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ABSTRACT Effective fault diagnosis for mission-critical and safety-critical systems has been an essential
and mandatory technique to reduce failure rate and prevent unscheduled shutdown. In this paper, to realize
fault diagnosis for a closed-loop single-ended primary inductance converter, a novel optimization deep
belief network (DBN) is presented. First, wavelet packet decomposition is adopted to extract the energy
values from the voltage signals of four circuit nodes, as the fault feature vectors. Then, a four-layer DBN
architecture including input and output layers is developed. Meanwhile, the number of neurons in the two
hidden layers is selected by the crow search algorithm (CSA) with training samples. Not only the hard
faults such as open-circuit faults and short-circuit faults but also the soft faults such as the component
degradation of power MOSFET, inductor, diode, and capacitor are considered in this study. Finally, these
fault modes are isolated by CSA-DBN. Compared with the back-propagation neural network and support
vector machine fault diagnosis methods, both simulation and experimental results show that the proposed
method has a higher classification accuracy that proves its effectiveness and superiority to the other
methods.

INDEX TERMS Crow search algorithm, dc-dc power converter, deep belief network, fault diagnosis, feature
extraction, wavelet packets.

I. INTRODUCTION
DC-DC converters have beenwitnessing remarkable progress
in various fields such as aerospace, photovoltaic/wind power
generation, smart grid and electric vehicles [1], [2]. With the
increase in switching frequency and power level of the power
electronic converters (PECs), power electronic systems such
as DC-DC converters are becoming more complex and
prone to performance degradation. Critical failures can occur
when they are exposed to harsh operating and environmental
conditions such as high temperature, over current, over volt-
age, mechanical vibration, electromagnetic stress and radi-
ation. Additionally, redundancy strategies are sometimes
not applicable or cost effective on faulty PECs due to the
constraints on their volume and fault tolerance. There-
fore, effective fault diagnosis techniques have emerged as
an essential advanced technology to prevent DC-DC con-
verters from malfunctioning in many mission-critical and
safety-critical systems, which can improve the reliability and

availability of the system and reduce the downtime and main-
tenance cost [3].

In general, fault modes in power electronic circuits are
mainly classified into two categories: namely, structural faults
(hard faults) and parametric faults (soft faults). Two types of
hard faults are generally observed: short circuit fault (SCF)
and open circuit fault (OCF). A hard fault could cause a
distinct and catastrophic effect such as a sudden voltage
drop or current rise in the power electronic system, while a
soft fault such as parameter drift may cause a gradual decrease
in system performance as a result of components wearing out
or aging [4]. However, research shows that a soft fault not be
fixed in time could evolve into a hard fault. In other words,
more attention should be paid to both hard and soft faults
of PECs, as they have become an issue in research regard-
ing prognostics and health management (PHM). According
to a questionnaire on the reliability of power electronics
based on over 200 products from 80 companies, the power
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semiconductor devices and capacitors are the two major
components that are responsible for more than 50% of the
breakdowns in PECs [5], [6], as shown in Fig. 1.

FIGURE 1. Failure distribution and ranking of power electronic converters.

Harada et al. [7] perceived that the equivalent series resis-
tance (ESR) of the electrolytic capacitor increases as the
capacitor deteriorates, and the ESR can be estimated utilizing
the knowledge that ripple varies proportionally to the increase
in ESR for the forward-type converters and Buck-Boost con-
verters. Amaral and Cardoso [8] proposed an on-line fault
detection strategy for electrolytic capacitors based on the
relationship between input current and output voltage ripple.
Yao et al. [9] deduced the ESR and capacitance computa-
tional formulas from analyzing the capacitor voltage ripple
and designed a measurement system based on DSP without
additional current sensor. This method has an advantage that
only two voltage values of the output capacitor at differ-
ent moments need to be sampled within a switching cycle,
and the ESR and capacitance variation can be monitored
at different working conditions. Sun et al. [10] presented a
parameter estimation method based on particle swarm opti-
mization algorithm to complete multi-component (including
inductor, capacitor and power MOSFET) soft fault diagno-
sis. Wang et al. [11] proposed an OCF diagnosis method
for power MOSFETs of brushless DC motor (BLDCM) by
detecting line voltage differences during the PWM_ON and
PWM_OFF time. An accelerated test system under power
cycling was developed to trigger the failure mechanism in
regards to die-attach damage, due to mismatch on the coef-
ficient of thermal expansion of the different elements in the
component’s packaged structure. The variation of the drain-
to-source on-resistance was identified as the failure precursor
of the power MOSFET, which was dependent on junction
temperature [12], [13]. A hybrid method based on two sub-
systems was proposed in [14] to diagnose both the OCF and
SCF for non-isolated DC-DC converters.

Most of these diagnostic techniques can be classified as
model-based [11], [14] and data-driven approaches [15], [16].
The model-based approaches have to take into account the
physical processes and interactions between components in
the system; however, accurate mathematical representations
in some occasions could be difficult to obtain. Data-driven
approaches could be used to directly analyze the measured
signals and obtain fault features, thereby implementing fault
detection and classification using intelligent algorithms. Cur-
rently, intelligent pattern recognition algorithms can provide

effective fault detection and diagnosis capability. Neural net-
works are commonly used to solve classification or regres-
sion problems, which can be applied to power electronics
fault detection and diagnosis as well [15]. Dhumale and
Lokhande [16] proposed an ANN fault diagnostic strategy
combined with Park’s vector transform and discrete wavelet
transform (DWT) to identify both single and multiple open
switch faults when the voltage source inverters operate under
variable load conditions. However, these intelligent methods
such as the back propagation neural network (BPNN) and the
support vector machine (SVM) are named as shallow learning
networks, which cannot complete the sophisticated functions
representing. Thus, when the fault features are complicated
and have higher dimensions, the BPNN and SVM may have
weak ability to classify these fault modes.

Fortunately, the concept of deep belief network (DBN) put
forward by Hinton et al. [17] in 2006 was a new area of
machine learning research, which overcame the limitations
of shallow network methods. Due to multi-layer structure of
the DBN, it can provide more extensive modeling capacity
to form a specific feature vector which is more suitable for
classification. DBN has already been applied successfully in
many fields, such as information retrieval [18], nature lan-
guage processing [19] and data classification [20]. However,
the DBN model is vulnerable to the change in the number of
network layers and the size of hidden units, and the perfor-
mance is not stable. Coates et al. [21] conducted extensive
experiments to demonstrate that the number of hidden nodes
in the model may be more important than the factors of
learning algorithm or the depth of the model. Therefore,
in this paper, we propose a novel fault diagnostic method for
the single-ended primary-inductor converter (SEPIC) based
on the crow search algorithm and deep belief network (CSA-
DBN). The CSA is used to optimize the number of hid-
den nodes in DBN, which is proposed by Askarzadeh [22]
in 2016 and presents better performance, avoiding critical
flaws such as the premature convergence to sub-optimal solu-
tions and the limited exploration exploitation balance in the
search strategy. Both the hard faults and soft faults diagnosis
for the power converter are analyzed and conducted. Simu-
lation and experiment results show that the proposed method
provides higher accuracy in comparison with the BPNN and
SVM methods.

II. FAULT DIAGNOSIS BASED ON DEEP BELIEF NETWORK
A. DEEP BELIEF NETWORK (DBN)
The deep belief network (DBN) is a probabilistic generative
model that consists of multiple stacked Restricted Boltzmann
Machines (RBMs). That means RBMs are the fundamental
blocks of DBN. An individual RBM contains a layer of
visible neurons and a layer of hidden neurons. The neurons
within each layer are connected only between the visible layer
and the hidden layer; in other words, there are no visible-
visible or hidden-hidden connections in the same layer.
The schematic architecture of an RBM with n visible units
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FIGURE 2. An RBM with n visible neurons and m hidden neuron.

v = (v1, v2, . . . , vn) andm hidden units h = (h1, h2, . . . , hm)
is shown in Fig. 2, where v and h both take binary stochastic
values v ∈ {0, 1}n, h ∈ {0, 1}m.
For the RBM model, the energy function of the joint con-

figuration (v, h) is given by:

E(v,h) = −aT v− bTh− vTwh

= −

n∑
i=1

aivi −
m∑
j=1

bjhj −
n∑
i=1

m∑
j=1

viwijhj (1)

where vi and hj represent the states of the ith neuron in the
visible layer and jth neuron in the hidden layer, respectively;
ai and bj represent the bias of vi and hj, respectively; wij is the
symmetric interaction term of the connection weight between
vi and hj. The probability distribution of every possible pair
of a visible and a hidden vector can be obtained through the
energy function:

p(v,h) =
1
Z
exp(−E(v,h)) (2)

where Z is a normalization constant or partition function,
as expressed in (3), which can be calculated by summing over
all possible pairs of visible and hidden vectors.

Z =
∑
v

∑
h

exp(−E(v,h)) (3)

Additionally, the margin distribution that RBM assigns to
a visible vector of the network is given by the following
equation:

p(v) =
∑
h

p(v,h) =
1
Z

∑
h

exp(−E(v,h)) (4)

Because there are no connections in the same layer,
the conditional probability distribution of visible neurons v
and hidden neurons h can be expressed as:

p(hj = 1|v) = σ (bj +
n∑
i=1

wijvi) (5)

p(vi = 1|h) = σ (ai +
m∑
j=1

wijhj) (6)

where σ (x) is the logistic sigmoid function.

σ (x) =
1

1+ e−x
(7)

It is noteworthy that the probability of a training vector can
be increased by adjusting the weights and biases to lower

the energy of that vector, whereas the probability can be
decreased by adjusting them to increase the energy. There-
fore, the model parameters of the RBM can be estimated with
stochasticmaximum log-likelihood. The derivative of the log-
likelihood with respect to the model parameters wij, vi and hj
can be derived from (4) and given as follows:

∂ log p(v)
∂wij

= p(hj = 1|v)vi −
∑
v

p(v)p(hj = 1|v)vi

= 〈vihj〉data − 〈vihj〉model (8)
∂ log p(v)
∂ai

= vi −
∑
v

p(v)vi = 〈vi〉data − 〈vi〉model (9)

∂ log p(v)
∂bj

= p(hj = 1|v)−
∑
v

p(v)p(hj = 1|v)

= 〈hj〉data − 〈hj〉model (10)

Here, 〈·〉data and 〈·〉model denote the expectation with
respect to the data distribution and the model, respectively.
However, the expectation under the model distribution is
intractable to be calculated due to the partition function Z.
To address this concern, a training method called contrastive
divergence (CD) was proposed by Hinton et al. [17]. For
RBM training, the CD learning with one-step (CD-1) of
Gibbs sampling has been shown to work extremely well.
First, the training data are given to the visible units vi, and the
hidden states hj are obtained by (5). Then the obtained hidden
states are used to produce the reconstruction of visible states
using (6). Thus, based on (8-10), the update rule of the model
parameters are presented as follows:

1wij = α(〈vihj〉data − 〈vihj〉recon) (11)

1ai = α(〈vi〉data − 〈vi〉recon) (12)

1bj = α(〈hj〉data − 〈hj〉recon) (13)

where α ∈ (0, 1) is a learning rate and refers to the expecta-
tion over the reconstructed data.

FIGURE 3. Multilayered architecture for the deep belief network.

As mentioned above, the DBN is constructed by several
RBMs. For example, Fig. 3 shows that three RBMs are
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stacked to construct a DBN. The first and second layers
(input layer and hidden layer 1) are the visible and hidden
layers of RBM 1, respectively. It is important to note that
the first layer is often considered to be a data input layer
of the DBN. The second layer (hidden layer 1) and the third
layer (hidden layer 2) form the visible and hidden layers of
RBM 2, separately. Also, the third and fourth layers (hidden
layer 2 and 3) form the visible and hidden layers of RBM 3.

The overall learning process of the DBN classifier model
mainly contains two steps. In step (1), each successive layer
is trained in an unsupervised greedy layer-wise fashion as the
RBMs learn by the CD-1 algorithm, which means the DBN
learning process is performed by the successive learning of
each individual RBM. When the training of the first RBM
(RBM 1) is complete, the process continues for RBM 2
and RBM 3. In step (2), which is performed after layer-by-
layer pre-training of the DBN, all the parameters (weights
and biases) of the pre-trained model can be fine-tuned by a
supervised back-propagation algorithm. The parameters of
the DBN model are updated in order to obtain an optimal
classifier and improve the accuracy.

B. OPTIMIZATION OF THE DBN USING THE CROW
SEARCH ALGORITHM (CSA)
Although the DBN has been successfully applied in fields
such as speech recognition, image processing and classifica-
tion, the performance of the DBN model is greatly related to
its architecture. Coates et al. [21] noted that the number of
hidden neurons in the DBN model may be more important
than the other factors of the learning algorithm or the depth
of the model. Additionally, few literatures could provide an
effective strategy on how to choose the number of hidden
layers. Therefore, in this paper, a DBNwith two hidden layers
is developed for the fault diagnosis of power converters.

The crow search algorithm (CSA) is a recently proposed
evolutionary computation technique based on the behavior
in flocks of crows [22]. Compared with other evolutionary
algorithms, CSA presents superior performance in that it has
a greater global searching capability and faster convergence
in the search strategy. Crows are considered to be one of the
most intelligent animals in the world; thus, their behavior can
provide interesting heuristics. One of the intelligent behaviors
of the crows is that they can hide their excess food in specific
hiding places and recall the hiding location when necessary.
On the other hand, crows can be greedy in that they follow
other crows to their hiding places and steal their food once
the owner leaves. As a result, crows would take extra pre-
cautions in order to prevent their food from being pilfered.
The CSA tries to mimic this intelligent behavior to provide
an efficient methodology to solve optimization problems.
Therefore, CSA is adopted in this work to determine the
optimal number of hidden layers in the DBN.

It is assumed that in a flock of N crows in the CSA,
the position of crow i at iteration k is given by xki . The hiding
place for the food is memorized by crow i. The crow moves
in the search place and tries to find the best food source,

which is defined as mki . There are two probable scenarios in
the searching approach of the CSA. The first one is that the
owner crow j of the food source does not know that it has been
followed by thief crow i; therefore, the thief crow reaches the
hiding place of the owner crow. The updating process of the
crow thief’s position is given by:

xk+1i = xki + ri × fl
k
i × (mkj − x

k
i ) (14)

where ri is a random number between 0 and 1, fl is a parameter
that controls the flight length.

The other probable scenario is that the owner crow j knows
that it is followed by the thief crow i; thus, the owner crow
will deceive crow i by going to another position within the
search space. The position of crow i is updated by a random
position. These two cases in the CSA can be summarized by
the following expression:

xk+1i =

{
xki + ri × fl

k
i × (mkj − x

k
i ), rj ≥ AP

a random position, otherwise
(15)

where the parameter AP is named as the awareness proba-
bility in range [0, 1]. Unlike other search algorithms, there
are two specific parameters in CSA: flight length (fl) and
awareness probability (AP). The parameter fl determines the
step size of themovement towards the hiding place of interest.
When fl is between 0 and 1, the new position of a crow will
be between its current position and the position of the hiding
place of interest. If the value of fl is larger 1, the crow can visit
beyond the hiding place of interest. The parameter AP pro-
vides a balance between diversification and intensification.
Small values of AP increase intensification and large values
increase diversification.

The required steps of CSA are presented in the flow chart
in Fig. 4. The first step is the initialization of the CSA,
including fl, AP, flock size and stopping criteria. The next
step is to randomly initialize the crow positions and evaluate
them by computing the fitness function. The positions are
uniformly distributed in the search space. After that, the new
positions are generated according to (15). All the new posi-
tions are evaluated in the objective function, and the memory
is updated. Finally, the stopping criteria are verified in order
to terminate or continue with the iterative process.

An overview of the fault diagnostic method for the SEPIC
converter is schematically represented in Fig. 5, and the gen-
eral procedure for SEPIC fault diagnosis using the CSA-DBN
is illustrated as follows:

Step 1: Define the normal operating condition and fault
modes (including hard faults and soft faults) of the
SEPIC circuit;

Step 2: Collect voltage signals and extract the fault feature
vector for hard and soft faults based on wavelet
packet energy (WPE) of the entire samples;

Step 3: Divide the fault samples into training samples and
testing samples, and initial the architecture of the
DBN;
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FIGURE 4. The flow chart of the CSA algorithm.

FIGURE 5. Framework of the proposed fault diagnostic approach based
on CSA-DBN.

Step 4: Use the CSA to optimize the DBN classifier, and
determine the neurons number in the first and sec-
ond hidden layers on the training samples;

Step 5: Classify the testing samples of hard and soft fault
modes using the CSA-DBN;

Step 6: Calculate the classification accuracy and give the
fault diagnosis results;

It is worth noting that the fault diagnostic rate is generally
viewed as the optimization objective; however, in this paper,
the misclassification error is defined as the fitness function in
the CSA-DBN, which turns this issue to solving a minimum
optimization problem.

III. FAILURE ANALYSIS AND FEATURE
EXTRACTION OF THE SEPIC
The single-ended primary-inductor converter (SEPIC) is a
kind of DC-DC converter that enables a DC voltage to be
efficiently converted to either a lower or higher voltage.
SEPIC converters are especially useful for PV maximum
power tracking purposes, in which the objective is to draw
the maximum possible power from solar panels at all times,
regardless of the load. In this paper, a closed-loop SEPIC is
considered using the controller UC3843, as shown in Fig. 6,
which converts an input voltage of 28V DC to an output
voltage of 12V DC with a switching frequency of 20 kHz.
Additionally, the circuit parameters of the SEPIC converter
under the normal condition are shown in Table 1. It is worth-
while to note that the symbols VD and VT represent the diode
and the power MOSFET in Fig. 6, respectively.

FIGURE 6. Schematic diagram of the closed-loop SEPIC converter.

A. FAILURE ANALYSIS AND EQUIVALENT MODEL OF
KEY COMPONENTS
In practical industrial applications, environmental stress and
operating stress such as high temperature, mechanical vibra-
tion, over voltage or switching impulse during regular opera-
tions may cause components aging which could affect power
converters characteristics like output voltage ripple, switch-
ing loss, conduction loss, etc. Therefore, analysis of these
electronic components failure is an essential part for the PECs
fault diagnosis. In this section, the potential failure mode
and failure mechanism of common electronic devices are
briefly illustrated in Table 2. Similarly, the most vulnerable
components such as electrolytic capacitor, schottky barrier
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TABLE 1. The parameters of the SEPIC under the normal condition.

TABLE 2. Potential Failure mode and failure mechanism of electronic
devices in power converters.

diode and power MOSFET, are described in this subsections.
Additionally, the equivalent models of these key components
are also established.

1) ELECTROLYTIC CAPACITOR
Electrolytic capacitors have become one of the most critical
components in power converters and have been widely used
for filtering, coupling, bypass and many other applications.
Unfortunately, they are also responsible for a large amount
of breakdowns in power electronics systems [1]. It is known
that the common failure modes are open circuit, short cir-
cuit, capacitance (C) decreases and equivalent series resis-
tance (ESR) increases [7]–[10]. The former two types are
hard faults while the last two are soft faults.

During the operation time, when electrolytic capacitors
are submitted to current spikes and voltage surges, fault
modes like dielectric breakdown and leads crack are very
likely to occur, which eventually leads to OCF and SCF. The
main aging mechanism of degradation failure is electrolyte
vaporization which influenced by temperature, ripple current,
over-voltage, etc. Meanwhile, the reduction of the electrolyte
enables the electrolyte resistivity to increase and the contact
area between the electrolyte and dielectric to reduce. This
causes a decrease in capacitance and an increase of the ESR.
Thus, ESR and C are often used as fault characteristic param-
eters (FCP) for the electrolytic capacitor. It’s suggested that
the lifetime of an electrolytic capacitor has ended when its
ESR value increases by 280-300% of its initial value or the
capacitance C decreases by 20% below its pristine condition
value at room temperature [8], [9]. The simplified equivalent
circuit of an electrolytic capacitor consists of an ideal resis-
tance in series with an ideal capacitor.

2) SCHOTTKY BARRIER DIODE
Compared to pn diodes, schottky barrier diodes (SBD) are
built using a metal-semiconductor contact with a lower for-
ward voltage drop and a much shorter switching time, there-
fore, they are commonly used in switching power supplies,
voltage clamping, reverse current and discharge protection
applications. However, they may be exposed to excessive
current, thermal fatigue, these external forces may result in
OCF and SCF [23]. On the other hand, many research proved
that the performance degradation of diode mainly reflects
in the increase of both reverse leakage current IR and the
series on-resistance RD. Consequently, the equivalent model
of SBD is represented by series combination of an ideal
switch and an on-resistance RD which is used as the FCP
of SBD.

3) POWER MOSFET
Power MOSFET is a power semiconductor switch used for
the conversion of electrical energy. In the reality, the devices
are often subjected to thermal stress and electrical overstress
whichmay cause them to deteriorate. The failuremechanisms
for a MOSFET can be divided into two groups: chip-related
failures and packaging-related failures. The reasons for chip-
related failures are electrical overstress (EOS), electrostatic
discharge (ESD), latch-up, etc. The packaging-related fail-
ures are mainly related to the dissimilarity between the coef-
ficients of thermal expansion (CTE) of chip and the package
which lead to the contact migration, wire lift-off, die solder
degradation. Therefore, the structure of a power MOSFET
can be characterized as a series of an ideal switch and the
drain to source on-resistance Rdson in the field of fault diag-
nosis [12], [13].

B. FAULT MODES OF THE SEPIC
Generally, the power converter circuit consists of the main
circuit (in the upper portion of Fig. 6) and the control circuit
(in the lower part of Fig. 6). Because the main circuit operates
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at a high switching frequency and high voltage, the perfor-
mance degradation of the components in the main circuit
is faster than those in the control circuit. In other words,
the main circuit is more likely to suffer a failure. Therefore,
several faults (including hard faults and soft faults) occur in
the main circuit of the SEPIC and are considered in this study.

TABLE 3. The fault modes of hard faults for the SEPIC converter.

1) HARD FAULT MODES OF THE SEPIC
The two main hard fault types in power converter systems are
open-circuit (OC) and short-circuit (SC) faults. Many efforts
have been made to diagnose the OC and SC faults of power
semiconductor switching devices in PECs. Common causes
of OC switch faults includewire bond lift-off and the cracking
of solder layers. Nevertheless, other component faults such
as inductor, capacitor and diode faults may also affect the
performance of power converters. Diode failure may cause
current waveform distortion because current can flow in both
directions in the circuit branch when a diode SC fault occurs;
current will stop flowing if an OC fault occurs. When the
inductor operates under high temperature conditions, the coil
wire and/or the insulation will be damaged, which may lead
to an OC fault. Electrolytic capacitor failures are mainly
caused by dry soldering and terminals disconnected during
the manufacturing process, which can eventually lead to an
OC fault. Dielectric breakdown under temperature cycling,
ripple current and over-voltage can lead to an SC fault. AnOC
fault in the filter capacitor of power converters could increase
current harmonics in addition to normal ripple across the
capacitor terminals. As shown in Table 3, eleven kinds of hard
fault modes are considered in our work, including the normal
condition HF1.

2) SOFT FAULT MODES OF THE SEPIC
The performance of the SEPIC converter will gradually
decrease as a result of components wearing out or aging like
parameter drift. When the capacitors suffer degradation, both
the value of capacitance and ESR will change simultane-
ously, following the relationship between the two parame-
ters. Ten kinds of soft fault modes in the SEPIC circuit are
considered in this work, including the capacitors C1 and C2,
the power MOSFET and SBD, as shown in Table 4. It should
be noted that, take soft fault of power MOSFET as exam-
ple, when the Rdson is increased by 20∼50%, it means that
1.2Rdson0 ≤ Rdson < 1.5Rdson0, where Rdson0 represents the
initial value of on-resistance of power MOSFET. Parameter

TABLE 4. The fault modes of soft faults for the SEPIC converter.

changing descriptions of other fault modes are in the same
way as above mentioned.

C. FAULT FEATURE EXTRACTION OF THE SEPIC
To conduct fault detection and classification, four node volt-
age signals (Vdmos, Vs, VL2, Vout as shown in Fig. 6)
in steady-state conditions are chosen for analysis and used
for feature extraction. In this study, fault features are obtained
by wavelet packet transform and statistical analysis.

The wavelet packet transform (WPT) is a generalization
of discrete wavelet transform (DWT) and hence of multi-
resolution analysis [24]. It can decompose a signal into sev-
eral levels of wavelet packet (WP) nodes forming a WP
tree structure, in which each level represents one frequency
resolution. The wavelet packet function can be defined as
follows:

W n
j,k (t) = 2j/2W n(2jt − k) (16)

where j is the scaling parameter and k is the translation
parameter. The symbol n represents an oscillation parameter.
The wavelet packet coefficients at each node (j, n) can be cal-
culated using the inner product between signal f (t) and each
wavelet packet function as shown in the following equation:

Cn
j (k) = 〈f (t),W

n
j,k (t)〉 (17)

Each node of the WP tree is indexed with the pair of
integers (j, n) with n = 0, 1, · · · , 2j − 1. A vector of
WP coefficients Cn

j corresponds to each node (j, n). Thus,
the energy Enj of a packet W n

j is given by:

Enj =
∑
k

[Cn
j (k)]

2 (18)

To normalize the energy of a packet W n
j , the energy En is

divided by the total energy of the signal as shown in (19):

NEnj =
Enj
Etotal

=
Enj∑2j
n=1 E

n
j

× 100% (19)
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Therefore, all the relative energies of each frequency band
in level j are acquired to construct the vector as shown in the
following expression:

T = [NE1
j ,NE

2
j , · · ·,NE

n
j ] (20)

IV. CSA-DBN BASED FAULT DIAGNOSIS FOR SEPIC
To verify the effectiveness of the proposed fault diagnostic
approach for the SEPIC, both simulation and experiment tests
are developed. All the proposed methods are implemented
with MATLAB R2016a and executed on a computer with an
Intel Core i7-6700 CPU @ 3.40 GHz/16 GB RAM.

TABLE 5. The cases of training dataset and testing dataset.

A. SIMULATION RESULTS AND ANALYSIS
The simulation circuits of the SEPIC are modeled by the
software Synopsys/Saber 2012. Due to manufacturing vari-
ability, the pristine parameter of each component varies from
device to device. Therefore, the simulation of the SEPIC
circuit is conducted by the Monte Carlo analysis method
with tolerances of the components set as 5%. Each fault type
as shown in the Table 3 and 4 has 100 samples. Moreover,
the value changed in the range of the degradation components
(as shown in Table 4) is uniformly distributed. In this work,
each node voltage signal is decomposed into a three-layer
wavelet coefficient to get thewavelet packet energy spectrum.
A fault feature vector is constructed by the wavelet packet
energy spectrum of the four node voltage (Vdmos, VL2, Vs and
Vout). Therefore, the dimension of each fault feature vector
is 32. Additionally, in order to analyze the performance of the
CSA-DBN, the samples are divided into three cases, as shown
in Table 5.

The other two common methods based on BPNN and
support vectormachine (SVM) are also discussed for compar-
ison. For the BPNN classifier, we employ a type of three-layer
architecture: one input layer, one hidden layer and one output
layer. The sigmoid transfer function is used and the number of
units in the hidden layer is determined by several trials, which
is in the range of 10 through 30. It is found that the classifica-
tion results based on BPNN perform better when the number
of units in the hidden layer is 18. Similarly, in SVM training,
RBF kernel function is applied to train the SVM model
and the two main model parameters, namely, the penalty
factor and the radius of the kernel function, are 0.35 and
0.70, respectively. For the hard fault diagnosis, the input
layer and the output layer of the DBN are constructed with
32 and 11 neurons, respectively, in terms of the dimensions
of fault feature vectors and fault modes. For the soft fault
diagnosis, the output layer is consisted of 10 neurons. The

FIGURE 7. The hard fault diagnosis results based on BPNN.

FIGURE 8. The hard fault diagnosis results based on BPNN.

pre-training of each RBM in the DBN is completed by 500
iterations. The parameters such as flock size, awareness prob-
ability, flight length and maximum iterations of CSA are 50,
0.1, 2 and 500, respectively.

1) HARD FAULT DIAGNOSIS RESULTS
The diagnostic results of case 1 based on BPNN is as shown
in Fig. 7, and the average classification accuracy rate is
77.73%. Fig. 7 shows that the fault type HF3, HF4, HF6 and
HF7 cannot be correctly identified; the entire test samples
of HF3 and HF6 have been classified to the wrong labels.
Meanwhile, the classification results for case 1 based on
SVM is shown in Fig. 8. The average diagnostic rate of
the test samples is 89.55%, while the classification results
for fault types HF3, HF4 and HF7 are 45%, 75% and 70%,
respectively. In this case, the SVM classifier is better than the
BPNN.

The hidden layers of DBN are optimized by the CSA algo-
rithm combinedwith the training samples. As shown in Fig. 9,
in case 1, the hard fault classification accuracy changes with
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FIGURE 9. The hard fault classification results with different numbers of
units in the two hidden layers.

FIGURE 10. The hard fault classification results based on CSA-DBN.

the numbers of units in the two hidden layers, which are both
in the range of 11 through 30. Thus, the numbers of units
in the first and second hidden layers determined by CSA are
set to 26 and 17, respectively. It takes 32.6 seconds to seek
the optimal architecture of DBN by CSA and complete the
hard faults diagnosis, whose classification accuracy reaches
the maximum value 96.36% (in case 1), that means there are
only eight testing samples that cannot be classified correctly,
as shown in Fig. 10. Additionally, it can be concluded that the
hard fault diagnosis results based on the CSA-DBN are much
better than BPNN and SVM.

The classification results and computation time for the
three cases based on BPNN, SVM and CSA-DBN are
recorded in Table 6. The computation time of CSA-DBN is
greater than the other two methods because it needs some
time to obtain the optimal neuron numbers of the two hidden
layers. However, it is clearly revealed that the CSA-DBN
performs better than the BPNN and SVM methods for the
three cases. The classification results for each fault type are
demonstrated in Table 7.

TABLE 6. The classification accuracy and computation time for hard
faults in the three cases.

TABLE 7. The classification results for each hard fault mode under case1.

TABLE 8. The classification accuracy and computation time for the soft
faults in the three cases.

2) SOFT FAULT DIAGNOSIS RESULTS
The soft fault classification results and computation time tc
for the three cases based on BPNN, SVM and CSA-DBN are
as shown in Table 8. We can see that the diagnosis rate of
soft faults based on the CSA-DBN performed better than the
other two methods BPNN and SVM, although the CSA-DBN
takes more computation time. The soft fault diagnosis rate is
related to the number of training samples in that the diagno-
sis accuracy increases with the number of training samples.
In addition, there are more samples need to be processed
during the training period, as a result of the computation
time in Case3 is less than in Case1 when using the same
classification method

Under the condition of case 1, the DBN gets the best
performance, whose architecture optimized by CSA is
32-23-19-10, as shown in Fig. 11. The classification rate
based on the CSA-DBN is 92.5%, and the results are shown
in Fig. 12. It can be seen that several samples of SF2 and
SF3 cannot be classified correctly, which may be because
some parameters of the degradation components have little
difference between SF2 and SF3. This could in turn lead to
similar feature vectors when the capacitance C1 decreased
by 50% and the ESR1 increased by 100% or so. This phe-
nomenon occurs in SF4 and SF5 as well. The classification
results for each soft fault code are shown in Table 9.
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TABLE 9. The classification results for each soft fault mode under case 1.

FIGURE 11. The soft fault classification results with different numbers of
units in the two hidden layers.

FIGURE 12. The soft fault classification results based on CSA-DBN.

B. EXPERIMENT RESULTS AND ANALYSIS
To validate the effectiveness and feasibility of the proposed
method, an experimental study has been conducted on a
closed-loop SEPIC circuit with a 28VDC input and a resistive
load 15.2�. The test rig is shown in Fig. 13, and it is com-
posed of a DC power supply, a 4-channel data acquisition sys-
tem, the SEPIC converter and a laptop. For the convenience of
hard and soft faults study, the main circuit board is separated

FIGURE 13. The experimental setup of fault diagnosis rig for the SEPIC
circuit.

FIGURE 14. The hard fault classification results based on CSA-DBN.

from the control circuit of the SEPIC converter. The parame-
ters of the inductors, resistors and capacitors are measured by
Agilent 4263 LCRmeter. The OCF of the SEPIC is simulated
by disconnecting the component from the main circuit, while
the SCF is simulated by connecting the terminals of the
components. For soft fault simulation, the components such
as inductors, capacitors, power MOSFETs in the main circuit
are replaced by other components with different inductance,
capacitance, ESR and Rdson values. In addition, in order to
obtain considerable samples under variable fault modes, the
input voltage varies in the range of 26.6V to 29.4V.

1) HARD FAULT DIAGNOSIS RESULTS
The diagnosis rate of hard faults based on the CSA-DBN is
95%, as shown in Fig. 14; the number of training samples and
test samples for each fault type is 80 and 20, respectively. The
classification result is 72.73% and 87.27% based on BPNN
and SVM, respectively. Table 10 shows the classification
accuracy for each fault code based on the BPNN, SVM and
CSA-DBN methods. In the experiments, the optimal archi-
tecture of the DBN determined by CSA is 32-24-18-10. That
is, 24 hidden neurons in the first hidden layer and 18 hidden
neurons in the second layer is the best option. According to
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TABLE 10. The classification results for each hard fault mode under
case1.

FIGURE 15. The fault feature vector for the fault type HF4 and HF7.

Fig. 14 and Table 10, the fault type HF4 and HF7 cannot be
separated from each other. When the fault mode HF4 occurs,
the node voltage signal VL2 is the same as Vout. The values
of VL2 and Vout signals are very small which approximate to
zero. Meanwhile, it is known that the value of voltage signal
Vout equals to zero if fault mode H7 happens. Therefore,
these two scenarios are similar with each other, leading to
some samples of them have similar fault feature vectors
(as shown in Fig. 15). The diagnosis results are consistent
with the simulation tests mentioned above, which confirm
that the classification accuracy of the proposed method is
higher than the other methods.

2) SOFT FAULT DIAGNOSIS RESULTS
Fig. 16 shows the soft fault diagnosis results based on the
proposed CSA-DBN approach. The classification accuracy
based on CSA-DBN is 88.5%, while the other methods based
on BPNN and SVM have an accuracy of 68.5% and 78%,
respectively. The diagnosis rate for each soft fault type is
demonstrated in Table 11, which indicates that the BPNN
performs the worst, and the proposed method has a higher
accuracy under the condition of case 1. In the experiment,
the optimal architecture of the DBN for soft fault diagnosis
is 32-20-18-10, which means it contains 20 hidden neurons
in the first hidden layer and 18 hidden neurons in the second

FIGURE 16. The soft fault classification results based on CSA-DBN.

TABLE 11. The classification results for each soft fault mode under case 1.

FIGURE 17. The fault feature vector for the fault type SF2 and SF3.

hidden layer determined by the CSA. Table 11 demonstrates
that the classification accuracies of SF2, SF3, SF4 and
SF5 are lower than other fault codes. The misclassification
occurs between SF2 and SF3 mainly because the parameters
of degradation capacitor C1 changed slightly near the bound-
ary value, which further leads to similar fault feature vectors
in SF2 and SF3, as illustrated in Fig. 17. This reason can also
be used to explain themisclassification between SF4 and SF5.
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V. CONCLUSIONS
To realize fault diagnosis for DC-DC power converters, an
optimization deep learning based diagnostic approach for
both hard faults and softs fault of a SEPIC has been pre-
sented in this paper. Four node voltage signals are chosen for
fault feature extraction based on wavelet packet transform.
A four-layer DBN classifier is constructed for the SEPIC
fault diagnosis. The numbers of neurons in the two hidden
layers are determined by the crow search algorithm. Due
to the initialized parameters of multiple layers acquired in
the pre-training process, DBN has better performance than
conventional neural networks with random values. Several
simulations and experiments have been conducted in order
to evaluate the applicability of the proposed technique. The
results demonstrate that the proposed optimization DBN
approach has a higher accuracy than other intelligent (BPNN
and SVM) fault diagnosis methods which validates the effec-
tiveness and accuracy of the proposed method. This is mainly
because of the capability of the DBN to learn the highly
nonlinear relationship between the inputs and the diverse fault
codes of the SEPIC. It is known that useful sensing points
choosing for fault feature extraction is related to the topology
of the converters. Nevertheless, the output and feedback sig-
nals of the converters are often used as the indicators to reflect
their health state. Future studies will focus on improving the
calculation efficiency of the proposed method. The DBNwill
be further investigated for prognostics and remaining useful
life prediction applications.
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