17], [25]. The Probability Principle
Component Analysis (PPCA) [26] to human motion segmen-
tation analyzes the distributions of motions of the time series
to detect the segmentation points. That is, the PPCA approach
assumes that frames from the same class should obey the
same probability distribution, and places a cut when the distri-
bution of human motions changes [23]. Unlike the PCA and
PPCA approaches which only focus on the data, a physical
driven motion segmentation method is proposed to realize
human motion segmentation [17]. Time series-Warp Metric
Curvature Segmentation (TS-WMCS) constructs a curvature-
like descriptor to evaluate the changes in human motions.
TS-WMCS utilizes the physical property that motions from
the same class are alike in a given time series, and detects the
transition points when the local curvature of a frame changes
greatly [17].

In general, the key issue in HMSS is to detect the
segmentation points in the sequences. Note that, human
motions will change significantly near the segmentation
points [17], [23]. Based on this fact, this paper proposes
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a sensor network based segmentation (SNBS) method
for HMSS. With the facilitation of sensor networks, human
motions can be effectively recorded and captured from dif-
ferent perspectives. Moreover, a motion variation description
method is proposed to depict changes of human motions in a
given time series, and the motion of each frame is regarded as
abucket in the hashing table. Based on the physical properties
of human motions [17], [23], movements from the same class
will not change dramatically in the time series. However, due
to the appearance of motions from new classes, variations in a
motion sequence will significantly increase near the segmen-
tation points. Moreover, to promote the efficiency of SNBS,
hashing method [33] is employed to describe the bucket of
each frame in hamming space. With the facilitation of hashing
methods, data similarities are represented effectively.

The main contributions of this paper can be summarized as
follows.

Firstly, propose a data fusion method to organically
combine the data collected from different kinds of
Sensors.

Secondly, employ a hashing method to represent the orig-
inal sensor network data, which projects original data to
hamming space to facilitate the description of motion change.

Thirdly, realize HMSS from the perspective of motion
change degree.

The remainder of this paper is organized as follows:
In section II, mainstream HMSS methods are introduced.
In section III, the SNBS method for HMSS will be detailedly
presented. Experimental results are provided in section IV,
which is followed with the conclusion and future work
in section V.

Il. RELATED WORKS

This section mainly introduces the mainstream HMSS meth-
ods. Generally, HMSS can be divided as data driven meth-
ods and physical driven methods [17]. In section II-A,
the PCA and locality preserving projections (LPP)
approaches to HMSS will be introduced, which utilizes the
low dimensional embedding of original data to realize HMSS.
In section II-B, the PPCA approach to HMSS will be intro-
duced, which evaluates motion changes through the motion
distributions. Unlike data driven methods (PCA, LPP and
PPCA approaches to HMSS), physical driven methods pay
more attention to the physical meaning of the human motions
and realize HMSS by researching the motion change pro-
cess. As a typical physical driven segmentation method,
TS-WMCS algorithm will be introduced in section II-C.

A. PCA AND LPP APPROACHES TO HMSS

Both the PCA and LPP approaches to HMSS focus on the
data of the human motions in each frame, this section will
briefly introduce the PCA and LPP approaches. Given human
motion sequence X = [x, - - ,xn]T € R"P with n frames
and D dimensions. For each frame x;, utilizing k — NN
method to construct the neighborhood X; for x;, where X; =
{xl, e, Xjy e -xk} € RkxD andj € N;. Therein, k is the size
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of the neighborhood and A; is the collection of the indices
of Xi.

The PCA approach to HMSS assumes that the error
between neighborhood X; and it’s projection X/ will not
vary largely for motions from the same class. However,
the error will increase largely for the frames near the tran-
sition clips [27], [28]. To evaluate the error e; in each frame,
original data X; is reduced to its intrinsic dimension [23]. The
error ¢; between X; and X/ can be expressed as Eq.(1).

n
ei=Y |IXi—X/I? (0
i=1

The PCA approach to HMSS works well if motion sub-
sequences of different classes have clear transition clips and
motions from the same class will not change significantly.
Nevertheless, since the complexity of real world human
motions and the continuity of real world movements, the error
between X; and X/ will not change significantly in time series.
Under this circumstance, the PCA approach to HMSS can
hardly detect all the transition clips in the human motion time
series [17].

Inspired by PCA approach to HMSS, LPP can also be
applied in HMSS [25]. Like PCA approach, LPP utilizes a
linear projection to map original data to low dimensional
embedding as well. However, LPP aims at preserving local

similarities in the projection process. The similarity between

llsi=13
sample x; and x; can be represented by wjj = e o (0 =

in our experiment), where (") is the exponential funciton.

LPP approach to HMSS also utilizes an error e; of each
frame to evaluate the motion change degree [17]. The error
can be calculated by Eq.(2)

ei=Y wilyi— )’ 2

JEN;

where y; and y; represent the low dimensional embedding of
x; and x;, N; denotes the adjacent frames of the ith frame.

LPP utilizes the local structure on human motion sequence
to detect transition clips. However, since the complexity of
real-world motions, LPP approach to HMSS can not effec-
tively detect the motion changes in human motion time
series [17].

B. PPCA APPROACH TO HMSS

The PPCA approach to HMSS utilizes the probability prin-
ciple component analysis method to evaluate the distribution
of motions in time series. The PPCA approach to HMSS uti-
lizes the Gaussian distribution to extend the traditional PCA
approach, and represents the relations of different motions
with a correlation covariance matrix C. The correlation
covariance matrix C can be utilized to compute the average
Mahalanobis distance H of the whole neighborhood of the
ith frame, which can evaluate how likely are motions from
(i + Dth frame to (i + k)th frame belong to the Gaussian
distribution [23]. The calculation of H can be expressed as
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Eq. 3).
1 i+k
H== Y =n"c - )
Jj=it1

Thereinto, i is the index of the start frame of the neigh-
borhood X;. Unlike the PCA approach to HMSS, the PPCA
approach to HMSS simply selects the next k£ motions for x; to
construct neighborhood instead of adopting K — NN method.
The PPCA approach to HMSS can effectively capture the
correlation and variance of different joint angles respec-
tively [23]. However, the Gaussian distribution assumption
for the human motions is too strong for real world appli-
cations (Especially for complex human motions, such as
Tai Chi), which will lower the segmentation accuracy
of PPCA segmentation approach. Besides, Both the PCA
and PPCA human motion sequence segmentation meth-
ods are based on angles, which will cause segmentation
accuracy decrease when they are extended to real world
applications [17].

C. TIME SERIES-WARP METRIC CURVATURE
SEGMENTATION (TS-WMCS) ALGORITHM

This section mainly introduces the Time series-Warp Met-
ric Curvature Segmentation (TS-WMCS) algorithm to
HMSS [17]. TS-WMCS utilizes a curvature-like descriptor
to depict the the changes of human motions in time series.
For each frame x; € X, construct the neighborhood X; for x;
with k — NN method like the PCA approach to HMSS. Then,
construct the angle between the samples and the tangent space
in each neighborhood. The warp degree of the data can be
described by the angle between x; and its orthogonal projec-
tion, where x; is the neighbor of x;. Therein, a;; = «; (Q)),
and o;; € [0, /2]. The local low dimensional space can be
expanded by Q;, and Q; can be obtained by the optimization
equation Eq.(4),

arg max Tr (Ql.TX,»ZX,.T Ql-) 50,070 =1 o
Oi

where Z is the normalization matrix of Xin.T. Then,
the curvature-like descriptor can be expressed as Eq.(5).

Ci = ZCOSO[,'J' /Z “XJH Q)

JEN; JEN;

The transition points in human motion sequences are
those frames whose curvature-like descriptors are high. Apart
from the curvature-like descriptor segmentation, TS-WMCS
algorithm also reduces the dimension of original motion
sequences. The low dimensional temporal feature curves
are utilized to assist the segmentation. For each neighbor-
hood, compute the low dimensional embedding ©y, of X;,
and then add affinity projection L; for each ®; of X; to
map the low dimensional embedding to a global embedding
T =[t,12, ", rn]T e R Hence, the low dimensional
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embedding T can be obtained by Eq.(6).

min ci
T, Li “
=

2
(Tk,. - 1:,-6,2_) — LiOy, H st. TTT =1, (6)

where I is a d — by — d identity matrix, and ey, is a vector
with all ones.

TS-WMCS algorithm utilizes the curvature-like descriptor
to realize HMSS, which can effectively depict the changes of
human motion sequences. However, a certain move in com-
plex motion sequences will contain motions which are quite
different from each other (e.g. ““white crane spreads its wing”’
in Tai Chi), TS-WMCS algorithm can not yield promising
result on these kind of motion sequences [17]. Moreover,
TS-WMCS algorithm employs the low dimensional temporal
feature curves to assist the segmentation, which is lack of
clear physical significance.

Ill. SENSOR NETWORK BASED SEGMENTATION
FOR HMSS

In this section, we will introduce the proposed sensor network
based segmentation (SNBS) approach for HMSS. SNBS
utilizes hamming distance to describe the change degree
of motions in time series, which is based on the binary
representations of the motion data collected by sensor net-
work. The sketch of SNBS is summarized as Fig. 2. In real-
world applications, a sensor network may utilize different
kinds of sensors to collect the motion data [29], [30]. Hence
a feature fusion method is proposed to combine the data
collected by different sensors (detailed introduction is in
section III-A). Note that, motions of the same class change
slightly while motions of different classes change signif-
icantly [17], [23]. Hence, we construct the local change
degree to fully reveal the change of motions (details are in
section III-C). To accurately describe the motion changes
in time series, the binary representations should represent
the similarities and differences of motions simultaneously.
Considering the property of hashing methods in preserving
data similarities with binary codes (hash buckets), we utilize
hashing method to represent the motions. Here, we employ
the widely utilized hashing method, Iterative Quantization
Hashing (ITQ) [33], to represent the motions. Detailed intro-
duction of ITQ is in section III-B.

A. FEATURE FUSION FOR MULTI-SOURCE DATA
COLLECTED BY MULTI-SENSORS

Segmentation for human motion sequence not only requires
effective segmentation methods but also requires comprehen-
sive description of the human motions. In real-world applica-
tions, sensor network is always adopted to record the human
motions [29], [30]. However, different kinds of sensors may
adopted by a sensor network to fully describe the poses
of human motions [23], [35], which causes the problem of
representing human motions with features of different scales.
To solve this problem, a Sensor Network Based Feature
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Fusion (SNBFF) method is proposed in this paper to align
the multi-source data collected by different kinds of sensors.

Different kinds of sensors reflect human motions from
different perspectives. To effectively utilize the data obtained
from different kinds of sensors, we employ a graph based
feature fusion method named Feature Graph Fusion (FGF)
to combine the data collected by different sensors [34].
To clearly clarify the process of the feature fusion method,
we assume that three kinds of sensors are adopted in a
sensor network (motion sensors, depth sensors and visual
sensors). SNBFF can organically combine the collected data,
and help describing the motion of each frame with a single
descriptor.

We employ the graph fusion method in [34] to combine
data collected by the aforementioned three kinds of sensors.
For each kind of sensors, Jaccard coefficient [37] is adopted
to measure the similarities of the collected data. Based on the
Jaccard coefficient, the similarity graph of the data collected
by each kind of sensors can be constructed. The similarity
graph of motion movement data can be represented as G =
(v™, E™, w'"), the similarity graph of motion depth data can
be denoted by G? = (V¢, E?, w?), and the similarity graph
of motion data collected by visual sensors can be defined as
G¢ = (V¢ E°, w°). All the similarity graphs are undirected
graphs. Therein, V", V4 and V¢ denote the frames of the
motion sequence, E is the edge constructed by Jaccard sim-
ilarity coefficient for V, and w represents the weight of E.
The fused similarity graph G = (V, E, w) can be obtained by
fusing G’",Gd and G¢ with the following constraints. First,
V = V"uVv?U Ve Second, E = E™ U E? U E°. Third,
w = w" Uw? Un°. Hence, the similarity weight of the fused
graph can be represented as W = [W;;], where i, j € V are

two motions of the motion sequence. Then, we can get the
normalized similarity description matrix W = [Wj;], where
i,j € V. W;; can be normalized by Gaussian kernel as Eq.(7).

W
exp 207
W,
Xy
Zj/eNk (i) €XP <_ 207 >

0, else

. JENK ()

Wi = (N

where o; is the bandwidth parameter of Gaussian kernel [38],
Jj is the indices of the neighborhood frame of the itk frame.
In this paper, o; is assigned by the variance of similarities of
the ith frame.

After obtaining the similarity weight W = [W,j] of the

fused graph. The fused motion feature can be obtained by
Eq.(8).

Wi;
ngx Hi,je‘/ <Ziev exp (fiTﬁ)> v

where {f1, /2, - ,fn} € RP Xl, f; is the fused feature of the
ith motion in the motion sequence. Eq.(8) can be expressed
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as the form of log function as Eq.(9).

exp (FT'f:

= Z Wi - log —p(f, ﬁ)T

ijev D jev €XP (" 5)

ex T
Ziev jes(i) log <%)
i ©)

where s(i) denotes sampling M times as the distribution of
the neighborhood similarities of the ith frame. The solution
of the fused motion feature F = [f1, />, - -+ ,ful € RP*7 can
be obtained by word embedding model [31], [32], [36]. The
whole process of SNBFF is summarized as Fig.1.

o

=
3
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FIGURE 1. Summary of human motion feature capturing with various
kinds of sensors.
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B. ITERATIVE QUANTIZATION HASHING (ITQ)

To fully keep the information of movements in human
motion time series, the corresponding binary representa-
tions of motions should preserve the action similarities.
Considering the ability of hashing method in preserving data
similarities to hamming space [33], [39]-[41] and compact-
ing data storage. SNBS adopts a typical hashing method, Iter-
ative Quantization hashing (ITQ), to realize data encoding.
ITQ can effectively facilitates representing human motions
with short binary codes. This section will detailedly introduce
the process of ITQ.

For motion sequence data X, utilizing the PCA method
to reduce the dimension of original data like many hashing
methods [33], [40]. The affinity matrix P for reducing the
dimension of original data can be obtained by Eq.(10).

argmin E (P) = arg min || (X — )_() P||12F (10)
P P

where X is the centralization matrix of X. By utilizing the
affinity matrix, the low-dimensional embedding Y can be
obtained as Y = XP. Based on the low-dimensional data Y,
arotation matrix R will be calculated by ITQ to further adjust
the low-dimensional embedding [33], which significantly
improved the performance of ITQ. The rotation matrix can
be calculated by Eq.(11).

argmin O(B, R) = ||B — YR||> (11)
B,R

VOLUME 6, 2018

where B € {—1,1}"*¢ is the binary representations of
original data X, and c¢ denotes the length of binary codes.
Eq. (11) can be transformed as follows:

argmin Q(B, R) = ||B||% + |Y||% — 2tr(BRTYT)
B,R

=nc+ Y% —2tr(BRTYT)  (12)
EM algorithm is utilized to solve Eq.(12) [33].

1) FIXR, CALCULATE B

Since the determinant of a rotation matrix should be 1, R can
be initialized with an orthogonal matrix. Then, Eq.(12) can be
transformed as Eq.(13), and the optimal value B is the binary
representation of original data.

n C
arg max r(BRTYT) = arg max Z Z B,'jf/,-j (13)
B i=1 j=1

where ¥ = RT YT,

2) FIX B, CALCULATE R
When B is calculated, rotation matrix R can be optimized by
Eq.(14).

argmax 1r(BRT YT) = argmax(S” BT Y§) (14)
R R

where R = SST. Since Eq.(14) is a quadratic form problem,
the optimanl S can be calculated by operating SVD decom-
position for BT'Y [48]. Based on S, the rotation matrix can be
expressed as R = SS7.

With the facilitation of ITQ, original motion sequence can
be represented with a series of binary codes, which explicitly
represent the original data relations and effectively compact
the data storage. In next section, the binary representation of
original motion data are utilized to measure motion change
degree in the time series. The change process of human
motions is described with binary representations.

C. SNBS WITH HASHING BASED MOTION CHANGE
MEASUREMENT

This section mainly introduces the way to construct binary
representations of human motion sequence by ITQ, and the
way to evaluate the motion change degree by SNBS. Con-
sidering the temporal locality of human motion sequence
where adjacent motion frames are similar in the time
series [17], [18]. Note that the similarities of motions from
the same class will be higher than that of motions belong to
different classes. Hence, a human motion sequence can be
segmented by detecting the similarity change degree of each
motion frame in time series.

Hashing learning aims to represent original data with
binary codes and preserves the original data similarity to
hamming space. With the excellent performance in compact-
ing data storage and preserving data similarities, hashing
learning have been widely applied in different kinds of appli-
cations [43]-[45]. Based on hashing methods, original data
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Data Fusion and Binary Encoding
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FIGURE 2. The sketch of SNBS in constructing the motion change measurement.

can be mapped to hashing buckets and similar data will be
mapped to close hashing buckets. Therefore, motions of the
same class will be mapped to buckets which are close mea-
sured by hamming distance. When motions of new classes
appear, new buckets will also appear. Hence, we can utilize
hashing method to project original data to hamming space
to effectively measure the motion changes. With the facili-
tation of hashing learning, human motion sequence can be
segmented into many motion clips, where each clip belongs
to a hashing bucket and represents a motion class.

For human motion sequence X, each frame x; can be repre-
sented with binary codes b; € {1, 0} with the hashing method
introduced in previous section. Therein, ¢ is the length of
binary representation. For each frame x;, compute the average
hamming distance of neighborhood X;

k

D(xj)) = % > " Dist (bi. b), x€N (x) (15)
j

where k is the number of neighborhood for x;, Dist (-) repre-
sents the distance metric function (Here, hamming distance
is employed to measure the similarity of two binary codes),
N (x;) denotes the neighborhood of x;. ITQ preserves the
original data structure with binary representations, that is
Dist (x,-,xj) is proportional to Dist (b,-, bj) [33], [40]. The
maximum distance of b; and b; is related to the length of
b; and b;. Since the distance of two binary representations
is discrete and the number of total binary codes is limited,
similar motion frames will be projected to nearby hashing
buckets and the corresponding hamming distance will be
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small. On the other hand, motions of different classes will be
projected to hashing buckets which share large hamming dis-
tance. To sum up, the changes of average hamming distances
of motions from the same class will be small. On contrast,
when motions of a new classes appear, the average hamming
distance will change dramatically. Therefore, we can describe
the motion change by the change of average hamming dis-
tance of each frame.

To explicitly reveal the changes of average hamming dis-
tances of human motions and effectively detect the transition
points in human motion sequence, the change degree of each
frame can be represented by Eq.(16).

e|D(xi)—D(X1—1) |

e S i>2 (16)

where e (-) is the exponential function. With the change
degree of motions at each moment, the changes of human
motions can be quantitatively measured. Since motions from
the same class have large probabilities in sharing same binary
representations, the average hamming distances for frames
located beyond transition clips will be zero with a high prob-
ability. As is shown in Fig. 3, most of the average hamming
distances are 0 on CMU motion capture database (each frame
is represented with 8 bits as an example). Hence, exponential
function is utilized to avoid the value of denominator to
be zero in Eq.(16). Based on the change of M;, the change
points can be effectively detected. Take the change degree of
human motion sequence No. 15_01 in CMU motion capture
database as an example. The change degree is large enough
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FIGURE 3. An example of the average hamming distance distribution on
CMU motion capture database (8 bits).
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FIGURE 4. An example of the change degree distribution on CMU motion
capture database (8 bits).

for detecting the segment points in time series (as is shown
in Fig. 4).

Segment points in human motion sequence are those
frames located in the motion transition clips, where motions
of new classes appear and movements change greatly. Based
on this physical property, the change degree of human
motions in time series can be utilized to realize HMSS.
In most cases, the motion changes are smooth and steady.
However, the change degree will increase dramatically when
motions of a new class appear. Hence, we can set a change
degree threshold 6 to select the segment points (In our exper-
iment, 6 is set as twice that of the average motion change
degree of a sequence). When change degree M; is larger than
threshold 6, add the ith frame in the motion sequence into the
segment points collection C = [c1, -, cy] € N!>™ Note
that, m is the number of evaluated cuts in human motion time
series.

C = {M;|M; > 0} € N'*™ (17)
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The process of SNBS can be summarized as Algorithm 1.

Algorithm 1 SNBS for HMSS
Input: Human motion data X1, X» - - - X captured by dif-
ferent sensor networks
Output: Segment cuts C

1. Construct Jaccard similarity graph G’ for data X; col-
lected from different sensor networks.
2. Fuse the Jaccard similarty graphs according to section
III-A, and construct the fused graph weight by Eq.(7).
3. Compute the fused human motion sequence representa-
tion F according to section III-A.
3. Compute low dimensional embedding Y of fused human
motion sequence F with PCA.
4. Obtain the binary Representation of Y with ITQ method.
5. Compute the average hamming distance series by
Eq.(15).
6. Generate the change degree series M of human motion
sequence by Eq.(16).
7. Detect the change degree series.

l'f M i > 0

Add M;to C

end

8. Output the segmentations C.

IV. EXPERIMENT RESULTS

To validate the effectiveness of SNBS in segmenting human
motion sequences, we conduct experiments on CMU motion
capture database. CMU motion capture database has been
adopted by many HMSS methods to evaluate the segmen-
tation performance [17]-[19], [22], [23]. Moreover, human
motion segmentation experiments are also conducted on DUT
human motion dataset [34]. Data of the DUT human motion
dataset is collected by our human motion capture system,
which contains posture sensors, depth sensors and visual
sensors. The introduced PCA, LPP, PPCA and TS-WMCS
segmentation algorithms are adopted as comparison methods
to detailedly evaluate the performance of SNBS. In our exper-
iments, PCA and LPP reduce the dimension of original data to
the intrinsic dimension which can preserve 90% information
of original data [17], [23].

To evaluate the performances of SNBS and the compar-
ison methods more precisely, three widely used protocols
are employed in our experiments [17], [22], [23]. The pro-
tocols measure the performances of HMSS methods from
different perspectives, which are precision Pre, recall Rec and
F-Measure F. Therein, Pre = Nyjgh/Nseg, Rec =
Nright [Niotar and F = Pre % Rec * 2/(Pre + Rec). Note that,
Nyighs is the number of right segmentation points calculated
by the segmentation methods, Ny, represents the total num-
ber of segmentation points generated by the segmentation
methods and Ny, denotes the number of transition clips
in a human motion sequence. F-Measure evaluates the per-
formance of segmentation methods from the perspectives of
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(a) (b)

FIGURE 5. The sensors on human body of CMU motion capture database.
(a) Sensor Locations from front view. (b) Sensor Locations from back
view.

segmentation precision and recall simultaneously, which can
provide more comprehensive evaluation [49].

A. EXPERIMENTS ON CMU MOTION CAPTURE DATABASE
CMU motion capture database contains common human
motions of 144 subjects, which are represented with skeletons
of 31 joints. 31 motion sensors are located in the joints to
capture the motion process of humans (Details in Fig. 5).
However, the CMU Motion Capture Database only utilizes
the motion sensors to collect the motion data [23], [50], [51].
In our experiment, we randomly select the motion sequences
of trail 1 to trail 5 in subject 15 of CMU motion cap-
ture database to evaluate the segmentation performances
of HMSS methods. The selected sequences range from
5524 frames to 22948 frames, and are mainly composed of
every-day behaviors (e.g. wandering, waving and cleaning
windows, etc.).

SNBS adopts the motion change measurement to detect the
transition clips in human motion time series, which provides
a precise description of the human motion change process.
From Table 1, we can find that SNBS achieves better per-
formances both in precision and recall compared to the data
driven HMSS methods (PCA, LPP and PPCA approaches.
From Fig. 6, we can find that SNBS provides more pre-
cise segment points compared to the PCA, LPP, PPCA and
TS-WMCS HMSS methods.

In the process of detecting segment points, SNBS takes the
current motion change and history motion changes into con-
sideration simultaneously. This mechanism can effectively
avoid the invalid segmentations in the same motion class.
As is shown in Table 1, the segmentation recall of TS-WMCS
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TABLE 1. Comparisons of precisions and recalls of 4 segmentation
methods on CMU motion database.

Ntotal Nseg Nright Pre (%) Rec (%) F (%)
SNBS 21 87 13 14.94 61.90 24.08
TS-WMCS 21 153 13 8.55 61.90 15.02
PCA 21 59 1 1.69 4.76 2.49
LPP 21 5 0 0 0 0
PPCA 21 91 7 7.69 33.33 12.50

FIGURE 6. An example of segmentation results on CMU database.

Data Capturing
Center
Posture Data | | RGB Data | | Depth Data

Posture Sensors Kinect

FIGURE 7. The structure of motion capture system for selecting human
motion data for DUT human motion dataset.

is the same as SNBS. However, the segmentation accuracy
of TS-WMCS is about 40% lower than SNBS. The main
reason is that, TS-WMCS generates too many invalid seg-
ment points. Note that, TS-WMCS generates nearly 2 times
segment cuts than that of SNBS. If evaluating the perfor-
mances of these segmentation methods from the perspectives
of precision and recall simultaneously, we can find that SNBS
outperforms the other three segmentation methods obviously
(over 35% ).

B. EXPERIMENTS ON DUT HUMAN MOTION DATASET

Compared to the CMU motion capture dataset, the DUT
human motion dataset is composed of more complex human
motions [34]. The motion data is captured by our multi-
sensors based human motion capture system. The structure of
the motion capture system is shown in Fig. 7. The motion cap-
ture system utilizes three kinds of sensors to collect motion
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(a) (b)

(©) (d

FIGURE 8. Samples of the DUT human motion dataset. (a) Greeting.
(b) Wrestling. (c) Daily exercise. (d) Motions under different moods.

data, which are posture sensors, RGB camera and depth sen-
sor. In the motion capture system, kinect is utilized to provide
the RGB camera and depth sensor. The multi-sensors based
human motion capture system can capture human posture
information, motion scene, and motion depth information
simultaneously. After capturing the motion data through dif-
ferent sensors, the SNBFF method is utilized to fuse the
multi-source data and to generate a uniform representation
for the human motion sequence.

The DUT human motion dataset not only contains single
human motion sequences but also contains human-human
interaction motion seqences. In this experiment, we simply
select 2 human-human interaction motion sequences, and
2 single human motion sequences. The 2 human-human inter-
action motion sequences contain different kinds of interac-
tions, including greeting and martial art. On the other hand,
the 2 single human motion sequences contain human exer-
cise motions and human motions under different moods. An
example of DUT human motion dataset is shown in Fig. 8.

The DUT human motion dataset contains more complex
and shorter human motions compared to the CMU motion
capture database, which requires the segmentation methods
to be more sensitive to the motion changes. The PCA, LPP
and PPCA approaches only focus on the data changes in
the time series [17], [18], and cannot achieve satisfying
segmentation results when the human motions are complex.
As is shown in Table 2, PCA, LPP and PPCA approaches
cannot accurately detect the motion changes in the experi-
ments. On the other hand, two physical driven segmentation
methods, SNBS and TS-WMCS approaches, can effectively
capture the motion changes in the time series. The main
reason is that physical driven segmentation methods are more
sensitive to the changes in human motion sequences.

SNBS employs motion change degree to evaluate the
changes of human motion sequences, which not only focuses
on the real-time motion change but on the history change
process of human motions in time series. Hence, SNBS can
effectively detect the motion changes in the time series.
According to Table 2, SNBS achieves better performance
in detecting the segment points compared to the other
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TABLE 2. Comparisons of precisions and recalls of 4 segmentation
methods on DUT human motion dataset.

Ntotal Nseg Nright Pre (%) Rec (%) F (%)
SNBS 14 42 9 21.43 64.29 32.14
TS-WMCS 14 24 4 16.67 28.57 21.05
PCA 14 2 0 0 0 0
LPP 14 3 1 7.14 33.33 11.76
PPCA 14 6 0 0 0 0

HMSS methods both in segmentation accuracy and recall.
TS-WMCS adopts the curvature-like descriptor to describe
the changes of human motion sequence, which only focuses
on the real-time changes in a human motion sequence. There-
fore, TS-WMCS can not accurately detect the transition clips
in human motion sequences, especially when the human
motions of a class are complex and change greatly. As is
shown in Table 2, the segmentation accuracy of TS-WMCS
is poorer than SNBS. The main reason is that SNBS can
evaluate human motion precess more comprehensively by
utilizing the hashing based data similarity to evaluate the
change degree of human motions.

V. CONCLUSION
This paper proposes a new sensor network oriented
method for HMSS named sensor network based segmenta-
tion (SNBS). SNBS analyzes human motion sequences from
the perspective of motion similarities, and employs hashing
method to construct motion change degree measurement to
reveal the motion changes in time series. Based on the con-
structed motion change measurement, the change process of a
human motion sequence is described with change degree time
series. The change degree considers the real-time change of
human motions and the history change process in the human
motion sequences simultaneously. To precisely evaluate the
change degree of human motions, a motion change evalu-
ation criterion is constructed in this paper. The constructed
evaluation criterion can effectively reveal the change points
in the human motion sequences and avoid meaningless cuts
for HMSS tasks. Experimental results validate the effective-
ness of the proposed method in detecting the change points
compared to several state-of-the-art methods.

Our future work will mainly focus on the following issues.

Firstly, how to employ supervised information to improve
the segmentation accuracy of HMSS.

Secondly, how to extend the HMSS methods to real-time
analysis of time-series.
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