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ABSTRACT In many applications of wireless sensor networks (WSNs), node location is required to locate
the monitored event once occurs. Mobility-assisted localization has emerged as an efficient technique for
node localization. It works on optimizing a path planning of a location-aware mobile node, called mobile
anchor (MA). The task of the MA is to traverse the area of interest (network) in a way that minimizes the
localization error while maximizing the number of successful localized nodes. For simplicity, many path
planning models assume that the MA has a sufficient source of energy and time, and the network area is
obstacle-free. However, in many real-life applications such assumptions are rare. When the network area
includes many obstacles, which need to be avoided, and the MA itself has a limited movement distance
that cannot be exceeded, a dynamic movement approach is needed. In this paper, we propose two novel
dynamic movement techniques that offer obstacle-avoidance path planning for mobility-assisted localization
inWSNs. The movement planning is designed in a real-time using two swarm intelligence based algorithms,
namely grey wolf optimizer and whale optimization algorithm. Both of our proposed models, grey wolf
optimizer-based path planning and whale optimization algorithm-based path planning, provide superior
outcomes in comparison to other existing works in several metrics including both localization ratio and
localization error rate.

INDEX TERMS Wireless sensor networks, path planning, mobility models, localization models,
optimization, grey wolf optimizer, whale optimization algorithm, obstacle-avoidance path planning.

I. INTRODUCTION
A wireless sensor network (WSN) is a network consisting
of a large number of sensor nodes that are linked together
wirelessly to monitor, sense and gather required data from
a physical area of interest [1], [2]. In the recent few years,
WSNs have been engaged in many applications due to
their size, cost, and simplicity of use [3]. Such applications
include a wide range of health, military, agricultural, object
tracking, underwater and many other applications [4], [5].
In many of these applications, the sensed data is significant
and the location of this data is required to take a further
action [6], [7]. A simple example is the location of pollu-
tion or the exact position of a fire source [8]. Since many of
WSNs placement are done following a random deployment,
where nodes are distributed at random positions, it is difficult

to provide each node with its own location manually. Thus,
other efficient methods are needed to have such process done.

The Global positioning system (GPS) is one of the easiest
location techniques to implement in WSNs; however, it is
impractical to attach every single node with a GPS device
because of the financial cost and other reasons including its
size and inability to work in some applications like indoor
applications [9]. For such reasons, alternatives methods have
arisen to provide the deployed nodes with their locations. One
simple solution is to provide only a portion of the deployed
nodes with their own locations, and let those location-aware
nodes, called anchors, spread their locations through sin-
gle or multi-hops communications. Based on the received
information from anchors, the unknown nodes (UNs), which
represent the nodes that are not location-aware, can estimate

22368
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-3866-3048


A. Alomari et al.: Swarm Intelligence Optimization Techniques for Obstacle-Avoidance Mobility-Assisted Localization

their locations [10]. However, this solution also faces many
challenges to be addressed and solved. Examples of these
challenges include the cost of using a large number of anchor
nodes, the uncertainty of completing the localization process
in case some of the anchors fail, and the computation load that
may affect the energy of anchors and their surround nodes.

An interesting area of research suggests taking advantages
of such method with an improvement of it by using the
mobility of anchors [11]. This idea aims to decrease the
need of using a large number of nodes by letting one mobile
anchor (MA) moves around the network and provides its own
location to the nearby nodes. Based on the ability of receiving
the MA signals, some UNs will be able to estimate their
locations. Moreover, the MA typically can move freely in the
network, which enables it to reach an extensive quantity of
nodes. Unfortunately, even this solution has challenges, such
as path distanceminimization, the effects of the designed path
on both localization ratio and accuracy, energy efficiency,
localization time issues, and many others [9].

Typically, the mobile path planning is formed in advance,
which works when the MA has sufficient sources of time
and energy, and the area of interest is obstacles-free.
However, in many real-time scenarios of WSNs, this assump-
tion is uncommon.When theMAhas a limitedmovement dis-
tance that cannot be exceeded and the network area includes
many obstacles that also need to be avoided, a sufficient and
dynamic path planning is needed.

This paper introduces two novel dynamic meta-heuristic
optimization techniques for mobility-assisted localization
in WSNs. The suggested path planning models are based
on two new optimization algorithms, namely the Grey
Wolf Optimizer (GWO) [12] and the Whale Optimization
Algorithm (WOA) [13]. The proposed models are respec-
tively called Grey Wolf optimizer based obstacle-avoidance
Path Planning (GWPP) and Whale Optimization algorithm
based obstacle-avoidance Path Planning (WOPP). The nov-
elty of our proposed models lies in employing optimiza-
tion algorithms to direct the path formation of the MA,
which helps to maximize the localization ratio and minimize
the localization error. By using the optimization algorithms,
the MA movement is formed in real-time; it also avoids the
obstacles, takes into account the maximum distance con-
straint, and simultaneously achieves the objectives of the
entire localization process. To the best of our knowledge,
we are the first to use swarm based optimization techniques
assuming such scenarios in path planning for localization in
WSNs. The proposed models provide outstanding results in
several metrics in comparison to some existing works.

We work on designing an obstacle-avoidance path for
mobility-assisted localization in WSNs. We summarize our
contribution in the following points:

1) For the first time, the MA path is dynamically formed
based on meta-heuristic optimization models. Using
either GWO or WOA in the movement decision helps
to increase the number of localized nodes and more
importantly minimize the localization error.

2) While considering all of the area’s and nodes’
constraints, the proposed models ensure that a larger
number of unknown nodes can receive the MA’s
localization information compared to other models.
This number increases when the maximum distance
increases. In comparison to other existing models, our
proposed models offer better localization ratios.

3) The objective function comes first. In every movement
step, the MA will make its decision for next movement
based on the fitness of the objective function. There-
fore, both models show a competitive accuracy.

4) Regardless of the number of obstacles, loca-
tions, or dimensions, the optimized MAmovement can
sense and find them. Thus, the MA can consequently
act by ignoring the direction of the obstacles and
consider the alternative directions while also taking
other constrains into account.

5) Unlike the other models, in which the MA has to go
around the obstacles and keep moving in the same
movement pattern, the MA in our proposed models is
free to change its own direction based on the applied
optimization model. This freedom is important for
avoiding to have the MA being trapped in a small
region.

The rest of this paper is organized as follows: Section II
provides a brief review about the related work. Section III
provides an overview of swarm intelligence based works in
WSNs, and the two optimization models used in this work,
GWO andWOA. Section IV states the systemmodel assump-
tions. We introduce our proposed models starting with the
constraints and the objective analysis, then present the GWPP
and WOPP approaches in details, and ending with describing
the localization process all in SectionV. In SectionVI andVII
respectively, we show the simulation and performance set-
ting, and discuss the evaluation results. Section VIII offers
a discussion on both proposed models based on the shown
results, and we conclude our work by Section IX and ending
by stating the future works.

II. RELATED WORK
Localization in WSNs has become a active area of research,
resulting in several models and algorithms in the last few
years [9]. In general, these models differ based on their
objectives in several ways such as the localization process-
ing, localization method, anchor and node types, application
area, or deployment area [8]. Figure 1 summarizes the objec-
tives of the localization models.

In the third classification, anchor types, the localization
models are categorized into four different types, (static nodes
and static anchors), (mobile nodes and static anchors), (static
nodes and mobile anchors), and (mobile nodes and mobile
anchors) [14], [15]. Since our proposed models are located
under the third area (static nodes and mobile anchors),
we limit our discussion to this category. In this category,
the anchors are able to move in the network providing the
stationary sensors, which remain static after their initial
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FIGURE 1. Classification of localization models in WSNs based on their objectives.

placement, with the required localization data. In this area,
the path planning is formed following one of three types,
random, static or dynamic. A movement type can be cho-
sen based on the available sources of time or energy, and
on the objective of the localization technique. As this work
focuses on static and dynamic path models, the related work
review will be limited to these types, specifically to [8]
and [14]–[22].

Any discussion of mobility assisted-localization in
WSNs must include the SCAN and Hilbert models.
Koutsonikolas et al. [15] are two models that are consid-
ered as the inspiring paths to many other following models.
Although they opened a wide area of research, SCAN and
Hilbert suffer from the collinearity problem. Such problem
affects both the localization accuracy and the coverage of the
localized nodes. A subsequent work, called Circles, inspired
by a circling movement to overcome the collinearity problem
is proposed in [16]. However, Circles has difficulty to reach
the corners of the network, which also affects negatively the
localization ratio and coverage. To overcome the problem of
collinearity, a newer model that presents a mobile anchor-
assisted localization algorithm based on a regular hexagon
(MAALRH) is proposed in [17]. MAALRH forms the path
planning following a hexagon-like movement, which suc-
ceeds in solving the collinearity problem. But similar to
Circles, MAALRH in its first design cannot reach the cor-
ners of the network. LMAT, which is stand for Localization
algorithm with a Mobile Anchor node based on Trilateration,
is proposed in [18]. LMAT path planning is designed based
on a balanced set of triangles, which increases the localization
accuracy by covering the collinearity. In addition, LMAT is
able to cover the entire network area, which improves the
localization ratio. H-Curve in [14] proposed another models
that works on both solving the collinearity problem and
reaching the entire deployed nodes. The proposed model
guarantees that all nodes inside the network can be reached by
the MA, thus, localized. H-Curves comes with a shorter path
length in comparison to that in LMAT. A three-dimensional
path planning based on H-Curve concepts is designed in [19].
Z-Curves is a static model that composes the movement
of the MA following a number of Z-shapes [21]. Node
Localization Algorithm with Mobile Beacon (NLA-MB) is
a novel dynamic model proposed in [20]. NLA-MB assumes
that the MA has a limited movement distance, hence, the path
formation should be designed based on such constraint.
Fuzzy-Logic based Path Planning for mobile anchor-assisted

Localization (FLPPL) is proposed in [8]. FLPPL has the
same constraints as NLA-MB; however, it employs multiple
individual inputs in a fuzzy-logic system for path planning
that succeeds in minimizing the localization error and to
maximizing the localization ratio in comparison to other
similar models.

All of the above mentioned papers, except Z-Curves, con-
sider the area of interest to be plain and empty of obstacles.
However, in many applications of WSNs, some kinds of
obstacles and objects can be found in the area. Z-Curves
proposes that when the MA faces an obstacle on its way,
it simply turns around the corner of that obstacle and goes
to the obverse point of the obstacle to continue the move-
ment. However, such a solution leaves several drawbacks of
path length and collinearity. Another proposed model, called
Snake-Like is proposed for obstacle-avoidance in [22]. The
proposed movement formation is similar to that proposed in
SCAN; however it follows a horizontal approach. When an
obstacle is faced, similar to Z-Curves, the MA will move
on the border of the obstacle and reach the other point
on the same line to the last point before the obstacle, and
keeps its movement. The main disadvantage of the Snake-
Like proposal is the collinearity. Snake-Like does not provide
a solution for the collinear points and how to deal with
them.

As NLA-MB and FLPPL assume that the MA has a lim-
ited movement distance that cannot be exceeded, and since
Z-Curves and Snake-Like consider the obstacle-existence
scenarios, and there is no work that takes into account both
problems, we decided to investigate consider both constraints
and developed the two dynamic optimized models, GWPP
and WOPP.

III. SWARM INTELLIGENCE IN WSNs
In recent years, Meta-heuristics have gained an attention
and have been applied in many fields. The term Meta-
heuristic denotes an area of general algorithms and frame-
works that are designed to deal with complex optimization
problems [23]. Simplicity of concept, ease of implemen-
tation, and its applicability to be used in different prob-
lems are few reasons behind its successful spread [13].
Their inspiration, typically, is based on mimicking a
natural phenomenon [13], [23]. Generally speaking, the
Meta-heuristics can be categorized into three main classi-
fication, evolution-based, physics-based, and swarm-based
methods [12]. Genetic Algorithms (GA) [24] is the most
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popular example of the first category, the evolution-based
algorithms. In physics-based category, we can mention
the Simulated Annealing (SA) [25] as a popular exam-
ple, while in the swarm-based methods, there is a list of
existing models that includes Particle Swarm Optimization
(PSO) [26], Ant Colony Optimization (ACO) [27], Artificial
Bee Colony (ABC) algorithm [28], and many other existing
algorithms. Since our techniques focuses on swarm-based
optimization, we limit our discussion only to such meth-
ods. Swarm-based, or Swarm Intelligence (SI), optimization
is a relatively new field that showed a novel direction in
optimization research [29]. Simply, swarm-based algorithms
are optimization models that try to solve the researched
problem by imitating the social behavior of creatures, espe-
cially animals [12]. The rationale of adopting swarm-based
algorithms lies on their ease to implement and computational
efficiency in many optimization problems. In WSNs, swarm-
based optimizationmodels have been used for many purposes
including routing [30], [31], energy efficiency [32]–[34],
reliability [35] and other applications. For instance,
Kumar andKumar [32] introduce a hybrid swarm intelligence
energy efficient algorithm that works to enhance the cluster-
ing and routing processes using both ABC and ACO algo-
rithms. In [33], a new energy efficient cluster head selection
algorithm based on the PSO, called PSO-ECHS, is proposed.
It consists of two phases, a cluster head selection phase
that is based on PSO, and a cluster formation phase, which
depends on the residual energy of nodes. In node localization
in WSNs, several works have been done considering the SI
algorithms. In [36], another SI based model is proposed for
node localization this time. The work introduces two different
localization models that use PSO and ABC together. The
localization algorithms are evaluated in both single-stage and
multi-stage localization. The evaluation results show that the
PSO-based localization algorithm performs better than the
one that uses ABC. However, no comparison to other existing
localization works was performed. A multi-objective PSO
localization algorithm, MOPSOLA, is presented in [37] to
enhance the localization in WSNs. The investigated objective
functions consist of the space distance constraint and the
geometric topology constraint. The proposed model shows
better results in terms of localization error compared to other
similar models. Another direction of localization is consid-
ered in [38], where the unknown nodes are assumed to be
moving and distributed in underwater WSNs. The proposed
localization model is based on mobility prediction and PSO.
The results show that the nodes locations can be estimated
along with their velocity and movement can be predicted.
However, to best of our knowledge, no study of using SI in
controlling theMAmovement and path planning for obstacle-
exist networks in localization assistance in WSNs has been
proposed. Therefore, we propose our GWPP and WOPP
models. More details about the proposed models will be
shown in Section V, but an overview about GWO and WOA
will be first presented in the following sections III-A and III-
B respectively.

A. GREY WOLF OPTIMIZATION
Proposed by Mirjalili et al. [12], Grey Wolf Optimizer
(GWO) is a new metaheuristic algorithm that mimics the
natural leadership hierarchy system of the grey wolves. Grey
wolves live in small groups of members. They have a special
social dominant hierarchy that divides the group into four
hierarchical parts starting of the top leaders called alphas (α),
then betas (β), delta (δ), and the lowest ranking of the hierar-
chy is omega (ω). Each of these kinds leads the subgroup that
is located in its lower ranking. For example, Delta wolves are
followers of alphas and betas but they can lead the omegas.
Figure 2 depicts the social pyramid of theGreyWolf in nature.

FIGURE 2. Hierarchy of grey wolf (adopted from [12]).

For the mathematical modelling, alpha (α), beta (β), and
delta (δ) represent the best three candidate solutions within
the search space respectively. The optimization process is
guided by these candidates. All other candidate solutions
are considered as omegas (ω). Each candidate solution is
represented as a vector in

EX = x1, x2, ...., xn (1)

Where xi is the current position of the grey wolf, and n
is the dimension of the search space [39]. Mathematically,
the hunting process represents the optimization, while search-
ing for the prey represents the available solutions. The grey
wolf hunting behavior consists of three main phases starting
with encircling the prey, hunting, and attacking the prey. The
first phase, prey encircling, is mathematically modelled as

ED = | EC .EXP(t)− EX (t)| (2)
EX (t + 1) = EXP(t)− EA. ED (3)

Where t indicates the current iteration, EA and EC are two
coefficient vectors, EXP is the position vector of the prey, and
EX indicates the position vector of a grey wolf.
The two coefficient vectors of EA and EC can be calculated

as

EA = 2 Ea.Er1 − Ea (4)
EC = 2 Er2 (5)
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Where components of Ea are linearly decreased from 2 to
0 over the iterations course, and Er1, Er2 are vectors chosen
randomly in the range of [0, 1]. Initially, the grey wolves are
able to locate potentially the prey positions in order to hunt
them. This localization is guided by the first best solutions,
namely (α), beta (β), and delta (δ). Thus, these three best
candidate solutions so far will be saved and updated over the
iteration times in order to support other wolves (ω) finding
their own positions. This process of hunting is represented
using the following formulas

EDα = | EC1.EXα − EX | (6)
EDβ = | EC2.EXβ − EX | (7)
EDδ = | EC3.EXδ − EX | (8)

Where EDα , EDβ , and EDδ are the updated distance vectors
between the position of each leader wolf and the other wolves.
ECi is the required coefficient vector that is calculated using the
formula in equation 5, and EX is the position of other wolves.
Each EXi represent an estimated position calculated based on
the distance vector between the omega wolf and each leader
wolf of EDα , EDβ , and EDδ respectively. They are calculated as

EX1 = EXα − EA1.( EDα) (9)
EX2 = EXβ − EA2.( EDβ ) (10)
EX3 = EXδ − EA3.( EDδ) (11)

The updated new position vectors are given as EXi where
EX1 is the new position based on alpha position EXα and
the distance vector EDα , EX2 is the new position based on
alpha position EXβ and the distance vector EDβ , and EX3 is the
new position based on alpha position EXδ and the distance
vector EDδ . The coefficient vectors of EAi are calculated as in
equation 4. Therefore, using the average sum of all previous
positions, the new position vector is calculated as

EX (t + 1) =
EX1 + EX2 + EX3

3
(12)

The third phase, the prey attacking, comes after the hunting
phase. In this phase, the value of Ea is decreased, which
therefore decreases the value of EA. The value of EA is limited
by the range (−2a, 2a). In order to find a better solution,
EA value has to be more than 1.
Since its first appearance, GWO has caught growing

attention. It has been used in tremendous engineering and
optimization problems. In WSNs, GWO is used varying
from routing [40], energy efficiency and clustering [41], and
localization [39].

B. WHALE OPTIMIZATION ALGORITHM
Whale Optimization Algorithm (WOA) is another new
swarm intelligence optimization model that was recently
proposed [13]. As indicated by its name, WOA simulates
the social behavior of humpback whales. Whales have the
ability to think, learn, communicate and have a higher level
of smartness in comparison to many other creatures. An inter-
esting social behavior of whales is their special strategy of

hunting, so-called bubble-net feeding. This strategy consists
of two main maneuvers, upward-spirals and double-loops.
The proposed WOA is based only on the former one. In this
maneuver, whales dive deeply in the water and start creating
bubble around the prey in a spiral shape, and swim up toward
the surface of the water. The spiral shape movement is similar
to number ’9’. The mathematical model of WOA consists
of three phases, prey encircling, spiral bubble-net feeding
maneuver, and search for prey. In the first phase, the prey
encircling, the whales are assumed to recognize the location
of the prey and encircle them. Initially, the WOA considers
the target prey as the current best candidate solution, since
the position of the optimal solution is not known a prior. This
search candidate will be updated in case a better candidate
solution is achieved. Similar to GWO, this behavior is for-
mulated as

ED = | EC . EX∗(t)− EX (t)| (13)
EX (t + 1) = EX∗(t)− EA. ED (14)

Where EC and EA are coefficient vectors, EX∗ is the so far
obtained best solution of position vector, and EX is the position
vector. The value of EX∗ is updated continually with each iter-
ation. The two coefficient vectors of EC and EA are calculated
as

EC = 2 Er (15)
EA = 2Ea.Er − Ea (16)

Where, similar to GWO, Er is a random vector in the range
of [0, 1], and Ea is a linearly decreased value from 2 to 0 over
iterations course. Adjusting the values of EC and EA leads
to give different places around the best candidate achieved.
In the second phase, the bubble-net attacking method is
represented mathematically as the exploitation phase. This
behavior of bubbling is done following two approaches,
the shrinking encircling mechanism and the spiral updating
position. The former approach is achieved by decreasing
the value of Ea, which therefore decreases the value of EA.
In the latter approach, the distance between the whale current
location and the prey location is calculated. A spiral equation
is formulated to mimic the whalesâĂŹ movement between
the two locations as follows

EX (t + 1) = ED′ .ebl . cos(2π l)+ EX∗(t) (17)
ED′ = | EX∗(t)− EX (t)| (18)

Where ED′ indicates the best solution so far (the distance of
the ith whale to the prey), b is a constant value that defines
the logarithmic spiral, l is a random number in the range
[-1, 1]. The whales swim simultaneously within a shrinking
circle in a spiral-shaped path. Similarly, the WOA has a 50%
of choosing the shrinking encircling mechanism or the spiral
model and updates the new position based on that. This is
mathematically modelled as

EX (t + 1) =

{
EX∗(t)− EA. ED, if p < 0.5
ED′ .eb1. cos(2π l)+ EX∗(t), if p ≥ 0.5

(19)
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Where p is a random value in [0, 1]. The last phase,
search for prey, is simulated as the exploration phase in
WOA. Unlike the previous phase, the whales search for prey
randomly according to the position of each other. For this
reason, the value of EA is chosen randomly. However, it has to
be greater than 1. This is intended to let the whale exploration
to perform a global search. This is formulated as

ED = | EC .EXrand − EX | (20)
EX (t + 1) = EXrand − EA. ED (21)

Where EXrand is a random value representing a random
position vector (a random whale) selected from the current
population.

Generally, the WOA is initiated with a set of random
solutions. With every iteration, the search agents update their
location based on either the best solution obtained so far or a
random search agent.

Although, it was published recently, the WOA is used in
many engineering application including WSNs. The work
introduced in [42] proposes a lifetimemaximization ofWSNs
using WOA.

IV. SYSTEM MODEL AND ASSUMPTIONS
The following assumptions are used to form the system
model:

1) A two-dimensional plane network following a square
shape. S one side of the square area of the network
in m.

2) The network area is assumed to have a set of obsta-
cles. The number of obstacles is denoted as O. The
dimensions of each obstacle is given as Osize in m. For
simplicity, the obstacles are assumed to be rectangles.

3) A set of unknown nodes (UNs) are distributed follow-
ing an arbitrary form. The number of these nodes is
introduced as N .

4) At first, all UNs inside the network have no prior
knowledge about their current locations.

5) All deployed nodes are static, which means no node is
able to change its own location once the distribution
process is done.

6) Each node has a fixed communication range RTx in m.
7) A mobile node (MA) is able to move freely in the

network in straight directions except in locations where
obstacles exist. It is also assumed to have the ability to
locate itself in any point in the network. The number of
MAs is denoted as M .

8) The MA is able to detect any obstacle in its direc-
tion using any detection method. Examples of those
detection methods include infrared (IR) sensors or pas-
sive infrared (PIR) sensors [43]. Unlike the active IR,
the PIR depends on the received IR that is emitted by
the objects.

9) TheMAmovement is constrained by the value of maxi-
mum distance (dmax), where the MAmovement cannot
go beyond this value.

10) While the MA is moving, it frequently stops to provide
nodes within its communication range with its current
position. Each of these positions called a localization
point.

11) TheMA and UNs cannot communicate with each other
except if their locations are within the communication
range of each other.

12) Once any three different location information of MA
are received by a UN, it estimates its own location by
the used localization model.

13) Once theUN succeeds in estimating its location, it turns
into a reference node (RN). The RN can share its own
location information with other UNs located within its
range, which will help in estimating their locations.

V. PROPOSED MODELS
In this section, we discuss the constraints and objectives of
this model and then introduce the two movement techniques.
Then, we describe the localization process from both side,
on the MA’s side and on the UN’s side.

A. CONSTRAINTS AND OBJECTIVES ANALYSIS
As in many path planning models in WSNs, a number of con-
straints is assumed. In this model, we assume four different
constraints as follow:
1) In the network area, every visited localization point

must be unique. This means that the MA cannot visit
a localization point more than once and cannot return
to the same point at any time.

2) To avoid the collinearity problem that affects the local-
ization results, the model forces the MA movement to
be not collinear by assuming that every three consecu-
tive localization points are not on the same line.

3) The MA cannot exceed the limited movement distance
(dmax). Once this distance is reached, the MA stops.

4) The network area includes a set of obstacles distributed
randomly around the network. The MA has no prior
knowledge about the obstacles’ locations and has to
detect them during its movement, thus, avoid them.

Although it is a rare situation to have the MA trapped in
a small area of network, the MA can any of the first three
constraint rules once it happens in order to keep moving. The
last constraint cannot be broken since the MA is unable to
move over the obstacle.

The main objective function of this model is to minimize
the average localization error of the deployed nodes. It is
represented as

Minimize Erroravg (22)

B. MOVEMENT DECISION
Before starting the MA movement, a few rules regarding the
movement pattern will be assigned. The network area will be
virtually divided into a set of lines, each line includes a set
of guide points. The distance between each two lines is fixed.
Also, the distance between any two guide points in the same
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FIGURE 3. The base of selecting the next movement point in (a) first
movement, and (b) next movements.

line will be fixed, denoted as dp. Similar to [8], this distance
is given as RTx/

√
3 m. Therefore, to maintain the condition

of fixed distance between each two neighbor points in any
direction, the distance between each two lines are given as
dp/2 m. However, the starting point in each consecutive lines
will be incompatible. In other words, if the starting point of
line a is (x, y), the next line b will be starting a half of dp
as (0.5 x, 2 y). This is intended to overcome the collinearity
problem forming a triangle-shape of virtual points. In addi-
tion, since the MA has to consider the movement constraints,
a few rules are considered as shown in Figure 3.

Initially, as in Figure 3.a, the MA is surrounded with six
different points, any of which can be chosen as a next point to

visit based on the optimizationmodel decision. Let us say that
the MA has the following points in its range {a, b, c, d, e, f }.
Based on the optimization decision, theMA selected the point
f as next point to move to. Now, a new set of points will be
formed. The last point that MA has just left will be a new
point in the new form, called c in Figure 3.b. However, this
point will be excluded from the potential visiting point since
it has already been visited. Thus, the MA will never visit it
again. Two more points in Figure 3.b will be ignored as well,
namely {e, f }. These points will be excluded for different
reasons. The point e is located in an obstacle direction, which
MA has to avoid, by considering other directions. On the
other hand, the point f will not be considered because of the
collinearity problem, which imposes that three consecutive
points cannot be collinear. Thus, only the other three points,
namely {a, b, d}, will be considered. The decision of moving
to one of themwill be made based on the applied optimization
model. In this example, the MA selects the point a as the next
point, and the same procedure concept will be repeated.

1) GREY WOLF OPTIMIZER BASED OBSTACLE-AVOIDANCE
PATH PLANNING (GWPP)
Once the MA receives the information of the network area
and forms its movement virtual points, it starts its journey
by making three random movements. This is meant to let the
MA to get more information about its starting area [8], [20].
With every movement, the MA will be providing its current
location to the nearby UNs. Once three random movements
are done, it is time for the optimized movement. In the
next movement steps, the MA will select the path to satisfy
the collinearity condition and avoid the obstacles. Based on
such considerations, the MA will use the GWO to define
a candidate direction point by calculating the fitness value
of each direction point. The fitness function used here is
the objective function, minimizing the localization error rate.
It is represented as

errortotal =
( N∑
i=1

error(i)
)

(23)

Where error(i) is the localization error of node i and can be
given as

error(i) =
√
(xi − ui)2 + (yi − vi)2 (24)

Where (xi, yi) are the real coordinates of the node i, and
(ui, vi) are the estimated ones of the same node i. TheMAwill
evaluate all nodes within its range, run the GWOoptimization
and select the point that satisfies most the fitness function.
The modified pseudo code of GWO is shown in Algorithm 1.

Where the Xi here indicates the number of MA movement
steps (the grey wolf population), given as the maximum
distance of MA divided by the distance between each two
points as

Xi =
dmax
dp
+ 1 (25)
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Algorithm 1 Pseudo Code of the GWO Algorithm in GWPP
1: Initialize the number of movement steps Xi(i =

1, 2, . . . , n)
2: Initialize a, A, and C
3: Calculate the fitness of each candidate point
4: Xα = the best candidate point
5: Xβ = the second best candidate point
6: Xδ = the third best candidate point
7: while t < Tmax
8: for each candidate point
9: Update the position of the current point by the eq. 12
10: end for
11: Update a, A, and C
12: Calculate the fitness of all candidate points
13: Update Xα , Xβ , and Xδ
14: t = t + 1
15: end while
16: return Xα

Each potential candidate represents a point search agent,
and Xα is the best candidate point (the best search agent) to
move to. t is the current iteration and Tmax is the maximum
number of iterations.

2) WHALE OPTIMIZATION ALGORITHM BASED
OBSTACLE-AVOIDANCE PATH PLANNING (WOPP)
Similar to GWO, the movement decision here will be made
based on the optimization model of WOA. However, it starts
first with three random movements. The modified pseudo
code of WOA is given as in algorithm 2, where the whale
population Xi here denotes the number of MA movement
steps, each search agent indicates the candidate next points,
and X∗ is the best candidate point.
WOA includes more details about the movement pat-

tern, as shown in algorithm 2; there might be a chance to
select a random point among the available points. How-
ever, this randomness should not conflict with other related
constraints, specifically the collinearity and obstacle points.
This random selection is based on the 50% chance of
choosing either shrinking encircling mechanism or the spi-
ral model shown above in equation 18, in Section III-B
(WOA model).

C. MOBILITY MOVEMENT AND LOCALIZATION PROCESS
The movement of the MA and localization procedure are
simultaneously preformed in two aspects, the MA side and
UN side as follow:

1) PROCEDURE IN UNKNOWN NODE’s SIDE
The following steps are performed in the UNs side:

1) All UNs are distributed randomly.
2) Each node will initiate a neighboring table, which

includes all neighbor nodes located within the com-
munication range of that UN. The neighboring table

Algorithm 2 Pseudo code of the WOA algorithm in WOPP
1: Initialize the number of movement steps Xi(i =

1, 2, . . . , n)
2: Calculate the fitness of each candidate point
3: X∗ = the best candidate point
4: while t < Tmax
5: for each candidate point
6: Update a, A, C , l and p
7: if p < 0.5 then
8: if |A| < 1 then
9: Update the position of the current candidate point

by the eq. 14
10: else
11: Select a random candidate point Xrand
12: Update the position of the current candidate

point by the eq. 21
13: end if
14: else if p ≥ 0.5 then
15: Update the position of the current candidate point

by the eq. 17
16: end if
17: end for
18: Check if any candidate point goes beyond the search

space and amend it
19: Calculate the fitness of each candidate point
20: Update X∗ if there is a better solution
21: t = t + a
22: end while
23: return X∗

will include the node id, the node type, the number
of neighbors, the neighbor ids, and neighbor status of
localization. The node type here indicates the localiza-
tion status and can be either a UN or an RN.

3) Each UNwill wait forMA arrival. Upon theMA arrival
to each node, the node will exchange its table with
the MA.

4) Once three varied points are received, the UN estimates
its own location.

5) When a UN get its location estimation, it turns into
an RN, and updates its table.

6) Each RN will share its updates table with all neighbor-
ing nodes.

The entire process is shown in the following algorithm 3,
and Figure 4.

2) PROCEDURE ON MOBILE ANCHOR’s SIDE
The following steps are performed in the MA side:

1) MA initiate its movement from a starting point, which
can be either randomly chosen or set in advance.

2) MAwill be given the maximum distance of movement.
3) The first three movements of MA will be chosen ran-

domly, in any direction. However, it must to be only on
the guide points.
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FIGURE 4. The node localization process in the UN.

4) With each movement, MA stops and contacts all nodes
located within communication range to provide its cur-
rent coordinates.

5) Every movement after that will be made only based on
the applied optimization model

6) After each movement, MA will update its localization
table that is similar to the neighboring table of eachUN.

7) MA will terminate its movement once the maximum
movement distance is reached.

More details about the procedure are shown in the follow-
ing Algorithm 4, and Figure 5.

Figure 6 shows an example of the MA movement when
both (GWPP) and (WOPP) models are applied. The ini-
tial setting are intended to be the same, which include the
random starting point, the three first movements, the same

obstacles locations, and the same nodes distribution.
Figure 6.a presents theMApath planningwhenGWO is used,
while Figure 6.b shows the movement of MA when WOA is
applied. Note how each optimization model works differently
and makes its distinctive path although all network settings
are the same.

VI. PERFORMANCE SETTINGS
To evaluate the performance of our proposed models,
we implemented them along with two obstacle-avoidance
models, Z-Curves and Snake-Like. For a better assessment,
we used two localization algorithms, namely Weighted Cen-
troid Localization (WCL) [44] and Weight-Compensated
Weighted Centroid Localization (WCWCL) [45]. Apply-
ing two localization models is aimed to provide more
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FIGURE 5. The movement and node localization process in the MA.

comprehensive and objective evaluation. WCL is a simple
localization algorithm. Because of its relatively low commu-
nication consumption, WCL is known for its energy efficient

localization estimation. The key idea in estimating localiza-
tion information is based on the weights between the anchors
and their estimated distance. WCL has been used as the
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Algorithm 3 Pseudo Code of the Node Localization Process
in the UN
1: do Initialize the localization process
2: do UN communicates with its neighbors
3: do UN updates its neighbors table
4: if three different RNs in the table equals No
5: set three different locations received to No
6: while three different locations received equals No
7: setMA arrives to UN’s range to No
8: whileMA arrives to UN’s range equals No
9: do wait
10: if MA arrives to UN’s range equals Yes:
11: exit while
12: do UN exchanges its table with MA
13: if three different locations received equals Yes:
14: exit while
15: do UN estimate its location, UN turns to RN

Algorithm 4 Pseudo Code of theMovement and Node Local-
ization Process in the MA in GWPP or WOPP
1: do Initialize the movement process
2: set three random movements reached to No
3: set maximum distance reached to No
4: while three random movements reached equals No, do
5: doMA moves randomly
6: do MA stops, provides nodes within its range with its

current location
7: set three random movements reached to Yes
8: while maximum distance reached equals No, do
9: do Update routing table
10: if three random movements reached equals No
11: exit while
12: end if
13: if three random movements reached equals Yes
14: do Evaluate all candidate nodes within range
15: do Identify collinear node
16: do Identify previously visited nodes
17: do Run GWO algorithm as outlined in Algo-

rithm 1, or WOA algorithm as outlined in Algorithm 2
18: doMA moves to selected point
19: if maximum distance reached equals Yes
20: exit while
21: end if
22: end if
23: end while
24: end while

main localization method in multiple path planning models.
WCWCL is an improved version of WCL that extends the
estimation procedure by by taking into account the weights
of the closest anchors, which therefore improves the local-
ization accuracy. Figure 7 shows a magnified example of
both localization models of WCL in 7.a, and WCWCL in
7.b with the same setting in one of the optimization based

FIGURE 6. The obstacle-avoidance path planning of the two models in
(a) GWPP, and (b) WOPP.

movement. A small number of nodes has been used for a
better representation. As shown, even with the same network
topology and nodes distribution, WCL and WCWCL give
different localization estimation. Each real-to-estimate line
in Figure 7 indicates the distance between the real and the
estimated location of each sensor node.

Matlab was used to model the proposed framework and for
performance evaluation of GWPP, WOPP and the other two
models. The evaluation has been done in terms of five perfor-
mance metrics: localization accuracy, localization precision,
localization ratio and coverage, and the computation time of
the two proposed models. The simulation environment and
parameters used were selected for consistency with some
other similar works. The network area is assumed to be square
with a size, S, of 100 × 100 m. A set of 250 randomly
distributed nodes, N , is used with a single mobile anchor,M .
Various maximum movements, dmax , are applied. The value
of dmax indicates the maximum distance that MA can take
before its ends its journey. In this work, the starting point
in all runs is chosen randomly. Chipcon CC1100 radio mod-
ule [46] specifications are employed as realistic simulation
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FIGURE 7. Example of the localization estimation when the same nodes
deployment and the same MA movement are used in (a) WCL, and
(b) WCWCL.

parameters. Such characteristics were already employed in
similar proposals including [8], [14], and [45]. For simplicity,
we round the value of dp to the nearest integer number. The
rest of the parameters are presented in Table 1.

VII. EVALUATION AND RESULTS
To assess the performance of the proposed models, we tested
the following metrics, accuracy, precision, and localization
ratio from two aspects: the impact of maximum movement
distance and the impact of resolution. We also evaluated
the computation time for the two algorithms of GWPP and
WOPP.

A. LOCALIZATION ACCURACY
To analyze the behavior of the planned models in comparison
to the others when different maximum movement distances
(dmax) are applied, we first performed a test of 50 simulation
runs with 250 UNs, 12.5m of RTx that is equivalent to R = 1.
The rest of parameters are fixed as shown in Table 1.

In path planning for mobility-assisted localization in
WSNs, localization accuracy is one of the most important
performance metrics. Higher accuracy gives more confi-
dence about the localization estimation of one model over
another. Hence, it is considered as the main factor in many
works in this research field. Accuracy is computed using the
localization error. The lower the estimation of error,

TABLE 1. Simulation values and parameters.

the higher the localization accuracy is. In this work, we assess
the accuracy of localization in terms of the average local-
ization error with standard deviation of the all nodes in all
implemented models.

As discussed in Eq. 24, the localization error, errori, indi-
cates the distance between the successfully estimated node
and its real location. Here, the average localization error,
erroravg, considers the entire set of unknown nodes, N , and
is calculated as:

erroravg =
( N∑
i=1

error(i)
)
/RN (26)

Where errori is the localization error for a localized node
i calculated using Eq. 24, and RN is the total number of
localized nodes, represented as reference nodes. In addition to
evaluating the localization error, we also evaluate the standard
deviation of the localization error. A low standard deviation in
localization error is desired, since it means a high percentage
of error values are close to themean of all errors. The standard
deviation of the localization error for the entire population is
calculated as

errorstd =

√∑N
i=1(error(i) − erroravg)2

RN
(27)

Where N is the total number of localized nodes, errori is
the node i’s localization error, and erroravg is the average
localization error.

However, to analyze the behavior of the proposed mod-
els in comparison to the others, we first performed a test
of 50 simulation runs with 250 UNs, 140 m of dmax , and R
of 1. The results in Figure 8 show the performance of all
models according to their localization error when the two
localization algorithms of WCL and WCWCL are applied.
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FIGURE 8. Localization errors of all mobility models in (a) WCL,
and (b) WCWCL, (dmax = 140, R = 1).

When WCL is used, as shown in Figure 8.a, both of our
proposed models offer superior accuracy with the lowest
error rate in all of the results shown. In most of the 50 run
cases, both models provide a high accuracy with less than
3 m of error. Based on the deployment of nodes and loca-
tion of obstacles, the results from both models vary over
the simulation runs. Both GWPP and WOPP show similar
performance during the different simulation runs. Most run
results show values less than 1.5 m of standard deviations.
On the other hand, Z-Curves and Snake-Like models provide
unstable performance. One reason behind this behavior is the
inability of the static models to dynamically change their
planned path. In case of facing an obstacle in their way,
Z-Curves and Snake-Like models will only avoid the obsta-
cle and then continue on the statically planned path, which
will affect the performance of the models and may create
a collinearity problem. Indeed, the Snake-Like model does
not present a solution to deal with the collinearity problem.
This is clear in their performance of accuracy where most
runs achieve results around 6.5-7.5 m of error rate. In fact,
some results are close to 8 m of error rate depending on
the network topology. On the other hand, when WCWCL is
used as in Figure 8.b, improved outcomes for all models are
achieved. However, this improvement is more noticed in both
of GWPP and WOPP as they accomplished high accuracy.

FIGURE 9. Average localization errors versus maximum movement
in (a) WCL, and (b) WCWCL.

The localization accuracy is improved in both Z-Curves and
Snake-Like models. We start to notice some results around
5m of localization error in Z-Curves. In general, both models
performs better in WCWCL than in WCL.

1) THE IMPACT OF MAXIMUM MOVEMENT DISTANCE
The average localization error for all movement models
when different maximum distances (dmax) are applied, is cal-
culated. For a better evaluation, we performed different
experiments using different values of dmax ranging from
35 to 175m. The area consists of 250UNs, 10 obstacles of 5×
10 m each. The resolution value (R) of 1 is assumed. Figure 9
presents the performance of the path models when WCL and
WCWCL are used.

Figure 9.a shows the average localization error and the
corresponding dmax for all models when WCL is used, while
Figure 9.b shows the average localization error when
WCWCL is used. Five different dmax values of 35 m, 70 m,
105 m, 140 m, 175 m are applied. With both localization
algorithms, our proposed optimized path models of GWPP
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and WOPP offer higher accuracy. Indeed, it is noticed that
when dmax increases, the localization error decreases. In gen-
eral, and with both WCL and WCWCL, WOPP offers better
performance than GWPP. However, the difference between
their performances is small. The main reason that WOPP
provides better results than GWPP is that WOPP calculates
the next visiting point based on satisfying a fitness function,
whereas the next visiting point in GWPP is based on the
mean of the three best candidate points. Also, WOPPmakes a
randommovement when an optimumnext visiting point is not
found. On the other hand, Z-Curves and Snake-Like provide a
lower performance of accuracy in comparison to GWPP and
WOPP in both WCL and WCWCL localization. However,
all path planning models performs better with WCWCL.
The localization error for Z-Curves and Snake-Like using
both WCL and WCWCL decreases with increasing maxi-
mum movement, dmax , as shown in Figue 9.a. However, their
localization error using WCL is more than 6.5 m when dmax
is 175m, more than twice that of our proposed models GWPP
and WOPP. In WCWCL, as presented in 9.b, Z-Curves and
Snake-Like become better and the error rate decreases to
close to 5.5 m in some cases. In general, Z-Curves performs
better when WCWCL is used. Z-Curves takes into account
the collinearity problem in its design while Snake-Like does
not. GWPP and WOPP have high accuracy with WCWCL
with only approximately 2.32 to 1.4 m of error when dmax
increases from 35 m to other distances.

2) THE IMPACT OF RESOLUTION
In addition to evaluating the localization error when different
dmax values are applied, we also evaluate the impact of resolu-
tion R on the localization error. The resolution values R refer
to the relationship between the communication range, RTx ,
and the distance between every two points, dp, in each static
path planning model. It has been used in some other similar
works including [14], [17], and [21]. It is formulated as:

R =
dp
RTx

(28)

For fair comparisons, we applied the same communication
range and resolution values to all models including GWPP
andWOPP. ReferenceR values of 0.5, 0.75, 1, 1.5, 1.75, and 2
are used. For example, if the communication range of theMA
and UNs is a when R = 0.5, the distance between every two
points dp will be 0.5 × a and so on. Figure 10 shows the
average localization error with different R when RTx = 12.5,
and dmax = 140 m.
In the first test where WCL is used, as in Figure 10 .a, the

accuracy of all model is substantially decreased when small
resolution values of 0.5 and 0.75 are used. This is applicable
to all models. In fact, error values of 13 m and 11 m are
shown in Snake-Like and Z-Curves respectively. Even in our
models, localization error of 7m are presented when the same
resolution of 0.5 is used. However, in all models, increasing
R decreases the error. Very high accuracy is achieved when R
of 2 is used, with less than 2 m of error in GWPP and WOPP.

FIGURE 10. Average localization errors and resolution in (a) WCL, and
(b) WCWCL.

The same concept is shown also when WCWCL is used as
presented in Figure 10 .b. However, the results in general are
better than these inWCL. Indeed, we can attain an acceptable
accuracy around 1 m when R is 1.

B. PRECISION
The location of each node in a network has an accuracy
determined by the localization error, which is the distance
between the actual location of the node and its location as
calculated by the localization algorithm. The proportion of
localization errors smaller than a certain threshold error value
is known as localization precision. For example, if 80% of the
nodes have a localization error of less than 3 m, the precision
is 0.8 at <3 m, which we could write P3 = 0.8.
Precision can be formulated as

Pk =

∑N
i=1(bi)
RN

{
bi = 1, if LE(i) <= k
0, otherwise

(29)

Where Pk is the precision values achieved under the k
threshold of distance inm, LE is localization error, and RN is
the set of all localized nodes in the network.
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FIGURE 11. Precision of all mobility models versus the localization error
in (a) WCL, and (b) WCWCL, (dmax = 140, R = 1).

We considered five precision values as follows: less than
1 m, less than 3 m, less than 5 m, less than 7 m, and less
than 9 m. Each localization precision is the mean of 50 dif-
ferent simulation runs, when dmax = 140 m, and R = 1.
Figure 11 shows the precision evaluation using WCL and
WCWCL.

In Figure 11.a, none of the four models achieved less than
1 m of localization error. However, GWPP and WOPP show
an advanced level of precision where all of their localiza-
tion error values are located within a range of 3 m. Unlike
the dynamic models, the static models of Snake-Like and
Z-Curves are unsuccessful to emulate in terms of precision.
No result of them is located within 5 m of range. Such
results improve progressively with 7 m of localization error.
However, all results are in the range of 7 to 9 m of range.
In Figure 11.b, the precision of GWPP andWOPP is still very
high. On the other hand, Z-Curves and Snake-Like get some
improvements in the ratio of around 90 percentage of them
are located in less than 7 m. All Z-Curves and Snake-Like
results are within 9 m of localization error.

C. LOCALIZATION RATIO
The localization ratio, or coverage, indicates the number of
localized nodes (reference nodes) divided by the total num-
ber of nodes. High localization ratio gives an impression of
how successful the path planning is. The localization ratio is
represented as

Lavg =
RN
N

(30)

Where RN is the total number of reference nodes, and N
is the total number of deployed nodes. Here, we evaluate the
localization ratio from two perspectives, the impact of max-
imum movement distance dmax , and the impact of resolution
value R.

FIGURE 12. Localization ratio versus the maximum movement distance of
all mobility models in both WCL and WCWCL.

1) THE IMPACT OF MAXIMUM MOVEMENT DISTANCE
A collection of 250 sensor nodes is used with various dmax ,
and R of 1. In this metric, only one of the localization algo-
rithms is shown, since their localization ratios are similar.
Figure 12 show the localization ratio for the four implemented
movement models.

Unlike the static path planningmodels, dynamic models do
not guarantee that all nodes inside the network will be able to
receive the localization information. In addition, since there
is a limited distance of MA movement, it is difficult to cover
the entire area with such assumption. However, both of our
dynamic models, GWPP andWOPP, offer higher localization
ratio in most cases in comparison to other two models. All
four models provide weak localization ratios when dmax is
short as 35 m. This ratio get improves with the increase of
dmax . When the dmax is 175 m, the proposed models can
achieve about 35 percentage of localized nodes. Snake-Like
and Z-Curves can acquire less than 28 percentage in its best
case.

2) THE IMPACT OF RESOLUTION
In the other experiment, we assessed the localization ratio in
terms of different resolution values. We used similar assump-
tions of those in the former experiment presented in VII-C.1,
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except with a fixed dmax of 140 m, and changeable R. The
results are plotted in Figure 13.

FIGURE 13. Localization ratio versus the resolution of all mobility models
in both WCL and WCWCL.

When a resolution value R of 0.5 is used, the localization
ratio of all models is poor. More nodes are covered when
R increases, thus, more UNs will be able to estimate their
locations. When R is 1.5, more than 40 percentage of nodes
are localized in GWPP andWOPP comparison to less than 35
percentage when R = 1. The ratio increases gradually when
R = 1.75. Both GWPP and WOPP can achieve high results
of more than 72 percentage of localized nodes when R = 2,
while Z-Curves can cover about 50 percentage of its UNs
when the same assumption is applied. Snake-Like still per-
forms poorly with all R values since it is affected by the
collinearity problem.

D. COMPUTATION TIME
We also evaluated the computation time for the proposed
models. Computation time here refers to the time spent from
the first execution of the code to the end of it. The com-
putation time is measured in seconds (s). The models were
implemented in a machine with the following characteristics:
Windows 10 - 64-bit Operating System installed on a com-
puter with Intel Core i5-4590 CPU @ 3.3 GHZ and 8.00 GB
of memory. A comparison of 50 runs with different maximum
iteration times (Tmax) for both models are conducted. The
average of every 50 runs of Tmax is taken. The following
parameters were used for the performance, 250 UNs, dmax =
140, R = 1, and the rest are fixed as shown in Table 1. The
executed computation time is shown in Figure 14.

The result of computation time shows that GWPP takes
less time to run in comparison to WOPP regardless of the
value of Tmax . When Tmax increase the computation time
increases. GWPP spends only 12.5 seconds when a Tmax
of 50 is used, while WOPP takes 19.8 seconds for the same
Tmax . The time spent on execution of both models increases
gradually. However, even in its longest period, GWPP and
WOPP need 92.5 seconds and 118.5 seconds respectively
when Tmax is 300.

FIGURE 14. Average computation time for both techniques in seconds.

VIII. DISCUSSION
As seen above, the dynamic proposed models and their
optimized base help to improve their performance in many
metrics. Both models provide better accuracy compared to
the other two models. The flexibility of the MA moving
based on the network parameters and node locations improves
such metric. Unlike the other models, GWPP and WOPP
can avoid obstacles, avoid collinearity, avoid visited points,
and make their own path in real-time based on information
from the network. In addition, all movements will depend on
the fitness function. Moreover, GWPP and WOPP have high
precision. Our proposed dynamic models GWPP and WOPP
provide better localization ratio than the static models Snake-
Like and Z-Curves, even in the presence of obstacles and with
limited movement distance. Indeed, when high resolution
values are considered, both models get competitive accuracy.
In general, WOPP has a better performance than GWPP.
However, GWPP has a shorter run computational time. Thus,
choosing whichmodel to apply can be based on thesemetrics.
If time is an important constraint, GWPP may be preferable.
Alternatively, WOPP may be the better candidate if high
performance is required.

IX. CONCLUSION AND FUTURE WORKS
In this work, we introduced two dynamic obstacle-avoidance
path planning models, called GWPP and WOPP, for mobile
anchor-assisted localization in WSNs. The proposed models
work on optimizing the path design based on the real-time
information from the network. The optimization models help
not only to avoid the obstacles located in the MA’s way
but also to design an outstanding optimized path when the
MA has a limited movement. To examine the efficiency
of the proposed models, we compare them to other two
models that consider obstacle-avoidance methods in their
design. The final results demonstrate that our proposed
models, GWPP and WOPP, maximize the localization effi-
ciency in the aspects of accuracy, localization precision, and
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localization ratio (coverage) when they are tested from two
aspects, the maximum movement distance and the resolution
values. We also compared the proposed models in terms
of computation time in order to study them from different
aspects. We were able to summarize the outcomes of this
paper based on the four metrics analyzed as follow:

1) Localization accuracy : indicated as localization
error, the results show that our proposed models offer
superior outcomes in both experiments as shown in
Figures 9, 10.

2) Localization precision : The dynamic models of
GWPP and WOPP present the best outcomes of
precision in WCL and WCWCL as presented in
Figure 11.

3) Localization ratio: Typically, static path planning
models provide better performance than the other kinds
of mobility in terms of coverage. However, when the
MA has a limited and constrained movement distance,
and there are some obstacles in the area, the static
models performance is affected. GWPP and WOPP
consider the network and node distribution, and take
them into account when they design their path. The
results show that they still provide competitive perfor-
mance as shown in Figure 12. Higher localization ratio
can be obtained when the resolution values increase as
shown in Figure 13.

4) Computation time : To make the final decision of
choosing either of GWPP or WOPP, we also analyzed
the computation time. The results show that GWPP
has shorter computation time than WOPP as shown
in Figure 14, which may be beneficial when a faster
optimized model required.

To sum up, we have shown that employing an optimiza-
tion model for forming a movement path leads to optimal
outcomes in a number of metrics. As future works, we may
consider a multi-objective optimization model that forms the
optimal path based on the localization error and localiza-
tion ratio as well. Also, we may assume irregular obstacle
shapes and let the MA to control its movement based on this
assumption. Three-dimensional movement pattern may also
be considered.
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