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ABSTRACT This paper presents a cascaded regional spatiotemporal feature-routing networks for video
object detection. Region proposal networks in faster region-based convolutional neural network (CNN)
generate spatial proposals, whereas neglecting the temporal property of the videos. We incorporate the
correlation filter tracking on the convolutional feature maps to explore an efficient and effective spatiotem-
poral region proposal generation method. To gradually refine the bounding boxes of proposals, three region
classification and regression networks are cascaded. Feature maps from different layers in CNNs extract
hierarchical information of the input, so we propose a router function which selects feature maps according
to the scale of proposals. In addition, object co-occurrence inference is exploited to suppress conflicting
false positives, which leads to a semantically coherent interpretation on the video. Extensive experiments on
the Pascal VOC 2007 dataset and the ImageNet VID dataset show that the proposed method achieves the
state-of-the-art performance for detecting unconstrained objects in cluttered scenes.

INDEX TERMS Video object detection, correlation filter tracking, router-function, regression networks,
co-occurrence inference.

I. INTRODUCTION
Object detection [1], [2] is a fundamental computer vision
task that aims at automatically localizing objects from
images, which has great potential in multimedia applica-
tions [3], [4]. Early methods can effectively and efficiently
detect certain limited object categories (e.g., face [5] and
person [6]) by sliding windows or cascaded classifiers, but
they cannot work well on multiple categories. Recently,
object detection on multiple categories has been significantly
improved due to the advances of deep convolutional neural
networks (CNNs) [7], of which one particularly successful
paradigm is Region based CNN (R-CNN) [8] that composed
of sequential region proposal [9] and region classification [7]
module. R-CNN transforms object detection into an object
classification problem, and fine-tunes a pre-trained Ima-
geNet [10] classification networkwith end-to-end training for
region classification.

Fast R-CNN [11] incorporates a simplified spatial pyramid
pooling layer into the R-CNNwhich can handle input images

of random size. In addition, a multi-task loss for classification
and regression is employed, which makes training a single
stage. Faster R-CNN [12] extends R-CNN by introducing a
region proposal network that shares full-image convolutional
features with region classification network. Both networks
share the convolutional feature maps and they are trained by
a simple alternating optimization. Moreover, RPN and clas-
sification network are essentially the same. They are just two
different architectures of the classifier based on convolutional
feature maps. Therefore, with continual appearance of new
structure such as GoogLeNet [13], ResNet [14], performance
of Faster R-CNN is gradually improved. The revised version
of Faster R-CNN maintain state-of-the-art results in object
detection on images [15].

Although numerous works [8], [11], [12], [16] have been
proposed for object detection on images, there are few
works for video object detection. Video object detection
is much more challenging due to the large appearance
changes caused by occlusion, deformation, abrupt motion,
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FIGURE 1. Overview of the proposed cascaded regional spatio-temporal feature-routing network(CRSFN). RPN and correlation
filter jointly generate spatio-temporal regional proposals. Router-function selection feature maps for subsequent cascaded
regional classification and regression networks(CRCR) according to the scale of proposals. CRCR gradually refine the bounding
boxes of proposals. Ultimately, content inference is utilized to suppress conflicting false positives.

illumination variation, and background clutter, etc. Since
Faster R-CNN [12], [17] has achieved good results in object
detection on images, it is thus of great interest to understand
how to exploit this framework for robust video object detec-
tion. Faster R-CNN benefits from the advances in image clas-
sification [17], but it confronts two problems when applied to
object detection in videos. The first one is that region propos-
als on each frame are not always effective due to extremely
large appearance variations, which may cause much loss on
the recall rate. The second one is that the independent region
classification cannot incorporate spatio-temporal video con-
text, which causes the low scores of some obscure regions.

To alleviate these problems, a possible solution is to
decrease the target variations by the ‘‘divide and conquer’’
scheme, which trains multiple classifiers to handle the vari-
ations of each sub-problem [18]. Meanwhile, the context
information on videos can be utilized to propagate the
true positives while suppressing the false ones. We intro-
duce a cascaded regional feature-routing networks(CRFN)
for robust object detection. CRFN stacks multiple regional
feature-routing classification and regression networks on the
top of convolutional feature maps, which can gradually refine
the bounding box of the target object, and hence improve the
detection performance. Taking account of temporal property
of video object, we exploit the correlation filter tracking to
generate temporal region proposals from the high-confident
detection results and propose a cascaded regional spatio-
temporal feature-routing network(CRSFN). In addition,
co-occurrence inference between the dominant class and oth-
ers is used for effectively suppressing the false positives.
We utilize the context information via an efficient Look-Up-
Table method, which can effectively suppress the conflicting
false positives and guide the detector to produce a semanti-
cally coherent interpretation on the video. Figure 1 illustrates
the overview of the proposed method.

Extensive experiments on the Pascal VOC 2007 dataset
and the ImageNet VID dataset show that the proposed
method achieves the state-of-the-art performance for detect-
ing unconstrained objects in cluttered scenes.

II. RELATED WORK
The proposed method is inspired by the following related
works:

A. OBJECT DETECTION
Most recently proposed popular object detection approaches
are based on deep CNNs [8], [11], [12], [16], [19], [20].
Detection systems such as R-CNN [8], SPP-net [16] and
Fast R-CNN [11] can be divided into two steps: salient
object proposal generation and region proposal classifica-
tion. Networks on the convolutional feature maps(NoCs) [19]
extracts features with a fixed pre-trained deep CNN and
explores different networks on the convolutional feature
maps as object classifiers. Extensive experiments show that
a well-designed NoCs on the top of convolutional network
with maxout [21] performs extremely well when trained
from a random initialization, which indicates that there are
still significant gains to design new classification networks
on top of a fixed convolutional network. MultiBox [22]
generates region proposals for region classification and
simultaneously predicts multiple boxes. YOLO [20] predicts
bounding boxes and class probabilities directly from the
whole image domain in one evaluation. Faster R-CNN [12]
unifies region proposal generation and classifier training
on the shared convolutional feature maps with a multi-
task loss function. In this paper, we first train the Faster
R-CNN and then fix the convolutional layers. After that,
three steps of feature-routing NoC architectures with a multi-
task loss function are fine-tuned on the convolutional feature
maps.
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TABLE 1. Detection results of Fast R-CNN and Faster R-CNN on the PASCAL VOC 07 test set using ZF [35] and VGG [36] models. The training set is PASCAL
VOC 07+12 trainval. If we decrease the threshold of IoU, the mAPs increase obviously.

B. SHAPE OR POSE-INDEXED FEATURE AND
CASCADED REGRESSION
Shape or pose-indexed features [23] can gradually refine
shapes or poses via cascaded regression. This method has
been successfully applied for face alignment [24]. Similarly,
features from different layers extract hierarchical information
of the input. These features can be used to refine the location
of regions in different scales. In this paper, we iteratively
apply the location-indexed convolutional features routed by
router-function to cascaded classification and regression of
region proposals via multi-task learning [11].

C. CORRELATION FILTER TRACKING
In visual object tracking, correlation filter tracking have
attracted considerable attention owning to its remarkable
computational efficiency with Fast Fourier Transforms
(FFT) [25]–[28]. The correlation filter tracking regress all
the shifted versions of input features to a Gaussian function
and update their weights in an online manner. Ma et al. [27]
develop a hierarchical correlation filter based visual tracking
method over a set of multi-dimensional convolutional fea-
ture maps, which achieves the state-of-the-art results on the
Object tracking benchmark [29]. In this work, we propose a
correlation filter tracking based region proposal generation
method for video object detection, which integrates the class-
specified priors into the correlation filter framework with the
convolutional layers being fine-tuned by the object detection
task.

D. CONTEXT MODEL
Recently proposed object detection methods [8], [11], [12],
[16] have moved focus to varying categories with large
appearance variations, such as two hundred categories in
ImageNet [30] and eighty categories in COCO [31]. There
has been a growing interest in exploiting contextual infor-
mation in addition to local features to detect multiple object
categories in an image. A context model [32], [33] is able
to rule out some conflicting combinations and guide detec-
tors to produce a semantically coherent interpretation of an
image. Choi et al. [34] propose a tree-based context model
which incorporates global image features, the dependencies
between object categories, and the outputs of the local detec-
tors into a probabilistic framework. In this work, we trans-
form the global video context information into the constraints
between the dominant class and other classes in the video,
in which the confliction between different classes is built on

an efficient Look-Up-Table, which helps to suppress incoher-
ent false positives effectively.

III. METHODOLOGY
A. CASCADED REGIONAL FEATURE-ROUTING NETWORKS
The region classification step is usually consisted of two
important components: a feature extractor and a classifier.
R-CNN can be treated as a convolutional feature extractor
followed by a multi-layer perceptron (MLP) classifier. Moti-
vated by this, we first train the Faster R-CNN to yield a set
of fixed convolutional layers, and then we fine-tune three
steps of cascaded regional feature-routing classification and
regression networks via multi-task learning for region classi-
fication, which are combined to improve the performance of
region classification.

1) CASCADED REGION CLASSIFICATION AND REGRESSION
In [8], with bounding box regression for post-processing,
R-CNN obtains a performance gain of 4.2%, which can
be attributed to the fact that the region regression with the
location-indexed features can provide a more accurate loca-
tion. Specifically, as shown by Table 1, if we decrease the
threshold of the intersection-over-union (IoU), the mAPs of
the Fast R-CNN and Faster R-CNN both increase obviously.
Here, the standard threshold of IoU is 0.5, and there are some
false positives generated from inexact localizations

Since the location-indexed features are able to provide
a more accurate location [23], we train several cascaded
region regressors on the location-indexed convolutional fea-
ture maps to gradually refine the detection results. As shown
in Figure 2(a), we follow [11], [19] to transform the convolu-
tional features to a constant length (7× 7× 512) by adaptive
pooling. Motivated by the part models [37], [38], We also
add two additional 3× 3 convolutional layers [19] before the
three-layer perceptron with a multi-task loss function [11].
For training this model, we generate a set of training data with
different IoU lower bounds for each network: The negative
examples of each step are the region proposals whose IoU
ratios with the ground truth are less than 0.3while the positive
ones of the first step is the region proposals whose IoU ratios
with the ground truth are more than 0.4. Then, the first region
classification and regression network is trained to update all
of the region proposals. In the second step, the IoU threshold
of the positive example is set to 0.5, and 0.6 in the last step.
Since the IoU ratio of a successful detection is 0.5, there is
no need to add more steps.
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FIGURE 2. Cascaded regional feature-routing classification and regression. (a) The convolutional features are adaptively pooled into 7× 7,
followed by two additional 3× 3 convolutional layers and a three-layer perceptron with multi-task loss. (b) The sizes of sheep exhibit large
variations, so we use the convolutional features from conv5-3 for the large proposal regions (> 56 pixels), and conv4-3 for the small proposal
regions (< 56 pixels). (a) Region classification and regression network. (b) Multi-scale feature selection.

FIGURE 3. The class of ‘‘domestic cat’’ exhibits large appearance variations caused by occlusion, deformation, abrupt motion, illumination variation, and
background clutter,etc. We separate the ground truth into two groups: the high-confident (score > 0.6) positive examples and the low-confident
(score < 0.6) positive examples.

2) FEATURE ROUTING
As shown in Figure 2(b), we adaptively use the convolu-
tional features from different layers to classify and regress
the region proposals. These features are selected by the
router-function according to the scale of regions. In other
words, local and contextual visual patterns are selectively
transmitted to cascaded classify and regression module. The
route of message is controlled by the router-function. Specif-
ically, we fix the convolutional layers of VGG-16 fine-
tuned by Faster R-CNN and add two independently cascaded
region classification and regression networks to conv 4-3 and
conv 5-3, respectively. In inference, the route is determined
by the router-function according to the scale of regions.
When the proposal region in the original image is larger than
56 pixels, the corresponding conv5-3 features are selected.
Otherwise, the conv4-3 features are used. The router-function
is formulated as:

f ∗ =

{
fconv4−3 p ≤ threshold
fconv5−3 p > threshold

(1)

f ∗ is the feature map selected to refine the bounding box,
p is the number of pixels in the proposal, the threshold we
use is 56 pixels. This process is handcrafted based on prior
knowledge and it could potentially be replaced by learning
method in future work.

3) TRAINING DATA RE-WEIGHTING
The training data from the videos exhibit large appearance
variations caused by occlusion, deformation, abrupt motion,

illumination variation, and background clutter, etc. As shown
in Figure 3, there are large appearance variations within the
training data of ‘‘domestic cat’’. If we directly use all of the
training data, the detection accuracy will deteriorate. With
the pre-trained Faster R-CNN, we can get the score of each
ground-truth region. Then, we divide the training data into
two group: the high-confident (score > 0.6) positive exam-
ples and the low-confident (score < 0.6) positive examples.
After that, two CRFN networks are independently trained on
the high-confident positive examples and the whole training
data. During testing, the scores predicted by these twomodels
are averaged as the final score for each region proposal. The
model trained on the high-confident positive examples only
gives high scores to the salient examples, which is helpful
for keeping a high precision, whereas the model trained on
the whole training data tends to give high scores to the hard
positive examples and false positives, which is helpful to
improve the recall.

B. SPATIO-TEMPORAL REGION PROPOSAL
Region proposal networks in Faster R-CNN generate spa-
tial proposals while neglecting the temporal property of
the videos. In order to incorporate temporal property into
Faster R-CNN architecture, we propose a correlation filter
based temporal region proposal generation method to gen-
erate spatio-temporal region proposals. The correlation filter
learn a generative model and estimate the translation of the
target objects by searching for the maximum response on the
correlation map. The initial locations are the detection results
with high-confidences (score > 0.6), and then the temporal
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region proposals are generated near the initial regions forward
and backward through the video frames.

Multi-channel feature x of size W × H × D is cropped
from the convolutional feature maps, whereW andH indicate
the width and height of the region (2 times of the target
object size), andD indicates the number of channels. We only
utilize the correlation filter to estimate the translation of
the target object, and the scale of the target object is not
changed. The scope of the search space covers the whole x,
and each shifted sample xi,j, (i, j) ∈ {0, 1, . . . ,W − 1} ×
{0, 1, . . . ,H − 1} has a corresponding Gaussian distribution

function label y (i, j) = e−
(i−W/2)2+(j−H/2)2

2σ2 , where the kernel
width σ is set to be 0.1. The correlation filter r is learned by
solving the following minimization problem:

r∗ = argmin
r

W ,H∑
i,j

∥∥r · xi,j − y (i, j)∥∥22 + λ ‖r‖22 , (2)

where r · xi,j =
∑D

k=1 r
T
i,j,kxi,j,k , λ is a regularization param-

eter. This minimization problem can be solved in each indi-
vidual feature channel using Fast Fourier Transform (FFT),
and the learned filter in the frequency domain on the k-th
(k ∈ {1, . . . ,D}) channel can be calculated as

Rk =
Y � X

k∑D
k=1 X

k � X
k
+ λ

, (3)

where Y is the Fourier transform of y, X is the complex
conjugation of the Fourier transform of x, and the opera-
tor � is the element-wise product. Given a convolutional
feature crop z of size W × H × D from the next frame,
the response map is computed by an inverse FFT transform

F−1(
D∑
k=1

Rk � Z
k
), where F−1 denotes the inverse FFT. The

translation of the target object can be estimated by searching
for the position ofmaximumvalue on the correlation response
map. Since the temporal region proposal is initialized with
a class-specific region, we can incorporate the class-specific
prior to update the proposal generation model for the current
video. The detection results with high-confidences (score
> 0.6) are selected from the whole video, and we only
keep the most similar instance for each frame to avoid the
confusions between different instances of the same class.
These instances are allocated normalization weights accord-
ing to their temporal distances to the current initial region.
Moreover, the numerator and denominator of the correlation
filter Rk are updated separately by each instance. Afterwards,
the temporal region proposal is conducted forward and back-
ward to the video, where the correlation filter Rk is updated
via a moving average:

Akt = 0.3A0 + (0.7− µ)Akt−1 + µY � X
k
t

Bkt = 0.3B0 + (0.7− µ)Bkt−1 + µ
∑D

k=1
X kt � X

k
t

Rkt =
Akt

Bkt + λ
, (4)

where A0 and B0 are the class-specific priors learned from
the high-confidence detection results, and µ is the temporal
update rate. The class-specific priors keep the generative
properties of our method stable while the online update strat-
egy enables the correlation filter well adapt to the appearance
changes.

The size of the target object changes on different frames,
however, the correlation filter should be the same size with
the search window x. Therefore, we resize the convolutional
feature maps of each frame to make the target objects with the
same scale (the longer side is 28). Moreover, to remove the
boundary discontinuities, the cropped convolutional features
are weighted by a cosine window. In addition, since the con-
volutional layers are location-sensitive, they are beneficial to
enhance objection localization. We use the conv5-3 features
to generate the temporal region proposals.

C. CONTEXT INFERENCE
The region based object detection methods often focus on
locally identifying a particular object region. Since each pro-
posal region is processed independently from others, the out-
come of detectionmay be semantically incorrect. To deal with
this problem, we exploit the contextual information such as
the global features of a video (it is a grassland scene) and
dependencies among the object categories (e.g., sheep and
cattle often co-occur, and lions and whales rarely co-occur)
besides the local convolutional features. With a semantically
coherent inference, some false positives on the videos can be
effectively removed.

The scene context is an effective clue for object detection.
Some particular classes have strong correlations with their
environments, such as the correlation between sheep and
grassland. Since there is no scene annotation on the ImageNet
VID dataset, we transform the correlation between objects
and their environments in an indirect way. We first run the
Faster R-CNN on the whole video, and select the class with
the most high-confident (score > 0.6) detection results and
a wide distribution on the whole video as the dominant class
of this video. Then, the correlations between the objects and
their scene context are transformed into the co-occurrence of
object pairs.

We select all of the multi-instance frames from the Ima-
geNet VID training set and validation set, among which there
are 336,219 multi-instance frames in the training set and
53,192 multi-instance frames in the validation set. Figure 4
shows all of the co-occurrence relationships of the instance
pairs. We can observe that most of the co-occurrence hap-
pens within the same class except for the class of ‘‘snake
(Class ID: 23)’’, which rarely co-occurs with each other
within one frame. We think this is caused by the dataset
bias. Furthermore, as shown in Figure 4(c), the co-occurrence
matrix is relatively sparse, and some classes rarely co-occur
in one frame. Thus, we can use this co-occurrence infor-
mation to effectively suppress the incoherent false positives.
Figure 4(d) is generated from Figure 4(c) by binarizing the
co-occurrence matrix, among which three classes, i.e., ‘‘giant
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FIGURE 4. Object co-occurrence distributions on the ImageNet VID dataset. The intra-class co-occurrence is very common, however,
the inter-class co-occurrence does not always exist. The class ID ranges from 0− 29 with the same sequence of definition provided
by the ImageNet toolkit. (d) is the binary co-occurrence matrix on the ImageNet VID dataset. Three classes, i.e., "giant panda",
"hamster" and "red panda," show high independence. The sparsity of the co-occurrence matrix is 699/900. (a) Train.
(b) Validation. (c) Train and Validation. (d) Co-occurrence.

panda’’, ‘‘hamster’’ and ‘‘red panda’’, show high indepen-
dence, and the co-occurrence only exists within class. There
are only 201 co-occurrence relationships within the ImageNet
VID dataset, and we use this binary co-occurrence table to
suppress false positives. After the dominant class of the video
is determined, all of the conflicting object classes are selected
from the binary co-occurrence table. There may be some bias
between the training set and the test set, so we reduce the
scores of the conflicting detection results by half instead of
just removing them from the final results.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTING
1) IMAGE DATASET
We validate the proposed CRFN method on the widely
used PASCAL VOC 2007 object detection benchmark [39].
It covers 20 object categories, in which the test set contains
5,000 images. Following [12], we use an augmented set
of 1,6000 images as our training data, which consists the
VOC 2007 training and validation images and VOC
2012 training and validation images.

2) VIDEO DATASET
We further investigate our CRSFN on the ImageNet VID
dataset, which contains 3,862 videos for training, 555 videos
for validation, and 937 videos for testing. Besides, it contains
30 basic-level categories which are selected from the 200 cat-
egories of ImageNet DET dataset, which are carefully chosen
considering different factors such as movement type, level
of video clutterness, and average number of object instance.
The data distributions of these two datasets are quite different.
Specifically, the instances of each class from the video dataset
exhibit large appearance variation, but the instance number is
limited, and hence themodel cannot benefit from the repeated
instance examples. However, the training data from the image
dataset exhibit large instance diversity of each class. There-
fore, these two datasets are complementary with each other,
which can be used together to boost the performance of our
method.

3) DEEP MODEL
As a common practice [8], [11], [12], [16], we use
the deep CNN model pre-trained on the 1000-class Ima-
geNet dataset [10]. Specifically, we investigate the VGG
16 model [36], which has 13 convolutional layers and three
fc layers.

4) TRAINING DETAILS
We first train the Faster R-CNN on the ImageNet DET
subset, and then fix the convolutional layers and train the
CRFN model using data from the ImageNet VID dataset.
Moreover, to setup the Faster R-CNN baseline, we change
three parameters. First, four anchor scales are used in this
paper with areas of 642, 1282, 2562, and 5122 pixels on
the original image. Second, the threshold of intersection-
over-union (IoU) overlap for the positive examples is set to
min(0.5,w∗h/(w+10)∗ (h+10)). Third, the lower threshold
of the IoU overlap for the negative examples in the region
classification step is set to be 0 instead of 0.1. The former two
are designed for objects with low resolution, and the last one
is designed for negative example mining during the ‘‘image-
centric’’ training. All the training data are resized to a short
side of s = 600 pixels and a long side less than s = 1000
pixels. We use a learning rate of 0.001 for 240,000 mini-
batches, and 0.0001 for the next 120,000 mini-batches on the
122,000 images from the ImageNet DET subset. We also use
a momentum of 0.9 and a weight decay of 0.0005 [7].

After finishing training the Faster R-CNN on the ImageNet
DET subset, we fix the convolutional layers and train the
CRFN model in a ‘‘region-centric’’ way [16]. Specifically,
we generate a fixed-resolution featuremap region via a region
pooling operation that has a fixed output resolution. Formally,
we define a desired fixed output spatial resolution 7 × 7,
which is the output spatial size of the last pooling layer in
the pre-trained model. For an arbitrary feature map region of
size w × h, we produce the 7 × 7 output by max pooling in
spatial bins of the size w

7 ×
h
7 . Moreover, the additional two

convolutional filter have a spatial size of 3× 3 and a padding
of 1, so the output spatial resolution is unchanged (7 × 7).
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TABLE 2. Detection results for PASCAL VOC 2007 test set using the VGG-16 model [36]. Here "bb" denotes bounding box regression [8].

These two convolutional layers are initialized by the iden-
tity filter. Finally, the following fully-connected (fc) layers
are initialized by the corresponding fc layers in the region
classification model. Thus, the whole fine-tuning procedure
becomes equivalent to the forth step of Faster R-CNN. Except
the training example distribution, the cascaded networks are
trained similarly. We train 2M mini-batches using the learn-
ing rate 1e-4, and thenMmini-batches using 1e-5, whereM is
the number of images in the training dataset. During training,
the multi-scale feature selection is determined by the region
proposal size. We resize the image such that min(w, h) = s ∈
S = {200, 300, 400, 600}, and compute the feature maps for
each scale. Especially if the size of object is less than 10 pixels
after down-sampling, it is neglected during training.

We use the training data re-weighting technique in this
paper, which improves the diversity of the model ensemble.
The CRFN networks are trained independently by these two
group of data from III-A.3.

B. EXPERIMENTS ON IMAGES
As shown in Table 2, we compare the proposed CRFN net-
work with the previously leading methods with the VGG-
16 model [36]. R-CNN fine-tunes all the layers on the VOC
07 trainval dataset, and outperforms the SPPnet by 1.8%,
which suggests that fine-tuning all the layers improves the
performance compared with using a fixed pre-trained image
classification model. Moreover, compared with the SPPnet,
NoC improves performance by 4.2%, which indicates that
we can boost the performance by designing a complex clas-
sification network on the fixed convolutional feature maps.
In addition, the bounding box regression improves the mAP
of 3.8% for R-CNN and 2.8% for NoC, which demonstrates
that the region regression step is able to improve the local-
ization accuracy. Fast R-CNN equips with all the experiences
mentioned above, in which the convolutional layers are fine-
tuned and the region regression step is incorporated with a
multi-task learning strategy. Faster R-CNN further improves
the performance by alternating optimization between the
tasks of region proposal and region classification. The multi-
scale region classification and regression network improves
the mAP by 0.6%, and the cascaded region classifica-
tion and regression network improves the mAP by 1.4%.

FIGURE 5. Error Analysis: Fast R-CNN, Faster R-CNN and CRFN. These
charts show the percentage of localization and background errors in
the top N detections for various categories (N is the object number in
that category). (a) Fast R-CNN. (b) Faster R-CNN. (c) CRFN.

The proposed CRFN boosts the performance to 75.6% by
six additional networks (two scale × three cascade).
To better understand the effect of the CRFN regression

network, we use the diagnosing tool of [40] to analyze the
top-ranked false-positive predictions. The false positives due
to poor localization are denoted as ‘‘Loc’’ while the false
positives due to object recognition error consist of ‘‘Sim’’
(confusion with a similar category), ‘‘Oth’’ (confusion with a
dissimilar category), ‘‘BG’’ (confusion with on background).
As shown by Figure 5, the positive effect of the proposed
CRFN is to considerably reduce the localization errors, e.g.,
reducing from 7.9% to 6.5% compared to Faster R-CNN.
Better region localization helps to improve the region classifi-
cation accuracy, which further enhances the overall detection
performance.

C. EXPERIMENTS ON VIDEOS
1) EFFECT OF THE PROPOSED SRP
We first validate the proposed spatio-temporal region pro-
posal (SRP) method on the test set of the ImageNet VID
dataset. The baseline is 300 proposals predicted by the Region
Proposal Network (RPN), which is trained on the ImageNet
DET subset. In Figure 6, we compute the recall of proposals
at different IoU ratios with annotation boxes. Although the
Recall to the IoU metric is just loosely related to the ultimate
detection accuracy, we can use thismetric to diagnose the pro-
posal method due to the fact that if an object is missed in the
object proposal step, the detection system would definitely
miss the object. To avoid generating too many redundancy
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TABLE 3. Detection results on the ImageNet VID validation set. "+" denotes that these methods are incrementally incorporated on the faster R-CNN
baseline.

FIGURE 6. Temporal region proposal (TRP) improves the region proposal
on the ImageNet VID dataset. The baseline method is Faster R-CNN
trained on the ImageNet DET subset. "Clip 10" and "Clip 20" mean that the
video is divided into ten or twenty clips. We only take one frame as the
initial for correlation filter.

temporal region proposals, we divide the whole video into
N clips. In each clip, we only choose one frame with the
highest detection confidence results as the start point for
the correlation filter. The plot shows that the proposed SRP
method greatly improves the recall of the proposals com-
pared to the baseline RPN method, which indicates that the
correlation filter on the convolutional feature maps is able
to effectively propagate the region proposals from the high-
confidence detection results. When the clip number increases
from 10 to 20, the recall of the proposals slightly rises,
and we finally set the clip number as 10 for our experi-
ments, and the proposal number on each frame is usually less
than 500.

2) ABLATIVE STUDY
To comprehensively investigate the behavior of the proposed
method, we conduct several ablative studies on the ImageNet
VID validation set. First, we train Faster R-CNN on the DET
subset and the VID dataset. For the DET subset, the training
data of ‘‘dog’’ and ‘‘bird’’ are condensed. For the VID train-
ing set, 4% of the frames are sampled from the whole videos
to avoid redundant training examples. Detailed information
about the training data is given in Table 4. These two datasets

are quite different from each other, and their combination
improves the performance. We fix the convolutional layers
trained by Faster R-CNN, and train the cascaded region clas-
sification and regression network, leading to an improvement
of 4.5%. Using multi-scale training slightly improves the
result by 2.2%. Next, we investigate the role of temporal
information. When using the correlation filter to generate
region proposals, the mAP increases to 65.9%, suggesting
that the temporal information from the video is very effec-
tive to prorogate region proposals from the high-confidence
detection results. On the other hand, incorporating context
information by an efficient Look-Up-Table method increases
the result by 3.3%. This suggests that the context information
is able to suppress some conflicting false positives and guide
the proposed detector to produce a semantically coherent
interpretation of a video. Finally, we re-weight the training
data and ensemble two separate model. The mAP improves
to 71.8%.We have trained 12 region classification and regres-
sion networks (2 scales× three cascade× two group), which
aim to improve the localization accuracy and give a more
reasonable score for each region proposal by decreasing the
variance of the original problem.

We also evaluate the proposed method on the ImageNet
DET validation set. The training data are the combination of
the DET subset and VID sampling set. As is shown in Table 4,
CRFN obtains a performance gain of 3.6% compared to
Faster R-CNN. This suggests that the cascaded regional
feature-routing regression method helps to improve the local-
ization accuracy, and thus increases the region classification
performance. Using the re-weighted training data, the CRFN
ensemble further increases the mAP by 1.8%. We further
compare our result with the state-of-the-art CUvideo on the
ImageNet VID test set, in which our result is 72.1%, which
is 2.4% higher than the result of CUvideo.

3) EXPERIMENTS ON IMAGENET2016
We slightly improved the proposed method and participated
in the VID 2016 task. In contrast to the region-based Fast
R-CNN that apply a costly per-region subnetwork hun-
dreds of times, we employed a more efficient region-based
fully convolutional networks with almost all computation
shared on the entire image [41]. In addition, we utilized a
more efficient network GoogleNet v2 [42] instead of the
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TABLE 4. Detection results on the ImageNet DET validation set and VID test set. The statistics of the training data are also given in the left.

TABLE 5. Detection results on the ImageNet VID validation set. "+" denotes these methods are incrementally incorporated on the RPN and R-FCN(GNv2)
baseline.

VGG-16 network. As is shown in Table 5, the baseline
method obtained the mAP of 63.85% by a frame by frame
detection. The performance gradually increased to 77.30% by
incorporating the proposed cascaded regional feature-routing
classification and regression, temporal region proposal,
context inference, and training data re-weighting. This is a
real-time object detector on GPU with high accuracy. When
multi-scale testing andmodel ensemble with deeper inception
and shortcut network are used, the finalmAP is 81.15%on the
validation set and 80.8% on the test set, and our algorithm has
achieved the first place in the ImageNet ILSVRC2016 Object
Detection from Video task.

V. CONCLUSION
Video object detection is an important vision task, yet has
received little consideration in the context of general object
detection. In this work, we suggest to train several cas-
caded regional feature-routing classification and regression
networks on top of the convolutional feature maps, which
are able to improve the localization accuracy, leading to
outstanding results on the Pascal VOC 2007 object detection
benchmark. Moreover, for video object detection, we explore
the correlation filter tracking on the convolutional feature
maps to efficiently generate region proposals from the high-
confident detection results. In addition, we also perform
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object co-occurrence inference via an efficient Look-Up-
Table method, which can suppress the conflicting false pos-
itives. Extensive evaluations on the ImageNet VID dataset
demonstrate that the proposed CRSFN outperforms the Ima-
geNet ILSVRC2015 winner CUvideo on the task of video
object detection.
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