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ABSTRACT Several recent contributions have envisioned the possibility of increasing currently exploitable
maximum channel capacity of a free-space link, both at optical and radio frequencies, by using vortex waves,
i.e., carrying orbital angular momentum (OAM). Our objective is to disprove these claims by showing that
they are in contradiction with very fundamental properties of Maxwellian fields. We demonstrate that the
degrees of freedom (DoFs) of the field cannot be increased by the helical phase structure of electromagnetic
vortex waves beyond what can be done without invoking this property. We also show that the often-
advocated over-quadratic power decay of OAM beams with distance does not play any fundamental role
in the determination of the channel DoF.

INDEX TERMS Channel capacity, degrees of freedom (DoF), orbital angular momentum (OAM), vortex
waves.

I. INTRODUCTION
Orbital angular momentum (OAM) beams are well-known
solutions to the Helmholtz equation, characterized by the
presence of an optical vortex located on the propagation axis,
where the intensity is zero and the phase is undefined [1], [2].
In the mathematical formulation such phase singularity is
expressed by a screw dislocation of the form eimϕ , where
ϕ is the azimuthal angle, while the topological charge m,
related to the orbital angular momentum carried by the beam,
determines the complexity of the helical structure of the phase
fronts. In the last few years the study of the electromagnetic
beams carrying OAM has generated great interest within the
scientific community involving different research fields, such
as nanotechnologies [1], [2], astronomy [3], [4], quantum
physics [5], [6] and telecommunications [7], [8]. In particular,
due to the orthogonality among vortex modes with different
charge m, the possibility of exploiting the wave vorticity in
a wireless communication context has been investigated in
optics and later at the radio frequencies (RF) as a means
to increase the information transfer at given frequency and
polarization [9]–[13].

It is relevant to note that waves carrying OAM can
be detected only as a result of spatial correlation, i.e. by
exploiting the finite size of the receiving device (antenna,
aperture). Conversely, as well known, the ability to shape

a beam depends on the size of the emitting device. This
classifies OAM-based communication transmission within
the class of systems exploiting spatial diversity or spatial
multiplexing. Indeed, the only way to increase a communica-
tion channel capacity is to resort to independent sub-channels
via spatial diversity/multiplexing. The OAM therefore seems
a very good candidate to increase the channel capacity.
However, several contributions [14]–[18] have risen doubts
on the practical advantages of OAM-based communications
over more conventional schemes, especially with respect to
power (for given channel noise characteristics), and con-
ventional line-of-sight (LOS) multiple-input-multiple-output
(MIMO) schemes for RF links. In particular, such works deal
with comparisons of the OAM-based multiplexing method
with MIMO [14] and other standard techniques [17], [18],
or claim that the use of vortex modes is not necessary to
encode different channels [15], [16].

A different and more general approach is presented here:
we show in fact that there is a fundamental physical reason
why no advantage of OAM can be expected with respect to
any other space diversity or space multiplexing technique.
Also, there is a limit to the channel capacity added by these
techniques that depends on the spatial extension of the emit-
ting and receiving devices. Because of the generality of this
result, an OAM-basedmultiplexing scheme cannot be exempt
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from this limit, whose validity does not depend on the nature
of the modes employed in the transmission. Here, we stress
this behavior by resorting to the concept of field degrees of
freedom (DoF), and our results are not limited to the paraxial
regime.

If one considers the total set of OAM beams - no matter
how this set is defined - the upper bound to the number
of independent signals that can be transmitted for a unit
bandwidth is just the number of linearly independent wave-
functions necessary to represent this set (irrespective of the
difficulty in practically receiving them). Thus, this number
clearly identifies the number of Degrees of Freedom (DoF) of
the radiated field, which in turn is directly related to channel
capacity as described above.

Finally, we address here for the first time the issue of the
duality between the OAM faster-than-quadratic power decay
and the exponential limitation of the DoF.

II. SIMULATION AND RESULTS
The concept of fieldDoF is crucial tomany applications of the
theory of electromagnetic wave phenomena, where it is well
assessed [19]–[22]. Quantitatively, the number of wavefunc-
tions necessary to represent the scattered field everywhere
in the surrounding space is bounded by the following upper
limit [20]:

NDoF ≤
4
π

(√
2k0a

)2
, (1)

where k0 = 2π/λ is the wavenumber, being λ the wave-
length, while a corresponds to the radius of the minimal ball
enclosing the sources.

We will discuss the issue of vortex waves DoF employing
two well-recognized embodiments of proposed OAM com-
munications, i.e. Bessel beams generated by a continuous
source distribution over an aperture (see Fig. 1), and a ring
of point sources (see Fig. 4).

The first case is a relevant example of visible light
wave communications and microwave aperture antennas
(e.g. reflectors), the second of RF/microwave antenna arrays
which are the alternative to reflectors; also, arrays are the
basis of MIMO systems.

A. TRUNCATED BESSEL BEAMS
We address the issue of physical limitations to OAM by
first considering the Bessel beams (BB) [23], that are well-
recognized OAM beams. We prefer this class of beams
because they are solutions of the Helmholtz equation every-
where and not only in the paraxial region, unlike other typical
OAM beams, such as the set of Laguerre-Gaussian modes,
often considered in previous works [17], [18]. Since BB
imply an infinitely extended source, in order to consider
physically realizable fields, we will focus on BB produced
by a finite-size aperture. Bessel Beams are defined via:

um(ρ, ϕ, z) = A J|m|(kρρ) eimϕ e−ikzz, (2)

where m is the topological charge of the beam, A is the
amplitude, J|m| is a Bessel function of the first kind with

FIGURE 1. (A) Intensity profile of a z-directed Bessel beam with
topological charge m = 1, wavelength λ = 0.1 m and transverse
wavenumber kρ = k0 sin(π/10), displayed in the xy plane at
z = 10 m (left) and in the zx plane at y = 0 (right). (B) Intensity profile of
a Bessel beam with topological charge m = 1, wavelength λ = 0.1 m and
transverse wavenumber kρ = k0 sin(π/10), truncated in the z = 0 plane
by a circular aperture of radius a = 1 m and displayed in the xy plane at
z = 10 m (left) and in the zx plane at y = 0 (right).

order |m| and k2ρ + k2z = k20 . BB produced by a finite-size
aperture are obtained by truncating their support and inserting
(2) in the generalized Kirchhoff diffraction integral [24],
which results in a closed form expression (see Appendix A
for the derivation). The intensity profiles of a representative
BB and of its truncated form are displayed in Fig. 1.

The usual claim is that independent signals can be trans-
ported by each of the linearly independent OAM beams.
The information content associated to the entire set of BB
can be assessed by representing the wavefields of individual
(truncated) BB over a spherical surface in terms of amultipole
expansion, i.e.:

uTm(r, θ, φ) =
∞∑
`=0

∑̀
p=−`

cm,p` (r) Y p` (θ, φ), (3)

where Y p` (θ, φ) are the standard spherical harmonics, being `
and p, with |p| ≤ `, the degree and the order of the function,
respectively, whereas cm,p` (r) are the expansion coefficients.
This allows to address a fundamental question: what is the
number of linearly independent wavefunctions (Y p` (θ, φ))
that are necessary to represent the given wavefield with a
prescribed accuracy? We have answered this question by
studying the behavior of the coefficients cm,p` (r) in (3). This
analysis is carried out in the Appendix B and the results
are graphically depicted in Fig. 2A and Fig. 3 (see also
the supplementary Fig. 5). In these figures the expansion
coefficients cm,m` , where the index p has been fixed to m
by the presence of a Kronecker delta (see Appendix B), are
displayed as a function of the spectral index n, which runs
over ` ≥ |m| according to a descending sort of the respective
coefficients. As it is clear from Fig. 3, such spherical expan-
sion coefficients have an exponential decay past a critical
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FIGURE 2. Spherical harmonics expansion of a Bessel beam with
topological charge m, wavelength λ = 0.1 m and transverse wavenumber
kρ = k0 sin(π/10). The beam source is a circle of radius a = 1 m in the
z = 0 plane and the expansion is performed over a sphere of radius
R = 5000 λ. (A) Expansion coefficients of Eq. (3), arranged by decreasing
magnitude for some values of m; an extended analysis of the m index can
be found in the inset, that shows the largest coefficient for each value
of m. Note the exponential decay past a critical index which is
independent of the beam order. (B) Power density decay along the
propagation axis. The solid lines show the numerically computed power
density as a function of the distance z ; the dashed lines report the
predicted polynomial power decay z−2|m|−2.

number Nc ∼ k0a, showing the same behaviour for all the
values of m (i.e., the vorticity of the field) included in the
range |m| . k0a (Fig. 2A). Note that we have considered
the entire space around the emitting source, thus providing
an upper bound for the total number of estimated DoF of the
source.

On the other hand, the drawback of the use of vortex waves
has been typically identified with the over-quadratic decay of
the associated power density [16], [25]. This decay is indeed
of the type z−2|m|−2 in the central region (Fig. 2B) for the BB
(see Appendix C for more details). We stress here that the
DoF limitation is instead of exponential nature and, unlike
the power shortcoming, it cannot be recovered in the presence
of (any) noise. This difference is further clarified by noting
that the very multipole fields ψ`m(r, θ, φ) (see Appendix D
for more discussions) show indeed an axial phase singularity
(see the supplementary Fig. 6) and the same power density
decay as all OAMbeams - otherwise said, OAMwaves ‘‘have
always been there’’ in the form of spherical waves. The
polynomial decay of constituent wavefunctions ψ is clearly

FIGURE 3. The expansion coefficients are arranged as in Fig. 2 and
displayed also as a function of k0 a, where a is the aperture radius, for
m = 1. The critical Nc index is evaluated where the curve of the
expansion coefficients becomes flat; the inset reports this as a function
of the source size k0 a.

unrelated to the exponential decay of the coefficients of any
wavefield representation in spherical waves past the number
of DoF.

In summary, these results state that it is not possible to
increase the capacity of a communication channel by exploit-
ing the helical phase structure of electromagnetic vortex
waves beyond what can be done without invoking this prop-
erty. It should also be noted that the above analysis, while
explicitly carried out for BB, is completely general, and
can of course be applied to the case of non-vortex waves.
Indeed, any wavefield can be represented by a spherical wave
expansion, whose coefficients will have a similar behavior as
derived above, provided that these wavefields are a solution
of the Helmholtz equation, as guaranteed by the spatial band-
limitedness of these Maxwellian fields [20].

B. RING DISTRIBUTION OF ELEMENTARY POINT SOURCES
While the BB analysis is also common in free-space optical
communications, in a Radio Frequency (RF) scenario spatial
diversity is more usually associated with the use of multiple
sources and receivers. To highlight the DoF importance in this
scenario, we have experimented with a discrete ring distri-
bution of linearly polarized elementary point sources in free
space. The reported discussion remains unchanged, in prin-
ciple, for two-dimensional arrays, where the OAM beams
can be approximately reproduced by means of a (standard)
array synthesis procedure. In that case however, the finite
discretization of the source results in degrading the phase
structure around the vortex for larger values of the topological
charge. Therefore, for the sake of clarity, we have limited
our discussion to the ring distribution that allows an accurate
reconstruction of vortex waves with arbitrary topological
charge.

For simplicity, we assume the sources to be located accord-
ing to a regular spacing on the ring. Aiming at assess-
ing an upper bound for the field DoF at a given distance,
we consider receiving points regularly arranged all over a
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FIGURE 4. SVD of the channel matrix H for the polar (ϑ) component of
the electric field, for a wavelength λ = 0.5 m and a ring radius a = 1 m.
In the plot σn are the singular values, while n is the corresponding
spectral index. We consider a ring distribution of N = 251 z-directed
elementary point sources surrounded by M = 11284 observation points
regularly arranged over a spherical surface. The change in slope of the
SVD curves occurs in correspondence of the effective number of DoF
predicted by the sampling theorem.

spherical surface with radius R around the emitting distri-
bution (inset of Fig. 4). With reference to common MIMO
systems considerations, we can define a multiple-input and
multiple-output channel via the individual links between the
n-th element in the ring distribution and the p-th sampling
point on the spherical observation domain. A corresponding
channel matrix H is introduced, whose entries Hpn contain
the electric field per unit current radiated by the n-th source,
evaluated at the p-th point and tangent to the observation
domain. In this context, the number of available DoF is
clearly given by the numerical rank of the matrix, obtained
by the singular value decomposition (SVD). The results are
shown in Fig. 4, where we can see an evident change in the
SVD slope that is found in agreement with the prediction
on the effective number of DoF [20]. We now consider the
channel matrix H̃ in which the inputs correspond to the array
synthesis of different vortex modes [11], [26] and the outputs
are still related to the sampling points on the observation
sphere. Simple algebra shows that such matrix can be written
as the product between the original channel matrix and the
discrete Fourier transform (DFT) matrix (see Appendix E
for more details). Since the vortex modes are obtained by
means of a linear combination of the fields of the elementary
point sources, the matrices H and H̃ share the same spectral
properties. In particular, we get for H̃ the same SVD curves
and thus the same effective number of DoF that was found
for H : hence, vortex modes represent nothing but a particular
basis choice in the space of the complex excitations.

III. CONCLUSIONS
We have discussed the field DoF as the upper bound of
the number of independent communication channels (for a
unit bandwidth and field polarization). About this, we have
shown that the effective number of DoF of an OAM beam

is bounded and only depends on the source geometry. Our
results demonstrate that any system attaining the theoreti-
cally predicted limit of DoF and using an arbitrary channel
discrimination strategy will not be outperformed in terms
of channel capacity by a discrimination method based on
vortex waves. This rules out the possibility of increasing the
maximum exploitable channel capacity of a communication
link with vortex waves. Our findings do not conflict with the
utilization of OAM in quantum encryption [5], [27], [28].
However, even in this case, the propagation link segment of a
quantum-encrypted communication exploiting OAM will be
subjected to the above-discussed limits to channel capacity
per unit bandwidth and polarization.

APPENDIX A
TRUNCATED BESSEL BEAMS
Neglecting the harmonic time dependence eiωt , a z-directed
Bessel beam, characterized by an optical vortex of integer
charge m at ρ = 0, can be expressed in the following
form [23]:

um(ρ, ϕ, z) = A J|m|(kρρ) eimϕ e−ikzz, (4)

where A is the amplitude, J|m| is a Bessel function of the first
kind with order |m|, while kρ = k0 sinα and kz = k0 cosα are
the radial and longitudinal wavenumbers, being k0 = 2π/λ
the modulus of the wave vector and α the beam axicon angle.
In this section we consider an ideal Bessel beam of charge m
truncated by a circular aperture of radius a a � λ, placed in
the z = 0 plane. The aperture can be thought as an Huygens
source and the beam generated at an observation point P
of spherical coordinates (r, θ, φ) can be evaluated using the
Huygens-Fresnel integral [24]:

uTm(r, θ, φ) =
i
λ

2π∫
0

dϕ

a∫
0

ρ dρ um(ρ, ϕ, 0)

× cos θ
exp(−ik0|ErP − Er S|)
|ErP − ErS|

, (5)

where the integration covers the whole aperture area and
indicates the position of a point S of coordinates (ρ, ϕ) on
the circular aperture. By exploiting the circular symmetry of
the aperture, (5) for r � a acquires the following form:

uTm(r, θ, φ) ≈
i
λ

2π∫
0

dϕ

a∫
0

ρ dρ um(ρ, ϕ, 0) cos θ

·
exp {−ik0[r − ρ sin θ cos(ϕ − φ)]}

r
. (6)

The integration over the angular variable ϕ can be easily
performed by taking into account the reported integral repre-
sentation of the Bessel function [29]:

Jn(ξ ) =
1
2π

π∫
−π

exp(−inx + iξ sin x)dx for n > −1. (7)
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As a result, (6) becomes:

uTm(r, θ, φ) ≈ A i|m|+1 k0 cos θ
e−ik0r

r
eimφ

·

a∫
0

ρ dρ J|m|(k0ρ sinα) J|m|(k0ρ sin θ ). (8)

Since the integral over ρ in (8) corresponds to the so-called
Lommel’s integral [30], a closed form for the truncated Bessel
beam uTm can be obtained when θ 6= α:

uTm(r, θ, φ) ≈ A i|m|+1 cos θ
e−ik0r

r
eimφ

·
[
sin θ J|m|−1(k0a sin θ ) J|m|(k0a sinα)+

− sinα J|m|−1(k0a sinα) J|m|(k0a sin θ )
]

·
a

sin2 α − sin2 θ
, (9)

and also when θ = α:

uTm(r, θ, φ) ≈ A i|m|+1 k0 cosα
e−ik0r

r
eimφ

a2

2

·

{[
J|m|(k0a sinα)

]2
+

− J|m|−1(k0a sinα) J|m|+1(k0a sinα)
}
. (10)

The so derived truncated Bessel beams contain the infor-
mation about the size of the generating circular aperture.
However, it is important to emphasize that the aperture
radius a imposes a constraint on the topological charge m
which limits to a finite number the Bessel beams with dif-
ferent m that can successfully propagate without giving rise
to evanescent contributions [31] (see the inset of Fig. 2A).

APPENDIX B
BESSEL BEAMS MULTIPOLE EXPANSION
The number of DoF associated to a truncated Bessel beam
of charge m can be identified with the minimum number of
orthogonal wavefunctions necessary to provide an accurate
field description in a given domain. The choice to consider
as the observation manifold a sphere of radius R� a around
the circular source makes the spherical harmonics Y p` (θ, φ)
the natural orthonormal basis for representing the resultant
wave. According to these considerations, we perform the
spherical harmonics expansion of a truncated Bessel beam
with charge m:

uTm(R, θ, φ) =
∞∑
`=0

∑̀
p=−`

cm,p` (R) Y p` (θ, φ), (11)

where the expansion coefficients are given by the following
expression:

cm,p` (R) =

2π∫
0

dφ

π∫
0

dθ sin θ u T
m(R, θ, φ) Y

p
`

∗(θ, φ), (12)

while the spherical harmonics Y p` (θ, φ) of degree ` and
order p, with |p| ≤ `, are defined as:

Y p` (θ, φ) =

√
(2`+ 1)

4π
(`− p)!
(`+ p)!

Pp`(cos θ ) e
ipφ, (13)

being Pp`(cos θ ) the associated Legendre polynomials.
The integral over φ in (12) yields 2πδmp, where the

Kronecker delta arises from the presence of the exponential
terms in expressions (9) and (13). Hence, the spherical har-
monics expansion of uTm becomes:

uTm(R, θ, φ) =
∞∑

`≥|m|

cm,m` (R) Ym` (θ, φ). (14)

The expansion coefficients, sorted in ` according to the
decreasing value of their modulus, show the same behaviour
when studied as a function of m (Fig. 2A). The number Nc of
coefficients cm,m` (R) which are not exponentially suppressed
(Fig. 3) indicates how many spherical harmonics are needed
to represent the radiated field over the considered spherical
manifold, at fixedm. The error performed in such reconstruc-
tion by considering the N greatest expansion coefficients can
be written as:

εNm(R, θ) =

∥∥∥∥∥u T
m(R, θ, φ)−

N∑
n=1

cm,mn (R) Ymn (θ, φ)

∥∥∥∥∥, (15)

where the index n varies on the set ofN values of the spherical
harmonic degree ` sorted in descending order according to
the modulus of the respective expansion coefficients cm,m` (R).
The absolute error defined in (15) slightly varies with the
angle θ (Fig. 5A), while does not depend on the azimuthal
angle φ. By classifying as relevant the coefficients above
the exponential fall, we explicitly verified that the truncated
Bessel beams are actually reproduced within a small error,
which is found to be lower than 10−16 for the m = 1 case
(Fig. 5).

In conclusion, the behaviour of the expansion coefficients
is the same for all values of m and only Bessel beams with
|m| . k0a can propagate through the aperture. Hence, our
results clearly indicate that the number of DoF is bounded
and only related to the source geometry, even if the radiation
is emitted by means of vortex waves.

APPENDIX C
PARAXIAL z-DECAY
Let us now consider the far-field evolution of the above
derived truncated Bessel beams with respect to the propa-
gation distance. The behavior of the modulus of (9) in the
paraxial region, i.e. a small transverse region around the beam
axis at great distances z from the aperture, can be obtained by
introducing the following approximations:

sin (θ) ≈ θ, tan (θ) ≈ θ, and cos θ ≈ 1. (16)
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FIGURE 5. (A) Absolute error εN
m(R, θ) as a function of the angle θ , for

m = 1, λ = 0.1 m, a = 1 m, R = 500 m and N equal to the number of
expansion coefficients above the exponential decay. (B) Maximum value
of the error εN

m(R, θ) with respect to the angle θ as a function of N , for
m = 1, λ = 0.1 m, R = 500 m and three different values of the aperture
radius a.

According to (16), z = r cos θ ∼ r and the modulus of (9)
becomes:∣∣uTm(r, θ, φ)∣∣ ≈ A

1
z

a

sin2 α

∣∣θJ|m|−1(k0aθ ) J|m|(k0a sinα)+
− sinα J|m|−1(k0a sinα) J|m|(k0aθ )

∣∣ , (17)

where θ ∼ z−1. By taking into account the asymptotic forms
of the Bessel functions for small arguments [32]:

Jn(x) ∼
1

0 (n+ 1)

(x
2

)n
for n ≥ 0 and x ≈ 0, (18)

Jn(x) ∼
(−1)n

0 (|n| + 1)

(x
2

)|n|
for n < 0 and x ≈ 0, (19)

the paraxial behavior of the considered truncated Bessel
beams with respect to the distance z directly follows:∣∣uTm(r, θ, φ)∣∣ ∼ z−1 ·

(
θ · θ ||m|−1| + θ |m|

)
∼ z−|m|−1, (20)

leading to the polynomial power decay z−2|m|−2 (see Fig. 2B).

APPENDIX D
PARAXIAL EXPANSION OF THE SCALAR
MULTIPOLE FIELDS
Let us consider the Helmholtz equation for a scalar beam ψ

which is a function of the spatial coordinates:

∇
2ψ + k20ψ = 0, (21)

FIGURE 6. Phase (upper row) and intensity (lower row) profiles of the
multipole fields (23) for ` = 2, |m| ≤ ` and k0 = 1 m−1, displayed in the
xy plane at z = 1 m.

where∇2 is the Laplace operator, k0 = 2π/λ is thewavenum-
ber and λ the wavelength. If we move to a spherical coordi-
nate system, (21) becomes:

1
r
∂2 (rψ)
∂r2

+
1

r2 sin θ
∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
+ k20ψ = 0, (22)

and its general solution can be written in terms of the follow-
ing multipole fields:

ψ`m (r, θ, φ) = b` (k0r)Ym` (θ, φ), (23)

being b` (k0 r) a linear combination of the spherical Bessel
j` (k0 r) and y` (k0 r) functions and Ym` (θ, φ) the spherical
harmonics. Fig. 6 shows the phase and the intensity profiles
of (23) for ` = 2. Making use of the transformation from
spherical to cylindrical coordinates and taking into account
the paraxial limit z� ρ such that cos θ ≈ 1 and sin θ ≈ θ ≈
ρ/z, we get:

ψ`m (ρ, ϕ, z) ∼
(±i)−`−1

k0z

√
(2`+ 1)

4π
(`− m)!
(`+ m)!

·Pm`

(
cos

ρ

z

)
exp (±ik0z+ imϕ), (24)

where Pm` represent the associated Legendre polynomials,
the definition b` (k0 z) = j` (k0 z) ± iy` (k0 z) has been
introduced and the following asymptotic expression has been
considered [24]:

b` (k0r) ∼
(±i)−`−1

k0z
exp (±ik0z). (25)

In order to guess the asymptotic behaviour of the multipole
fields in the paraxial region, we must first provide an estima-
tion to Pm` (cos θ) for small θ . This can be done starting from
the general Legendre equation:(

1− ξ2
) d2Pm` (ξ)

dξ2
− 2ξ

dPm` (ξ)

dξ

+

[
` (`+ 1)−

m2

1− ξ2

]
Pm` (ξ) = 0 (26)
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and considering the change of variable ξ = cos θ . If we then
perform the paraxial limit of the resulting equation, we get:{
θ2

d2

dθ2
+ θ

d
dθ
+

[
` (`+ 1) θ2 − m2

]}
Pm` (cos θ) = 0,(27)

which is the Bessel equation in the variable
√
` (`+ 1)θ .

Since Pm` (cos θ) is not singular in θ = 0, we infer the
following asymptotic relation:

Pm` (cos θ) ∼ J|m|
(√
` (`+ 1)θ

)
∼ θ |m| ∼

(
ρ

z

)|m|
,

(28)

where Jν represents the Bessel function of the first kind,
whose asymptotic expansion is provided by (18) and (19), and
all proportionality constants have been neglected for brevity.
Lastly, taking into account (24) and (28), we are able to
express the sought-for paraxial limit of the multipole fields:

lim
z→∞

ψ`m (ρ, ϕ, z) ∝
ρ|m|

z|m|+1
exp (±ik0z+ imϕ). (29)

Eq. (29) tells us that, interpreting the functionψ`m in terms
of a cylindrical beam and analyzing its paraxial contribution,
multipole fields can be seen as vortex modes characterized
by the usual polynomial power decay z−2|m|−2 in the cen-
tral region of the field intensity profile. We emphasize that
such polynomial power decay should not be confused with
the exponential decay of the expansion coefficients, which
enables the estimation of the number of expected DoF.

APPENDIX E
RING DISTRIBUTION OF ELEMENTARY POINT SOURCES
In this section we provide all the necessary details relative
to the singular value decomposition (SVD) of the channel
matrix for a ring distribution of N z-directed elementary
point sources. For the sake of clarity, we report the ana-
lytic expression of the electric field radiated by an element
n of the distribution, evaluated at an arbitrary point Er =
(r sin θ cosφ, r sin θ sinφ, r cos θ ) in the space:

EEn(r, θ, φ) = V0ξn
exp (−ik0|Er − Ern|)

4π |Er − Ern|
sin θn θ̂n, (30)

where V0ξn represents a suitable voltage coefficient and Ern
corresponds to the displacement of the element with respect
to the origin of the Cartesian coordinate system. Moreover:

θ̂n = (cos θn cosφn, cos θn sinφn,− sin θn) (31)

and θn, φn are the polar coordinates identified by (Er − Ern)
in the source element’s reference frame. Being interested in
a circular distribution composed by N equispaced sources,
Ern = a(0, cosϕn, sinϕn), where a is the radius of the ring and
ϕn = 2π (n − 1)/N describes the azimuthal position of the
n-th source. The global electric field of the ring distribution
is then simply given by:

EE(r, θ, φ) =
N∑
n=1

EEn(r, θ, φ). (32)

Let’s now consider a spherical observation surface with
radius R, placed around the ring distribution. We choose
M sampling points regularly arranged over the surface at
the positions Erp = (R sin θp cosφp,R sin θp sinφp,R cos θp),
where the p index runs from 1 to M . The channel matrix
which relates the sets of N complex source excitations with
the correspondingM electric field values tangent to the obser-
vation manifold in each sampling point is given by:

−→
H pn = V0

exp
(
−ik0|Erp − Ern|

)
4π |Erp − Ern|

sin θnθ̂n ·
(
θ̂pθ̂p + φ̂pφ̂p

)
,

(33)

where:

|Erp − Ern|

=

√
R2 + a2−2aR(sin θp sinφp cosϕn+cos θp sinϕn)

(34)

and the dyadic form
(
θ̂pθ̂p + φ̂pφ̂p

)
represents a projector on

the tangent plane to the sphere. Explicitly:

θ̂n ·
(
θ̂pθ̂p + φ̂pφ̂p

)
=
[
cos θn cos θp cos(φn − φp)+ sin θn sin θp

]
θ̂p

+ cos θn sin(φn − φp)φ̂p. (35)

By means of the SVD procedure, we write the channel
matrix in (35) in terms of the product H = U6V †, where U
andV are unitary squarematrices and6 represents a diagonal
rectangular matrix whose entries correspond to the non null
singular values of H sorted in decreasing order. The singular
value decomposition of the channel matrix in Eq. (35) enables
one to get direct access to its spectral content and thus to
extrapolate the effective number of DoF.
In the analysis reported above, the columns of the channel

matrix H correspond to excitations with all but one zero
coefficients, i.e. each element transmitting as standalone.
Now, we define a new channel matrix H̃ in which the multiple
inputs are coded as vortex modes instead of single elementary
sources. In the simple case of a ring distribution ofN radiating
elements, the n-th source excitation coefficient for the vortex
mode with azimuthal index m is given by:

ξ (m)n =
1
√
N

exp(imϕn). (36)

It is an easy task to show that the vortex channel matrix H̃
can be written as the product between the original matrix H
and the discrete Fourier transform (DFT) matrix 3:

H̃pj =
∑
n

Hpn3jn. (37)

In (37), the DFT matrix can be written as 3jn = ξ
(mj)
n ,

where the j index runs from 1 to N and the following conven-
tion has been introduced:

mj =


−
N
2
+ j− 1 : N even;

−
N − 1

2
+ j− 1 N odd.

(38)
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FIGURE 7. The OAM content (m index) of the channel matrix (33)
spectrum is displayed via probability histogram for some of the first right
singular vectors (labelled by the spectral index n). Due to the directivity of
the considered source elements, spurious vortex contributions naturally
emerge in the channel spectrum.

It has been proven [14] that, in the simple case in which
the elementary sources over the ring are replaced by ideal
isotropic radiators, the set of excitations yielding the OAM
modes directly provides the spectral basis for the correspond-
ing channel matrix. However, elementary linearly polarized
dipoles break the degenerate symmetry of the isotropic case
and the interpretation of vortex modes as singular vectors of
the channel matrix needs to be revisited. This circumstance
can be brought to light by analyzing the spectral projection of
the singular vectors of the channel matrix (33) on the OAM
basis vectors (36), as reported in Fig. 7. It can be shown
that one possible solution for restoring the lost circular sym-
metry is provided by the introduction of circularly polarized
sources.
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