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ABSTRACT This paper presents a novel approach for the joint tracking and identification (JTI) problem.
JTI involves interdependent tracking and identification, and thus solving them jointly is preferable. The
recently proposed joint decision and estimation (JDE) framework provides a good solution for such problems
involving coupled decision and estimation. To solve the JTI problem, this paper proposes a compact
conditional JDE (CCJDE) method within the JDE framework. First, we propose a new CCJDE risk, which
unifies the traditional decision and estimation risks in a concise form. Based on this, we present the optimal
joint solution with analytical form. Second, inspired by the interacted parameters in CCJDE, we propose
a new CCJDE scheme with time-varying parameters, which further utilizes the interdependence between
decision and estimation. Third, we apply CCJDE to practical JTI problems. An applicable multiple model
CCJDE algorithm is proposed for JTI. For performance evaluation, we propose a new joint performance
metric (JPM), which unifies the tracking error and the identification error. Finally, two illustrative examples
verify the superiority of the proposed CCJDEmethod. CCJDE outperforms the traditional two-step strategies
in JPM. For multisensor data JTI, however, CCJDE can further utilize all information from heterogeneous
sensor data. Besides, the effectiveness of the proposed JPM and the time-varying parameters in CCJDE are
also demonstrated.

INDEX TERMS Joint tracking and identification, compact conditional joint decision and estimation, joint
performance evaluation.

I. INTRODUCTION
As two critical problems in battlefield surveillance systems,
target tracking and target identification have been studied
extensively [1]–[4]. The goal of tracking is to estimate the
target state, i.e., position, velocity, etc., while the goal of
identification is to identify which class the target belongs
to [5]. In reality, there exists another important problem
called joint tracking and identification (JTI). JTI involves
both tracking and identification, and they are coupled: track-
ing helps identification since it can provide flight envelope
information for different target types, while identification
helps tracking by selecting appropriate identity-dependent
kinematic models [6]. Especially in recent years, with the
rapid development of the modern sensor technology, JTI has
attracted more and more attention [7]–[17].

In essence, JTI is the so-called joint decision and esti-
mation (JDE) problem, which has dual goals: decision and
estimation, and they are coupled. Traditional methods for
solving JDE problems contain the following [18], [19]:
a) Estimation and decision are handled separately without
considering their interdependence [20], [21]. b) Decision
then estimation (D-then-E): the best decision is made first
disregarding estimation and then estimation is done based
on this decision as if it were correct [22], [23]. c) Estima-
tion then decision (E-then-D): estimation is done first and
then decision is made based on it [5], [7], [24]. d) Density-
based decision and estimation [17], [25]. This is beyond the
scope of this paper, which is for point inference. In general,
the above methods all have their drawbacks in solving JDE
problems [18].
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For the JDE problem, Li [26] proposed a new integrated
JDE paradigm. Its cornerstone is a novel generalized Bayes
risk, which is a generalization of the Bayes decision and esti-
mation risks. This JDE approach is inherently superior in joint
performance to the traditional two-stage strategies (D-then-E
and E-then-D) or separate decision and estimation. The
power of this JDE framework was demonstrated in [6], [19],
and [27]–[29] Based on JDE, we proposed a conditional
JDE (CJDE) risk by introducing the on-line data [18]. CJDE
is verified to be theoretical superior by accounting for the
coupling between decision and estimation, and is also com-
putational simple. It provides a general solution for practical
JDE problems.

In CJDE, the decision risk and the estimation risk are
unified through two parameters, which adjust the weights of
decision and estimation, respectively. These design param-
eters provide enough flexibilities, and make CJDE more
applicable for a large amount of JDE problems: decision and
estimation are virtually equally important or one is primary
and the other is secondary. When designing the parameters,
we should give full consideration to their impact on the
joint performance of decision and estimation. Specifically,
we should first balance the respective contributions of the
decision cost and the estimation cost to the total CJDE
cost. Then, since decision and estimation are highly coupled,
we should fully utilize their mutual-effect and make a good
trade-off between them so that we can achieve a good joint
performance finally.

Within the CJDE framework, and inspired by the above
analysis, this paper proposes a compact CJDE (CCJDE) risk
with only one design parameter. CCJDE unifies the tradi-
tional decision risk and estimation risk into one framework in
the form of product. It inherits the theoretical advantages of
CJDE by accounting for the interdependence between deci-
sion and estimation. CCJDE risk is simpler than the CJDE
risk, and its computational complexity is also smaller. Based
on the CCJDE risk, we focus onminimizing it.We present the
optimal CCJDE solution containing decision and estimation
results, which have analytical forms. Furthermore, by taking
advantage of the parameter mutual-effects in the CCJDE
risk, we propose a novel CCJDE scheme with time-varying
parameters. By doing this, the interdependence between deci-
sion and estimation can be further utilized, and the joint per-
formance is therefore improved. It is worthwhile mentioning
that CCJDE is applicable for JDE problems in which decision
and estimation are equally important.

This paper applies the proposed CCJDE to the practical
JTI problems. After formulating the JTI problem, we propose
an applicable multiple model CCJDE method to solve it.
For performance evaluation, this paper proposes a new joint
performance metric (JPM), which can evaluate the perfor-
mance of tracking and identification jointly. This JPM con-
verts the identification error and tracking cost into one unified
metric. Two illustrative examples are presented to verify
the superiority of the proposed CCJDE method. Simulation
results show that CCJDE can take advantage of the coupling

between tracking and identification, and finally beats the
traditional two-step strategies in JPM. Also verified is the
effectiveness of the proposed JPM. For the multisensor data
JTI, besides the coupling between tracking and identification,
CCJDE can further utilize all information contained in the
heterogeneous sensor data. Besides, the effectiveness of the
proposed CCJDE scheme with time-varying parameters is
also demonstrated.

The main contributions of this paper are as follows:
1) This paper proposes a compact CJDE (CCJDE) risk,

which integrates the traditional Bayes decision risk and esti-
mation risk in a concise form. Based on this, we derive the
optimal CCJDE solution.

2) We propose a CCJDE method with time-varying
parameters, which provides additional flexibility, and what’s
more, the coupling between decision and estimation is further
utilized.

3) This paper applies CCJDE to the practical JTI problem.
An applicable multiple model CCJDE algorithm considering
the characteristics of JTI is proposed.

4) For performance evaluation, this paper proposes a new
joint performance metric, which unifies the identification
error and the tracking error in an effective way.

5) Through two illustrative JTI examples, the superiority
of the proposed CCJDE method is fully demonstrated. Also
verified are the proposed JPM and the CCJDE scheme with
time-varying parameters.

This paper is organized as follows. Section II overviews the
existing Bayes joint decision and estimation. Section III pro-
poses a new CCJDE risk, and also presents the correspond-
ing CCJDE solution. Section IV proposes a CCJDE scheme
with time-varying parameters. SectionV applies the proposed
CCJDE method to the JTI problem. An applicable multiple
model CCJDE algorithm for JTI is proposed. Also presented
is a new joint performance metric. Section VI presents the
simulation results. Section VII concludes the paper.

II. REVIEW OF BAYES JOINT DECISION
AND ESTIMATION
For JDE problems, Li [26] proposed an integrated paradigm
based on a new generalized Bayes risk:

R̄=
∑
i

∑
j

(αijcij + βijE[C(x, x̂)|Di,H j])P{Di,H j
} (1)

where x is the true target state and x̂ is its estimate. H j is the
jth hypothesis;Di is the ith decision;C(x, x̂) is the cost of esti-
mating x by x̂; E[C(x, x̂)|Di,H j] is the expected estimation
cost conditioned on the fact that Di is decided but H j is true;
αij and βij are the weight factors of decision and estimation,
which provide additional flexibilities.

Essentially, R̄ is a generalization of the traditional Bayes
risk for decision and that for estimation. It fully consid-
ers the coupling between decision and estimation, and thus
theoretically superior to the existing separate decision and
estimation or the two-stage methods.

4396 VOLUME 6, 2018



W. Cao et al.: CCJDE for JTI With Performance Evaluation

In the JDE framework, we also proposed a conditional
JDE (CJDE) risk [18] by introducing the on-line data,
as follows,

RC (z) =
∑
i

∑
j

(αijcij + βijE[C(x, x̂)|Di,H j, z])

×P{Di,H j
|z} (2)

RC (z) inherits the theoretical superiority of JDE by con-
verting the Bayes decision risk and estimation risk into one
framework. For calculation, however, CJDE is much simpler
than JDE due to the introduction of z.

III. COMPACT CONDITIONAL JOINT
DECISION AND ESTIMATION
A. MOTIVATION
In the CJDE risk RC (z), the nonnegative αij and βij work
as relative weights to combine the individual decision and
estimation costs. By properly selecting αij and βij, the JDE
framework is suitable for all three classes of JDE prob-
lems [26]: a) decision is primary and estimation is sec-
ondary; b) estimation is primary and decision is secondary;
c) decision and estimation are equally important.

As design parameters, αij and βij are problem-dependent.
For the third type of JDE problem mentioned above,
i.e., decision and estimation are of equal importance, the
parameters are expected to be simplified. On the premise of
guaranteeing the joint performance, simplifying the parame-
ters is promising. Therefore, within the framework of CJDE,
this paper focuses on proposing a new and compact CJDE
method. To achieve this goal, we need to take full considera-
tion of the close relationship between αij and βij, meanwhile,
take the final joint performance into account. Finally, the
proposed joint risk is expected to integrate the decision and
estimation costs in a concise and effective way.

B. COMPACT CONDITIONAL JOINT DECISION
AND ESTIMATION RISK
In view of the above, we propose the following compact
conditional JDE (CCJDE) risk:

R̄cC (z) =
N∑
i

N∑
j

γijE[C(x, x̂)|Di,H j, z]P{Di,H j
|z} (3)

where γij is the only parameter unifying the decision and the
estimation costs.N is the total number of target classes. Here,
x, x̂, H j, and Di have the same meanings as in JDE (1). The
expected estimation cost is denoted by

εij(z) , E[C(x, x̂)|Di,H j, z] (4)

Here are some properties of the CCJDE risk R̄cC (z).
a) Taking γij as decision cost and εij(z) as estimation

cost, R̄cC (z) can be considered as the product of the decision
cost and the estimation cost. This differs from the CJDE
risk RC (z), which is a summation of decision and estimation
costs.

b) R̄cC (z) inherits the virtues of CJDE by accounting
for the interdependence between decision and estimation.
Specifically, CCJDE converts the traditional decision cost
and estimation cost into one unified framework, and thus they
can be handled jointly to achieve a good joint performance.

c) For computational complexity, CCJDE is simpler than
CJDE, making it more practical. Specifically, in the CJDE
risk RC (z), both αij and βij need to be designed: we should
first balance the contributions of decision and estimation
to RC (z) by adjusting αijcij and βijεij(z), and then further
design βij for different (i, j)s. In R̄cC (z), we only need to design
appropriate γij to find a good trade-off between decision and
estimation for the sake of a good joint performance.

d) The designing of γij is application-dependent, which is
up to users to choose. The relative weight of decision and
estimation can be captured by the ratio of γii/γij.

e) As analyzed in Motivation, CJDE is applicable to
all three kinds of JDE problems: decision and estimation
are equally important or one is primary while the other is
secondary. For example, suppose decision is more important
than estimation, we can choose αijcij larger than βijεij(z) in
magnitude to emphasize more on decision. However, CCJDE
can be applied only when decision and estimation are of
equal importance. When it comes to this specific type of JDE
problem, CCJDE is simple and effective.

C. OPTIMAL CCJDE SOLUTION
To obtain the optimal CCJDE solution, we need to minimize
the above CCJDE risk R̄cC (z).

1) OPTIMAL DECISION
With any given estimation cost εij(z), to minimize R̄cC (z),
the optimal decision D is

D = Di, if C i(z) 6 C l(z), ∀l (5)

in which the posterior decision cost

C i(z) =
N∑
j=1

γijεij(z)P{H j
|z} (6)

2) OPTIMAL ESTIMATION
Given any decision Di and with the quadratic estimation cost
C(x, x̂) = x̃ ′x̃, the optimal estimator for R̄cC (z) is:

x̌(i) =
N∑
j=1

x̂(j)P̄i{H j
|z} (7)

where

x̂(j) = E[x|z,H j] (8)

is the state estimate conditioned on hypothesisH j. P̄i{H j
|z} is

the generalized posterior probability, given by

P̄i{H j
|z} = γijP{H j

|z}/
∑
l

γilP{H l
|z}.
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Note that in the above posterior CCJDE cost (6), the key is
to obtain the expected estimation cost εij(z) defined in (4).
Specifically, under the linear Gaussian assumption and for
z ∈ Di with Di being the decision region for Di, we have

εij(z) = E[x̃ ′x̃|Di,H j, z]

= mse(x̂(j)|H j, z)+ (x̂(j) − x̌(i))′(·) (9)

where mse(x̂(j)|H j, z) is the estimation mse. x̂(j) and x̌(i) are
estimates under hypothesis H j and decision Di, respectively.
For more details, please refer to reference [18].
Remark 1: It can be seen that both the CCJDE deci-

sion and estimation have analytical forms, and they are
interdependent: to get the CCJDE decision Di, we need to
calculate εij(z), in which the state estimates x̂(j) and x̌(i)

are required; to get the CCJDE estimation x̌(i), the weight
factor P̄i{H j

|z}(j = 1, · · · ,N ) is needed, which relates to
decision Di.

IV. CCJDE WITH TIME-VARYING PARAMETERS
In the CCJDE risk R̄cC (z), the parameter γij plays double roles:
it adjusts both the contributions of decision and estimation
to R̄cC (z). For decision, it is clear that we should choose
γij > γii(i 6= j) because with such γijs, the incorrect
decision is penalized more than the correct one, which bene-
fits decision. For estimation, however, designing γij is much
more complex [18]. Specifically, we should not choose γij
excessively larger than γii because this deteriorates the esti-
mation performance. In general, the estimation performance
is closely related to the decision performance in JDE prob-
lems, and sometimes, their respective demands for γij even
conflict [18].

Since the ultimate goal of JDE is to achieve a good joint
performance (rather than separate decision or estimation),
we should try to balance decision and estimation perfor-
mances for the sake of better joint performance. Taking this
into account and also considering the mutual effect between
decision and estimation performances, we propose the fol-
lowing new CCJDE scheme with time-varying parameters.

A. ANALYSIS
As analyzed in [18], on the average, if the decisions are
often correct, i.e., the correct classification rate PC is high,
we choose γii > γij. This benefits the estimation, and finally
results in a better joint performance. On the other hand,
if PC is low, we should better choose γii < γij, which can
prevents the estimation performance from excessively poor.

In practice, at the beginning steps, as we know little
about the true target identity, PC is usually low. With more
data available, more information about the target identity is
utilized, and PC goes up. Gradually, with the accumulation of
data, PC becomes higher, and is finally close to some value
not larger than 1. This inspires us to design a time-varying
parameter, which accounts for the close relationship between
decision and estimation, and finally leads to a better joint
performance.

B. TIME-VARYING-PARAMETER CCJDE
We propose a CCJDE scheme with time-varying parameters:

R̄c,rC =
∑
i,j

γ kij E[C(xk , x̂k )|D
i,H j, zk ]P{Di,H j

|zk} (10)

For comparison purpose, we have the constraints
∑
i
γij = 1,

γij = γji, γii = γjj(i 6= j). Then we propose to use

γ kij = θγ
k−1
ij , γ kii = 1− γ kij (11)

where θ ∈ (0, 1] is a constant, which is application-
dependent. In practice, we can choose different θs, as long
as γ kij has a decreasing trend, e.g., we choose θ = 0.9.
Actually, R̄c,rC is a generalization of R̄cC , and it reduces to R̄

c
C

with θ = 1.
To minimize R̄c,rC , the optimal solution is the same as

in CCJDE excepts that γij is replaced by γ kij . In essence,
through these time-varying parameters, not only the coupling
between decision and estimation but also the time-varying
characteristics of decision and estimation performances are
fully utilized, which lead to a better joint performance.

FIGURE 1. JTI using multisensor data.

V. CCJDE BASED JOINT TRACKING
AND IDENTIFICATION
A. PROBLEM FORMULATION
There is only one target with multiple possible classes,
in which different classes have different dynamics. As is
illustrated in Fig.1. In this JTI problem, target tracking accu-
rately estimate the target state (e.g., position, velocity, accel-
eration etc.), and target identification determines the type
(a fighter or an airline). Our goal is to solve these two prob-
lems jointly using data transmitted from multiple sensors.
Data are uncertain due to clutter, occlusion, maneuver, sensor
resolution, etc.

In this problem, tracking and identification are coupled:
information of the target identity can help build a more
accurate target kinematic model, which benefits tracking;
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TABLE 1. One cycle of imm estimator.

information of the target motion behavior can help identify
its class label. Thus, this is a JDE problem which requires a
JDE solution.

Denote by xk the target state, ci the target class, and zk the
kinematic measurement at time k . Our goal is to obtain

{xk , ci}

jointly using zk , which denotes data up to time k . In this paper,
decision and hypothesis are one-to-one correspondence:H j is
the hypothesis of class ci, and Di means ci is chosen.
With the linear motion and measurement assumptions,

we have the following hybrid system:

xk = F ijk−1xk−1 + G
ij
k−1u

ij
k−1 + 0

ij
k−1w

ij
k−1 (12)

zk = Ckxk + vk (13)

where uk is the deterministic input, wk and vk are zero-
mean white Gaussian process and measurement noises,
respectively. Fk ,Gk , and 0k are known matrices, and the
superscript ij denotes the jth model of class i. Ck is the
measurement matrix. For estimation, we adopt the well-
known interactingmultiple model (IMM) for better maneuver
tracking performance. Table 1 shows one cycle of the IMM
filter [30].

B. MULTIPLE MODEL CCJDE APPROACH FOR JTI
One Cycle of MM-CCJDE Algorithm at Time k:

a) Initialization
Initialize the CCJDE algorithm by parameters x̂(j)k−1
and P{H j

|zk−1}. Here, x̂(j)k−1 is the state estimate under
H j and P{H j

|zk−1} is the probability of H j.

b) Update step
With zk available, update x̂

(j)
k and P{H j

|zk}.
c) Estimation step

For each decision candidate Di, calculate the CCJDE
estimate x̌(i)k according to (7). Then, get the expected
cost εij(zk ) = mse(x̂k |zk ,Dik ,H

j) according to (9).
d) Decision step

Based on εij(zk ), obtain the posterior cost C i(zk ) =∑
j γijεij(z

k )P{H j
|zk} for each i. Then the optimal

CCJDE decision is Dik : C
i(zk ) 6 C l(zk ),∀l.

e) Output
Output the CCJDE solution for time k: Dk = Dik and
x̂k = x̌(i)k . Then let k − 1 = k and go to step 1.

Remark 2:With this CCJDE algorithm, the optimal track-
ing and identification results can be obtained jointly with-
out decision-estimation iteration. The proposed MM-CCJDE
method can take advantage of the coupling between tracking
and identification in JTI. Besides, MM-CCJDE has simple
calculation, which makes it more practical.

C. JOINT PERFORMANCE EVALUATION METRIC
Traditionally, decision performance and estimation perfor-
mance are evaluated by correct-decision rate and root mean
square error (RMSE), respectively [31], [32]. For JDE
problems, however, they are incomprehensive and may even
fail to compare different algorithms. It is pointed out in [27]
that for JDE problems, decision and estimation performances
should be evaluated jointly rather than separately. A joint
performance measure (JPM) based on the idea of mock data
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was also proposed in [27]. In [6], we presented a JPM based
on the one-step-predicted estimation error.

In essence, decision and estimation have different
characteristics. The estimation error is usually a distance, and
thus the average estimation error is always used for its perfor-
mance evaluation. For decision, however, since the decision
error is almost never a distance, a sum of decision errors
is meaningless [26]. Therefore, the decision performance is
usually evaluated by the proportion of the correct decisions
to the total decisions, i.e., correct decision rate.

Considering the above differences between decision errors
and estimation errors, we propose the following unified met-
ric to evaluate the decision and estimation performances
jointly:

ζ = Ec(Dk , D̂k )+ λ · Ex(xk , x̂k ) (14)

where Ex(·) and Ec(·) are errors of estimation and decision,
respectively.

Specifically, Ex(·) and Ec(·) are defined as follows:

Ec(Dk , D̂k ) =

{
0, if Dk = D̂k
1, if Dk 6= D̂k

and

Ex(xk , x̂k ) = (xk − x̂k )′P−1(·)

where P is a normalization factor, which converts the estima-
tion MSE (xk − x̂k )′(·) to [0,1]. λ is a unit-free weight factor
between decision and estimation. The bigger λ is, the more
emphasis we place on estimation. Generally, λ is a design
parameter, and its value depends on practical JDE problems.
Remark 3: The proposed metric (14) is a joint perfor-

mance evaluation metric in the following sense: it reflects
both the decision performance (through Ec(·)) and the esti-
mation performance (through Ex(·)). In ζ , both Ec(Dk , D̂k )
and Ex(xk , x̂k ) are between 0 and 1, and they are unit free.
Through the weighed sum, the decision error and the estima-
tion error are unified in a reasonable and effective way.

VI. SIMULATION AND DISCUSSION
In this section, we illustrate the proposed CCJDE method
through two JTI examples. The compared methods are the
traditional identification-then-tracking (ITT) and tracking-
then-identification (TTI) in terms of root mean square
error (RMSE), the probability of correct classification (PC ),
and the joint performancemetric (JPM). Specifically, in simu-
lation 1, the constant turn (CT)motionmodel is adopted using
radar data. In simulation 2, the constant acceleration (CA)
motion model is adopted using multisensor data.

The compared methods are as follows:
a) In ITT, the optimal Bayes decision is made first accord-

ing to the Bayes decision rule, which minimizes the Bayes
decision risk. Then, theminimummean square error (MMSE)
estimation is done based on the decided class.

b) In TTI, the MMSE-based multiple model estima-
tion is made first. Then, decision is made based on the
ratio of current measurement likelihoods conditioned on
x̂k|k−1 and H j [19].

A. SIMULATION 1
Suppose there is only one target with two possible classes
c1 and c2, which differ from each other in dynamics. Denote
by xk = [x, ẋ, y, ẏ] the target state. The state evolves accord-
ing to the constant-turn (CT) model:

xk+1 = FCT (ω)xk + wk

in which the transition matrix

FCT =


1 sinωT/ω 0 −(1− cosωT )/ω
0 cosωT 0 − sinωT
0 (1− cosωT )/ω 1 sinωT/ω
0 sinωT 0 cosωT


and the covariance matrix of process noise is Q = cov(wk ) =

2(ωT−sinωT )
ω3

1−cosωT
ω2 0 ωT−sinωT

ω2

1−cosωT
ω2 T −

ωT−sinωT
ω2 0

0 −
ωT−sinωT

ω2
2(ωT−sinωT )

ω3
1−cosωT

ω2

ωT−sinωT
ω2 0 1−cosωT

ω2 T


The sampling time T = 1. A target in a class i (i ∈ {1, 2})

has model set M i of possible turn rate ω, given by

M1
= {5π/180, 3π/180,−3π/180},

M2
= {−18π/180, 10π/180,−10π/180, 6π/180,−6π/180}.

Each class has an equal initial probability, and so are the mod-
els in M i initially. The radar data follows the measurement
model (13) with Ck = [1, 0, 0, 0; 0, 0, 1, 0].

In the IMM method, the transition probability matrix for
class 1 and class 2 are given by:

TPM1 =

 0.9 0.05 0.05
0.15 0.85 0
0.15 0 0.85



TPM2 =


0.9 0.025 0.025 0.025 0.025
0.15 0.85 0 0 0
0.15 0 0.85 0 0
0.15 0 0 0.85 0
0.15 0 0 0 0.85

.
The simulation results are presented in Fig. 2. The

JPM (14) with λ = 1 is used. γ00 = γ11 = 1/3, γ01 =
γ10 = 2/3. All results were obtained from 5000 MC runs
and the true target class is randomly generated from a binary
distribution.
Fig. 2 shows that for the position and velocity estimation

RMSE, TTI is the best, CCJDE is in themiddle, and ITT is the
worst. Here, TTI has the best estimation performance because
estimation in TTI is the MMSE estimation, which is optimal
in the MSE sense. For decision performance, ITT performs
best because its decision is optimal in the sense of minimum
error probability. For joint performance, however, CCJDE
beats TTI and ITT. This verifies that CCJDE can make a
good trade-off between decision and estimation. Although
TTI and ITT have the optimal estimation performance and the
optimal decision performance, respectively, CCJDE has the
best joint performance, whichwe caremost in a JDE problem.
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FIGURE 2. CCJDE for JTI with constant turn model. (a) RMSE of position. (b) RMSE of velocity. (c) Probability of correct classification. (d) Joint
performance measure.

Besides, the effectiveness of the proposed JPM (14) is also
verified. This JPM can effectively reflect the joint perfor-
mance of decision and estimation.

B. SIMULATION 2
In this simulation, we consider a typical JTI problem
using multisensor data, same as in [6]. Classes differ from
each other in two aspects: dynamic behavior and feature
attributes [29]. Two types of measurements: radar and elec-
tronic system measure (ESM) are adopted, which are contin-
uous and discrete data, respectively. Our goal is to estimate
the target state and identify its class jointly using both radar
and ESM data.

For dynamic evolution, with state xk = [x, ẋ]′, the target
state evolves according to the linear model (12) with

F =
[
1 T
0 1

]
, G =

 1
2
T 2

T

, 0 =
 1

2
T 2

T

.

The standard deviation of the process noise wk is 0.5.
Different target classes have different control input uk .
Class 1 has model set {0,+g,−g} for uk and class 2 has the
model set {2g, 2.5g,−2.5g, 3g,−3g}. The initial probability
of each class are equal, so are the models in each model
set. The radar data follows the measurement model (13) with
measurement matrix Ck = [1, 0] and measurement noise
vk ∼ N (0, 502m2). The target attribute and ESM measure-
ment models are the same as in [29], which are omitted here.

Denote by zkx the kinematic measurements and zkc the
attribute measurements up to time k , respectively. The com-
pared ITT and TTI methods are the same as in [29].
Specifically, in ITT, identification is made based on both
zkx and zkc . For TTI, the best estimation is made first using
zkx only since zkc is difficult to be used for estimation directly
without going through decision. Here, γ 0

00 = γ 0
11 = 1/3,

γ 0
01 = γ

0
10 = 2/3. All results were obtained from 5000 MC

runs and the true target class is randomly generated from a
binary distribution.
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FIGURE 3. CCJDE for JTI with constant acceleration model using multisensor data. (a) RMSE of velocity. (b) Probability of correct classification.
(c) Joint performance measure 1. (d) Joint performance measure 2.

For joint performance evaluation of multisensor data JTI,
we consider two cases: the ground truth of the target identity
and state are known and unknown, respectively. They will be
given below in detail.

1) JOINT PERFORMANCE METRIC (JPM)
a: JPM1
For the case with known ground truth, we use the one-step-
predicted error proposed in [28]:

λk =
1
M

M∑
m=1

(xmk − x̂
m
k|k−1)

′(·) (15)

where xmk is the ground truth and x̂mk|k−1 is the one-step
predicted state at k , respectively. m denotes the mth run out
of M Monte Carlo runs.

b: JPM2
For the case with unknown ground truth, following the spirit
of [27], we measure the distance between the original data set
zk = {zxk , z

c
k} and the mock data set ẑk = {ẑxk , ẑ

c
k} generated

by the algorithm [27], [32]. To achieve this goal, we propose
to use the following unified metric as the JPM [6]:

dk = dkc (z
c
k , ẑ

c
k )+ ξ · d

k
x (z

x
k , ẑ

x
k ) (16)

where dkc (·) and dkx (·) are the distances for discrete data
and that for continuous data, respectively. ξ is a weight
factor.
Specifically, in order to obtain dkc (z

c
k , ẑ

c
k ), we measure the

distance between two discrete data sets zck = {z
c,(i)
k }

Ni
i=1 and

ẑck = {ẑ
c,(i)
k }

Ni
i=1, where i denotes the ith simulation and

Ni is the total MC runs. The Wasserstein distance [32] is
adopted here due to its nice property and adaptability to our
situation [6]. Based on the Wasserstein distance, the distance
between zck and ẑ

c
k is

dkc (z
c
k , ẑ

c
k ) = min

I∈I

∑n

i=1
d(zc,ik , ẑ

c,(i)
k ) (17)

where I is a permutation of data points in ẑck , and I is the set
of all possible such I ’s. In this paper, we use the Hamming
distance for d(zc,ik , ẑ

c,(i)
k ) because it suites our problem [6].
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FIGURE 4. CCJDE with time-varying parameters.

To obtain dkx (z
x
k , ẑ

x
k ), we measure the distance between

zx,(i)k and ẑx,(i)k , where the superscript i denotes that they come
from the same simulation run. We propose the following
mean predicted-measurement distance:

dkx (z
x
k , ẑ

x
k ) =

1
I

∑I

i
ζ ik (18)

where ζ ik =
1
J

∑J
j (z

x,(i)
k − ẑx,(i)k,j )′R−1(·). Here, zx,(i)k is the real

kinematic measurement at time k on the ith run out of I runs.
ẑx,(i)k,j is the jth one-step prediction of the measurement on the
ith run out of J runs.

2) SIMULATION RESULTS AND ANALYSIS
Simulation results are shown in Fig. 3 with JPM1 and
JPM2 given in (15) and (16), respectively. Fig. 3 shows that
for position estimation RMSE, TTI is worst, which mainly
results from the incomplete use of information: TTI uses
only radar data for estimation while ITT and CCJDE use all
information (radar and ESM). ITT is worse than CCJDE due
to the essential disadvantage of ‘‘decision then estimation’’.
For estimation in CCJDE, all information is used and the
effect of decision on estimation is also considered, and thus
it performs best. For decision performance, the differences
among all methods are not significant. When it comes to the
joint performance, CCJDE beats TTI and ITT.

This simulation verifies that CCJDE can fully utilize the
multisensor data information, and also take advantage of the
coupling between decision and estimation. Finally, it outper-
forms the traditional two-step strategies in JPM.
Remark 4: In order to verify the effectiveness of the time-

varying parameters, we further compare CCJDE algorithms
with different parameters. The form γ kij = θγ

k−1
ij is adopted.

In CCJDE1, θ = 1; In CCJDE2, θ = 0.95. Actually,
CCJDE1 is used for comparison purpose. At the initial time,
γ 0
00 = γ

0
11 = 1/3, γ 0

01 = γ
0
10 = 2/3. Fig. 4 shows the results.

To save space, we only present the joint performances of all
compared methods since other performances of CCJDE1 and
CCJDE2 are close, and so they are omitted.

Fig. 4 verifies the effectiveness of the proposed CCJDE
schemewith time-varying parameters. It can be seen that with
appropriate choices of γ kij , CCJDE2 is slightly better than
CCJDE1 in JPM. This demonstrates that with time-varying
parameters, the coupling between decision and estimation can
be further utilized so that a better joint performance can be
achieved.

VII. CONCLUSION
This paper proposes a compact conditional JDE (CCJDE)
method for the joint tracking and identification (JTI) problem.
JTI is essentially a JDE problem, and better solutions require
solving the tracking and identification problems jointly. The
recently proposed JDE framework provides a good solution
for such problems involving coupled decision and estimation.

Within the JDE framework, we propose a new CCJDE risk,
which integrates the traditional decision and estimation risks
through a simple form. CCJDE inherit the merits of JDE
by utilizing the coupling between decision and estimation.
Based on the CCJDE risk, we present the CCJDE solu-
tion containing decision and estimation. Besides, inspired
by the parameter effects in CCJDE, this paper proposes a
new CCJDE scheme with time-varying parameters. By doing
this, the mutual effect between decision and estimation could
be further utilized so that the joint performance can be
improved.

This paper applies the proposed CCJDE method to practi-
cal JTI problems. After the problem formulation, we propose
an applicable multiple model CCJDE method for the JTI
problem. For performance evaluation, a new joint perfor-
mance metric (JPM) is proposed, which unifies the tracking
error and the identification error into one metric in an effec-
tive way.

Two illustrative JTI examples are presented for illustration.
They show that CCJDE can take advantage of the coupling
between tracking and identification, and finally beats the
traditional two-step methods in JPM. For multisensor data
JTI, besides this coupling, the information contained in het-
erogeneous sensor data is also utilized. Besides, the effec-
tiveness of the proposed CCJDE scheme with time-varying
parameters is also verified. In general, this paper focuses on
the CCJDE method, and more complex practical JTI prob-
lems are still under further investigation.
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