
Received November 8, 2017, accepted December 19, 2017, date of publication December 25, 2017,
date of current version March 13, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2787053

Nonlinear Modal Decoupling of Multi-Oscillator
Systems With Applications to Power Systems
BIN WANG1, (Student Member, IEEE), KAI SUN 1, (Senior Member, IEEE),
AND WEI KANG2, (Fellow, IEEE)
1University of Tennessee, Knoxville, TN 37996, USA
2Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, USA

Corresponding author: Kai Sun (kaisun@utk.edu)

This work was supported in part by the NSF CAREER Award under Grant ECCS-1553863 and in part by the ERC Program of the NSF and
DOE under Grant EEC-1041877.

ABSTRACT Many natural and manmade dynamical systems that are modeled as large nonlinear multi-
oscillator systems like power systems are hard to analyze. For such systems, we propose a nonlinear modal
decoupling (NMD) approach inversely constructing as many decoupled nonlinear oscillators as the system’s
oscillation modes so that individual decoupled oscillators can be easily analyzed to infer dynamics and
stability of the original system. The NMD follows a similar idea to the normal form except that we eliminate
inter-modal terms but allow intra-modal terms of desired nonlinearities in decoupled systems, so decoupled
systems can flexibly be shaped into desired forms of nonlinear oscillators. The NMD is then applied to
power systems toward two types of nonlinear oscillators, i.e. the single-machine-infinite-bus (SMIB) systems
and a proposed non-SMIB oscillator. Numerical studies on a 3-machine 9-bus system and New England
10-machine 39-bus system show that: 1) decoupled oscillators keep a majority of the original system’s modal
nonlinearities and the NMD can provide a bigger validity region than the normal form and 2) decoupled non-
SMIB oscillators may keep more authentic dynamics of the original system than decoupled SMIB systems.

INDEX TERMS Nonlinear modal decoupling (NMD), inter-modal terms, intra-modal terms, oscillator
systems, normal form, power systems, nonlinear dynamics.

NOMENCLATURE
A. TERMINOLOGIES
Decoupled k-jet system Definition 5
Desired modal nonlinearity Definition 1
Intra- and inter-modal terms Definition 2
Inverse coordinate transformation Corollary 3
k-jet equivalence Definition 4
k-th order NMD Corollary 1
Mode-decoupled system Definition 3
Multi-oscillator system Eq. (1)
µ-coefficients Definition 1
Nonlinear modal decoupling (NMD) Theorem 1
Real-valued decoupled k-jet Theorem 2
SMIB assumption Section IV-B
Small transfer (ST) assumption Section IV-C
Validity region of decoupled k-jet system Eq. (31)
Validity region of NMD transformation Corollary 2

B. NOTATIONS
Cj(z(p)) Vector function of z(p) which only contains

inter-modal homogeneous terms of degree
j about z(p)

Dj(z(p)) Vector function of z(p) which only contains
intra-modal homogeneous terms of degree
j about z(p)

e(t ,x0) Response error of the decoupled k-jet system
under initial condition x0 as defined in Eq. (28)

f(x) Vector field of the system in Eq. (1)
H(k) k-th order decoupling transformation defined in

Eq. (19), which is a composite of H1, . . ., Hk

Hp+1 (p+ 1)-th decoupling transformation defined in
Eq. (4), which is involved in NMD

hp+1 Nonlinear part of Hp+1 defined in Eq. (7)
hp+1,∗ Coefficients of monomials in hp+1
3 Diagonal matrix with eigenvalues of A on the

main diagonal and zeros elsewhere
µ Desired modal nonlinearity used in Eq. (2)
�ε Validity region of the decoupled k-jet system for

a given error tolerance ε as defined
in Eq. (31)

�(k) Validity region of H(k) defined in Eq. (20)
�p+1 Validity region of Hp+1, which is a set of x
U Modal matrix of A, whose columns are right

eigenvectors of A
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Vi Energy function of the real-valued decoupled
k-jet system about mode i defined in Eq. (55)

wi i-th element in the state vector of the real-valued
decoupled k-jet system defined in Eq. (24)-(27)

x N -dimensional state vector of the system in (1)
z Complex-valued state vector (element: zi) of the

system with desired modal nonlinearity
z(k) Complex-valued state vector (element: z(k)i ) after

the k-th decoupling transformation in Eq. (4)
z(k)jet Complex-valued state vector (element: z(k)jet,i) in

the decoupled k-jet system defined in Eq. (23)

I. INTRODUCTION
Oscillator systems, i.e. a system with a number of oscillators
interacting with each other, are ubiquitous in both natural
systems and manmade systems. In biological systems, low-
frequency oscillations inmetabolic processes can be observed
at intracellular, tissue and entire organism levels and they
have a deterministic nonlinear causality [1]. In electric power
grids, which are among the largest manmade physical net-
works, oscillations are continuously presented during both
normal operating conditions and disturbed conditions [2].
In some fields of both natural science and social science,
the Kuramoto model is built based upon a large set of coupled
oscillators modeling periodic, self-oscillating phenomena in,
e.g., reaction-diffusion systems in ecology [3] and opinion
formation in sociphysics [4]. For all these oscillator systems,
the common underlying mathematical model is actually a
set of interactive governing differential equations, linear or
nonlinear.

An ideal way to study dynamics of a multi-oscillator
system from an initial state is to find an analytical solu-
tion of its differential equation models and use the solution
for further prediction and control. However, even finding
an approximate solution of a high-dimensional nonlinear
multi-oscillator system has been a challenge for a long time
to mathematicians, physicists and engineers [5]. Analytical
efforts have been made in broader topics, like dynamical
systems [6], [7], nonlinear oscillations [8] and complex net-
works [9], to better understand, predict and even control the
oscillator systems, and some well-known theories are such
as the perturbation theory and Kolmogorov-Arnold-Moser
theory. Most of these efforts attempt to directly analyze an
oscillator system as a whole and extract desired informa-
tion, e.g. approximate solutions and stability criteria, from
the governing differential equations. Especially, extensive
attentions recently have been paid to using the theory of
synchronization to analyze the interactions among oscillators
in a system [10]–[15]. In addition, numerical studies can
provide dynamical behaviors of high-dimensional oscillation
systems with desired accuracy. However, simulating a high-
dimensional oscillator system like a power grid could be very
slow if oscillators are coupled through a complex network and
interact nonlinearly [16].

In this paper, we aim at inversely constructing a set of
decoupled, independent oscillators for a given complex high-
dimensional multi-oscillator system. Each of those decoupled
oscillators is a fictitious 2nd-order nonlinear system that is
virtually islanded from the others and corresponds to a single
oscillation mode of the original system. By such a trans-
formation, analysis on the dynamics and stability related to
each mode can be performed on the corresponding oscillator,
which will be easier than on the original complex system.
For some real-life oscillator networks such as a power grid
networking synchronous generators, those real oscillators
themselves often have strong couplings and interactions in
dynamics. However, the modal dynamics with respect to
different oscillation modes may have relatively weak cou-
plings or interferences unless significant resonances happen
between oscillation modes. Thus, the fictitious oscillators
that are inversely constructed to represent different oscil-
lation modes are independent, or in other words naturally
decoupled, to some extent, and hence can be more easily
understood and analyzed to gain insights on the dynamical
behaviors, stability and control of the whole original system.
In this paper, we define such a process as nonlinear modal
decoupling (NMD), i.e. the inverse construction from the
original nonlinear multi-oscillator system to a set of decou-
pled fictitious nonlinear oscillators.

Finding themodal decoupling transformation even for gen-
eral linear dynamical systems has been studied for more than
two hundred years, and massive papers aimed at decoupling
linear dynamical systems with non-uniform damping. In the
1960s, Caughey and O’Kelly [17] found a necessary and suf-
ficient conditions for a class of damped second-order linear
differential equations to be transformed into decoupled linear
differential equations based on early mathematical works
by Whittaker [18] in the 1850s. In just the last decade, the
decoupling of general linear dynamical systems with non-
uniform damping was achieved [19]–[21].

For nonlinear oscillator systems, the modal decoupling
has not been studied well despite its importance in simpli-
fication of stability analysis and control on such complex
systems. Some related efforts have focused on the linear/
nonlinear transformation of a given nonlinear oscillator sys-
tem towards an equivalent linear system. One approach is
the feedback linearization that introduces additional con-
trollers to decouple the relationship between outputs and
inputs in order to control one or some specific outputs of an
oscillator system [22]–[25]. Another approach is the normal
form [26]–[30] that applies a series of coordinate transforma-
tions to eliminate nonlinear terms starting from the 2nd-order
until the simplest possible form. If regardless of resonances,
such a simplest form is usually taken as a linear oscillator
system, whose explicit solution together with the involved
series of transformations are then used to study the behavior
of the original nonlinear oscillator system. To summarize,
many efforts in the present literature on analysis of high
dimensional nonlinear oscillator systems tend to generate
an approximate or equivalent linear system of the original
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system by means of linear/nonlinear transformations so as
to utilize available linear analysis methods. Based on these
efforts, it is quite intuitive tomove one step forward to achieve
a set of decoupled nonlinear oscillator systemswhich are each
simple enough for analyzing dynamics and stability. That is
the objective of this work.

For real-life nonlinear oscillator systems such as a multi-
machine power system, a linear decoupling transformation
may map the system into its modal space to help improve
the modal estimation [31] and assess the transient stability
of the system [32]. The normal form method was intro-
duced to power systems in [33] for analyzing stressed power
systems and enables the design of controllers considering
partial nonlinearities of the systems. Since nonlinearities are
considered, like the 2nd-order nonlinearity in [34] and the
3rd-order nonlinearity in [35], the approximated solution from
normal formmay have a larger validity region than that of the
linearized system [36]. Among these attempts, a first attempt
of NMD is reported in [32], which does not provide the
nonlinear transformation from the original oscillator system
to nonlinear modal decoupled systems.

In this paper, the proposed NMD approach is derived
adopting an idea similar to the Poincaré normal form in
generating a set of nonlinear homogeneous polynomial trans-
formations [37]. However, unlike the classic theory of normal
forms, the proposed NMD approach only eliminates the
inter-modal terms and allows decoupled systems to have
intra-modal terms of desired nonlinearities. The rest of the
paper is organized as follows: in Section III, the definitions,
derivations and error estimation on the NMD are presented.
In Section IV, the NMD approach is applied to multi-machine
power systems with a sample application in first-integral
based stability analysis. Section V shows numerical stud-
ies on the IEEE 3-machine 9-bus power system and IEEE
10-machine 39-bus power system. Conclusions are drawn in
Section VI.

II. NONLINEAR MODAL DECOUPLING
We will first introduce several definitions before presenting
Theorem 1 on NMD.

Given a multi-oscillator system described by a set of
ordinary differential equations below:

ẋ = f(x) (1)

where x is the vector containing N state variables, f is a
smooth vector field and all eigenvalues of the Jacobian matrix
of f(x), sayA, appear as conjugate pairs of complex numbers.
Also assume that the system in (1) has a locally stable equi-
librium point and the equilibrium is at the origin (if not, it can
be easily moved to the origin by a coordinate transformation).
Each conjugate pair of A’s eigenvalues define a unique mode
of the system. Let3 = {λ1, λ2, . . . , λN} represent the matrix
of A’s eigenvalues, where N is an even number. Without
loss of generosity, let λ2i−1 and λ2i be the two conjugate
eigenvalues corresponding to the mode i.

The above model is able to represent a class of dynam-
ical systems, i.e. multi-oscillator systems whose Jacobian
only has complex-valued eigenvalues. Generally speaking,
(1) cannot represent a general nonlinear dynamical system
whose Jacobian has real eigenvalue(s). However, most of the
dynamic networked systems in the real world can be modeled
as such a multi-oscillator system. For example, as mentioned
in section IV-A of this paper, any m-machine power system
with uniform damping, whose generators represented by a
second-order model, can be described by (1) having m-1
oscillators [48].
Definition 1 (Desired Modal Nonlinearity): If the multi-

oscillator system (1) can mathematically be transformed into
the form (2) below and the two governing differential equa-
tions in (2) regarding mode i have µ-coefficients of desired
values, then the i-th mode is said to have the desired modal
nonlinearity:

ż2i−1 = λ2i−1z2i−1 +
N∑
α=1

N∑
β=α

µ2i−1,αβzαzβ + · · ·

+

N∑
α=1

N∑
β=α

· · ·

N∑
ρ=γ

µ2i−1,αβ···ρ zαzβ · · · zρ︸ ︷︷ ︸
kterms in total

+ · · ·
def
= g2i−1(z)

ż2i = g2i(z) = ḡ2i−1(z) (2)

where z = [z1 . . . zN ]T is the vector of state variables, k > 1
and the variable or function having a bar represents its com-
plex conjugate.

In the traditional normal form method, only the modal
nonlinearities that cannot be eliminated due to resonance,
to be defined in the next paragraph, are retained, which
is equivalent to making as many µ-coefficients be zero as
possible in (2). Regardless of the resonance, the advantage of
the standard normal form is to generate a truncated dynamical
system that is linear and has an analytical solution.

The n-triple3 = {λ1, λ2, . . . , λN} of eigenvalues is said to
be resonant if among the eigenvalues there exists an integral
relation λs =

∑
k mkλk , where s and k = 1, . . . ,N , mk ≥ 0

are integers and
∑

k mk ≥ 2. Such a relation is called a
resonance. The number

∑
k mk is called the order of the

resonance [40].
However, it is not always true that a linear system is

the most desired. For instance, in power systems, power
engineers and researchers prefer to assume that the under-
lying low-dimensional system dominating each nonlinear
oscillatory mode satisfies the nonlinearity of a single-
machine-infinite-bus (SMIB) power system [32], [38]–[42],
i.e. the simplest single-degree-of-freedom power system,
where the nonlinearities are represented by terms with non-
zero µ-coefficients. Thus, this paper is motivated to keep
specific nonlinear terms for the desired modal nonlinear-
ity by following either the SMIB assumption, as shown
in Section IV-B, or another assumption to be proposed in
Section IV-C.
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For the normal form method, the truncated linear sys-
tem cannot be used for estimating the boundary of stability,
which is however important for a nonlinear system. As a
comparison, the NMD to be proposed provides a possibility
to estimate the boundary of stability using the nonlinearities
intentionally kept in the model, although the estimation of
the stability boundary even for a truncated nonlinear system
model is a long-standing problem. A sample application of
NMD on the study of the stability boundary will be presented
in Section IV-D.

For the convenience of statements, the following defini-
tions are adopted to introduce which nonlinear terms should
be kept or eliminated.
Definition 2 (Intra-Modal Term and Inter-Modal Term):

Given the desired modal nonlinearity (2) for mode i of
the multi-oscillator system (1), the intra-modal terms are
the nonlinear terms in the form of µj,αβ···ρzαzβ · · · zρ (for
k = 2, 3, . . .) which involve state variable(s) only corre-
sponding to mode i, i.e. indices j, α, β, · · · , ρ ∈ {2i− 1, 2i}.
All the other nonlinear terms are called the inter-modal terms,
which involve state variables corresponding to other modes.
Definition 3 (Mode-Decoupled System): If the form (2)

with desired modal nonlinearity regarding the i-th mode also
makes (3) satisfied, then (2) is called a mode-decoupled
system w.r.t. mode i.

µj,αβ··· =


µj,intra,αβ··· = desired value

if j, α, β, · · · ,∈ {2i− 1, 2i}
µj,inter,αβ··· = 0 otherwise

(3)

Now, we present the Theorem on NMD:
Theorem 1 (Nonlinear Modal Decoupling): Given a multi-

oscillator system in (1) and a desired modal nonlinearity
without inter-modal terms, if resonance does not exist for any
order and all eigenvalues of the Jacobian matrix of system
(1) belong to the Poincaré domain [43], then (1) can be
transformed into (2) by a nonlinear transformation, denoted
as H, around some neighborhood � of its equilibrium.
Remark: The rest of this section will focus on giving

a constructive proof of the theorem, in which we derive
the transformation H and its inverse that can be numeri-
cally computed. Unlike the normal form, the NMD requires
elimination of only inter-modal terms so as to decouple the
dynamics regarding different modes while leaving room for
intra-modal terms to be designed for desired characteristics
with eachmode-decoupled system. For simplicity, we respec-
tively call the intra- and inter-modal term coefficients µintra
and µinter. In this section, we assume the desired modal non-
linearity for each mode to be known. The NMD on a real-life
high-dimensional multi-oscillator system like a power system
might intentionally make each mode-decoupled system have
the same modal nonlinearity as a one-degree-of-freedom,
single-oscillator system of the same type, e.g. an SMIB sys-
tem for power systems, for the convenience of using existing
analysis methods on the same type of systems. However, for
the purpose of stability analysis and control, decoupling a

real-life system into a different type of oscillators might also
be an option. In the next section, two ways (i.e. the same type
and a different type) to choose the desired modal nonlinearity
will be illustrated on power systems.

The detailed derivation of the transformation H used for
NMD will be presented in the constructive proof of The-
orem 1, where H will be a composition of a sequence of
transformations, denoted as H1, H2, . . ., Hk , . . .., which
are polynomial transformations. The relationship between the
state variables of the mode-decoupled system, say z, and the
state variables after the k-th transformation are shown in (4)
based on H1,H2, . . .,Hk , . . .., where we use z(k) to represent
the vector of state variables after the k-th transformation.

x = H(z) = · · · = (H1 ◦H2 ◦ · · · ◦Hk ◦ · · · )(z)

z(1) = (H2 ◦ · · · ◦Hk ◦ · · · )(z)

· · ·

z(k) = (Hk+1 ◦ · · · )(z)

· · · (4)

We first introduce a lemma before presenting the proof of
Theorem 1.
Lemma 1: Given one transformed form (5) of a multi-

oscillator system, where Dj(z(p)) only contains intra-modal
terms and Cj(z(p)) only contains inter-modal terms and they
are vectors of polynomials of degree j about z(p). If resonance
does not exist up to the order p+1, then in a certain neighbor-
hood of the origin, denoted as�p+1, the inter-modal terms of
degree p + 1 can be completely eliminated to give (6) by a
polynomial transformation of degree p+ 1 in (7), i.e. Hp+1.

ż(p) = 3z(p) +
p∑
j=2

Dj(z(p))+
∞∑

j=p+1

(
Dj(z(p))+ Cj(z(p))

)
(5)

ż(p+1) = 3z(p+1) +
p+1∑
j=2

D′j(z(p+1))

+

∞∑
j=p+2

(
D′j(z(p+1))+ C′j(z(p+1))

)
(6)

z(p) = Hp+1(z(p+1)) = z(p+1) + hp+1(z(p+1)) (7)

Proof of Lemma 1: Consider the transformation in (7),
where hp+1(z(p+1)) is a column vector made of homogeneous
polynomials of degree p + 1 in z(p+1). Its (2i-1)-th and 2i-th
elements are shown in (8).

hp+1,2i−1(z(p+1)) =
N∑
α=1

· · ·

N∑
γ=η

hp+1,2i−1,α···ηγ z(p+1)α · · · z(p+1)γ︸ ︷︷ ︸
p+1 terms in total

hp+1,2i = h̄p+1,2i−1(z(p+1))

(8)
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Substitute (7) and (8) into (5) and obtain (9).

ż(p+1)2i−1 = λ2i−1z
(p+1)
2i−1 +

N∑
α=1

N∑
β=α

µ2i−1,αβz(p+1)α z(p+1)β + · · ·

+

N∑
α=1

· · ·

N∑
η=χ

µ2i−1,α···η z(p+1)α · · · z(p+1)η︸ ︷︷ ︸
p terms in total

+

N∑
α=1

· · ·

N∑
γ=η

cp+1,2i−1,α···ηγ z(p+1)α · · · z(p+1)γ︸ ︷︷ ︸
p+1 terms in total

+ · · ·

def
= f (p+1)2i−1 (z(p+1))

ż(p+1)2i = f (p+1)2i (z(p+1)) = f̄ (p+1)2i−1 (z(p+1))

i = 1, · · · ,N/2 (9)

where

cp+1,2i−1,α···γ = µ2i−1,α···γ + hp+1,2i−1,α···γ
·(λ2i−1 − λα − · · · − λγ ) (10)

Let the coefficients of terms of degree p + 1 in (9)
satisfy (3), i.e. (11) where j = 2i − 1 or 2i, and then we can
obtain (6).

hp+1,j,inter,α···γ =
cp+1,j,inter,α···γ

λα + · · · + λγ︸ ︷︷ ︸
p+1 terms in total

−λj

hp+1,j,intra,α···γ =
cp+1,j,intra,α···γ − µj,intra,α···γ

λα + · · · + λγ︸ ︷︷ ︸
p+1 terms in total

−λj

(11)

Note that when transformation in (7) is used to
transform (5) into (9), calculation of the inverse of the coef-
ficient matrix, e.g. the left-hand side of eq. (6) in paper [44],
is implicitly required. This coefficient matrix is actually a
function of all state variables z(p+1), which is a near-identity
matrix when the state is close to the origin. However, if the
system state is far away from the origin, that matrix may
become singular such that (9) cannot be obtained any more.
An upper bound of the validity limit may exist [44], indicating
that (9) can be obtained only when the system state is close
enough to the origin. �
Remark: Given the transformation (7) obtained in

Lemma 1, its validity region, denoted as �p+1, is defined as
the connected set of system states x, where any point in the
set does not lead to a singular Jacobian of (7).
Proof of Theorem 1: Given a multi-oscillator system (1),

its modal space representation can be obtained as (12) by
the transformation in (13), where z(1) is the vector of state
variables in the modal space andU is the matrix consisting of
the right eigenvectors of A.

ż(1) = U−1f(Uz(1)) (12)

x = Uz(1) def= H1(z(1)) (13)

Taylor expansion of (12) can be written as

ż(1) = 3 · z(1) +
∞∑
j=2

(
D<1>j (z(1))+ C<1>j (z(1))

)
(14)

Apply Lemma 1 with p = 1, then we can transform (14)
into

ż(2)=3 · z(2)+D<2>2 (z(2))+
∞∑
j=3

(
D<2>j (z(2))+C<2>j (z(2))

)
(15)

Apply Lemma 1 for k-2 times respectively with
p = 2, . . . , k-1, then we can transform (15) into (16).

ż(k) = 3 · z(k)+
k∑
j=2

D<j>j (z(k))

+

∞∑
j=k+1

(
D<k>j (z(k))+C<k>j (z(k))

)
(16)

Since all eigenvalues of the Jacobian matrix of system (1)
belong to the Poincaré domain, then Theorem 1.1 in [43]
guarantees the convergences of such process when the order k
approaches infinity. Finally, (2) will be achieved, i.e. z = z(∞)

and the transformation H in (4) is composed by H1 in (13)
and Hp+1 in (7) with p = 1, 2, . . . ,∞. Since transformation
Hp+1 is valid when the system state x belongs to �p+1, then
the transformation H and transformed system in (2) are valid
when x belongs to � = �2 ∩�3 ∩ . . ..

Note that in principle the validity region � of the NMD
transformation is the intersection of an infinite number of
open sets and actually converges to a single point, i.e. the
equilibrium point. In practice, it is hard to deal with an
infinite number of transformations. Still, for any expected
order k , we can use the system truncated at that order as an
approximation for practical applications. The following gives
three corollaries of the NMD for any expected order k with
the help of the k-jet concept. Then, the decoupled k-jet system
is introduced.
Definition 4 (k-Jet Equivalence [26]): Assume f1(x) and

f2(x) are two vector functions of the same dimension. We say
that f1(x) and f2(x) are k-jet equivalent at x0, or f1(x) is a
k-jet equivalence of f2(x) and vice versa, iff corresponding
monomials in the Taylor expansions of f1(x) and f2(x) at x0
are identical up to order k .

Then, a k-jet system of (1) can be rewritten in (17), where
Aj(x) is a vector function whose elements are weighted sums
of homogeneous polynomials of degree j about elements of x.
The differences between the systems (1) and (17) are only
truncated terms of orders greater than k .

ẋ = Ax+
k∑
j=2

Aj(x) (17)

In the following, we will continue NMD with (17).
Corollary 1 (k-th Order NMD): Given a multi-oscillator

system in (17), if the resonance does not exist up to the given
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order k , then the k-th order nonlinearly mode-decoupled
system can be achieved as (18) by the k-th order decoupling
transformation H(k) in (19).

ż(k) = 3 · z(k)+
k∑
j=2

Dj(z(k))+
∞∑

j=k+1

(
Dj(z(k))+Cj(z(k))

)
(18)

x = H(k)(z(k)) = (H1 ◦H2 ◦ · · · ◦Hk )(z(k)) (19)

where z(k) is the vector of state variables in the k-th order
mode-decoupled system, Dj and Cj are vector functions
whose elements are weighted sums of the terms of degree j
about z(k). Dj only contains intra-modal terms while Cj only
has inter-modal terms.
Corollary 2: The validity region of the transformation

H(k), denoted as �(k), is

�(k)
=

k
∩
p=2

�p (20)

Corollary 3: The inverse coordinate transformation, i.e. the
inverse of the transformation Hp+1 in (7), can be approxi-
mated by a power series

z(p+1)i = z(p)i +
N∑
α=1

N∑
β=α

si,αβz(p)α z(p)β + · · ·

+

N∑
α=1

N∑
β=α

· · ·

N∑
γ=η

si,αβ···γ z(p)α z(p)β · · · z
(p)
γ + · · ·

(21)

Remark: Existing literature has not reported any explicit
form for such inverse transformation, but proposed to numer-
ically transform the states from z(p) to z(p+1) by some itera-
tive approach with an initial guess. It was reported that the
effectiveness of such numerical approach largely depends on
the quality of the initial guess, which may lead to either
divergence or convergence to a different z(p) [45], [46].
Actually, the inverse of (7) can be written in the form of (22).
An approximate analytical expression of h−1p+1 in (22) is pro-
vided by Corollary 3. The proof is omitted while the idea is
quite straightforward: first, assume that the inverse transfor-
mation (22) has a polynomial form, as shown in (21) on the
i-th equation of (22) where s-coefficients are unknown; sec-
ond, substitute (21) into the right side of (7) and equate both
sides term by term about z(p) to formulate equations about s-
coefficients; finally, solve these s-coefficients and substitute
them back to (21) to obtain the inverse transformation. Note
that those formulated equations on s–coefficients are linear
and can always be solved recursively due to the merits that
vector function hp+1 in (7) only contains homogeneous poly-
nomials of degree p+ 1 in z(p+1).

z(p+1) = z(p) + h−1p+1(z
(p)) (22)

Definition 5 (Decoupled k-Jet System): By ignoring terms
with orders higher than k in (18), we obtain a special k-jet

system of (18), named a decoupled k-jet system.

ż(k)jet = 3 · z(k)jet +

k∑
j=2

Dj(z
(k)
jet ) (23)

Remark: Theoretically speaking, the nonlinearities main-
tained with the decoupled k-jet system (23) are defined by
intra-modal terms, i.e. Dj, and can have any desired form,
according to which a k-th order nonlinear transformation
H(k) is determined. If we do not let a priori knowledge
about nonlinearities with the original system (17) limit the
form of (23), there could be an infinite number of ways to
design its intra-modal terms so as to generatemany decoupled
k-jet systems differing in terms and hence the sizes and
shapes of their validity regions. Also note that the equations
in (23) about one mode are completely independent of the
equations of any other mode, while polynomial nonlinearities
up to order k regarding each individual mode are still main-
tained. Next, two theorems about the decoupled k-jet system
are introduced.
Theorem 2 (Real-Valued Decoupled k-Jet): The decoupled

k-jet in (23) is equivalent to a real-valued system, called a
real-valued decoupled k-jet.
Proof of Theorem 2: Since there may be multiple ways to

construct a real-valued decoupled k-jet, we only provide the
construction leading to two coordinates respectively having
physical meanings similar to displacement and velocity.

The differential equations for mode i in the decoupled k-jet
are shown in (24), which are the (2i−1)-th and 2i-th equations
of all such equations on z(k)jet .

ż(k)jet,2i−1 = λ2i−1z
(k)
jet,2i−1

+

N∑
α=1

N∑
β=α

µ2i−1,αβz
(k)
jet,αz

(k)
jet,β + · · ·

+

N∑
α=1

· · ·

N∑
ρ=γ

µ2i−1,α···ρ z
(k)
jet,α · · · z

(k)
jet,ρ︸ ︷︷ ︸

k terms in total

def
= f (k)jet,2i−1(z

(k)
jet )

ż(k)jet,2i = f (k)jet,2i(z
(k)
jet ) = f̄ (k)jet,2i−1(z

(k)
jet )

(24)

Note that the two state variables are a conjugate pair
of complex-valued variables, and those µ-coefficients are
determined in (3). Denote the right-hand sides of the first
and second equations respectively as a + jb and a − jb,
where a and b are real-valued functions on z(k)jet , λ and µ.
Then, apply the coordinate transformation in (25) and (26)
to yield (27), where all parameters and variables are
real-valued.[

z(k)jet,2i−1

z(k)jet,2i

]
= U−1mode i

[
w2i−1
w2i

]
(25)

Umode i =

[
λ2i−1 λ2i
1 1

]
(26)
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

ẇ2i−1 = υi10w2i−1 +

k∑
l=1

υi0lwl2i

+

j+l≤k∑
j≥1,l≥0
(j,l)6=(1,0)

υijlw
j
2i−1w

l
2i

ẇ2i = w2i−1 +

2≤j+l≤k∑
j≥0,l≥0

νijlw
j
2i−1w

l
2i

(27)

Remark: Note that the transformation H1 in (13) needs to
be normalized in order to make the new coordinates with (27)
have a scale comparable to that with (23). The normalization
introduced in [32] is adopted here:
(i) Classify the elements related to the displacement in a

left eigenvector (complex-valued) ofA into two oppos-
ing groups based on their angles;

(ii) Calculate the sum of the coefficients in one group;
(iii) Divide the entire left eigenvector by that sum;
(iv) Do such normalization for every left eigenvector.
The proposed NMD method gives a number of decoupled

2nd-order systems in (23) as an approximate of the original
high-dimensional nonlinearly coupled multi-oscillator sys-
tem. Theorem 3 belowwill show that the error in the response
from (23), if inside the validity region �(k), decreases with a
higher decoupling order.
Theorem 3 (Error Estimation): Given the multi-oscillator

system in (17), its k-th order nonlinearly mode-decoupled
system satisfies (18) and the corresponding decoupled k-jet
satisfies (23) through the transformation H(k) in (19) for any
system dynamics belonging to �(k) defined in (20). Assume
that all eigenvalues of the Jacobian matrix A of system (1)
belong to the Poincaré domain and have real parts less than a
negative number α < 0. Let x(t ,x0), z(k)(t, x0) and z

(k)
jet (t, x0)

be the solutions of (17), (18) and (23), respectively, under
the equivalent initial conditions x0, z

(k)
0 and z(k)jet0, i.e. satis-

fying x0 = H(k)(z(k)0 ) = H(k)(z(k)jet,0). Then, when x(t , x0),

H(k)
(
z(k)(t, x0)

)
and H(k)

(
z(k)jet (t, x0)

)
belong to �(k), there

exists positive numbers ε1 and c such that for any ε satisfying
0 ≤ ε ≤ ε1, ‖x0‖ ≤ ε implies

ek (t, x0)
def
=

∥∥∥x(t, x0)−H(k)
(
z(k)jet (t, x0)

)∥∥∥ ≤ cεk+1eαt/2 (28)

Here, the norm ||·|| can be of any type. This theorem indicates
that if the initial condition is close enough to the origin,
the response of the decoupled k-jet at any finite t will become
closer to that of the original system when k increases and ε
takes a value smaller than one.
Proof of Theorem 3: It is easy to see that the two systems

in (17) and (18) are equivalent in�(k) over the transformation
H(k) in (19). To show that the error ek (t ,x0) approaches zero,
we only need to show that error defined in (29), or equiva-
lently (30), approaches zero:

êk (t, x0)
def
=

∥∥∥H(k)
(
z(k)(t, x0)

)
−H(k)

(
z(k)jet (t, x0)

)∥∥∥
(29)

˜̂ek (t, x0)
def
=

∥∥∥z(k)(t, x0)− z(k)jet (t, x0)
∥∥∥ (30)

The rest of the proof is omitted since it is similar to the
Theorem 5.3.4 in [47]. �
For any given ε > 0, the validity region�εof the decoupled

k-jet system (23) is defined by (31), which relies on the
selection of ε: the larger ε the larger validity region.

�ε =
{
x0
∣∣∣∥∥∥x(t, x0)−H(k)

(
z(k)jet (t, x0)

)∥∥∥ < ε
}

(31)

Remark: This section presents the NMD of an N -oscillator
system in the absence of resonance. In case of the existence of
resonance, themodes that involved in the resonance cannot be
decoupled, so the resulting decoupled sub-systems by NMD
will include decoupled k-jets fewer than N and one or more
sub-systems of orders higher than 2 representing the part
of the system that cannot be decupled. For instance, if the
original system has a second-order resonance involving its
modes i and j, the NMD approach will give a 4th-order
sub-system dominating the dynamics of modes i and j and
N -2 decoupled 2-jets respectively dominating dynamics with
the otherN -2 modes. All theseN -1 sub-systems have polyno-
mial nonlinearities up to the second order. Note that for cases
in the absence of resonance, that 4th-order sub-system can fur-
ther be decomposed into two decoupled 2-jets. In this paper,
only non-resonance condition is considered while the NMD
under resonance condition will be investigated in future.

Note that although the validity region � converges to a
single point, the validity region �(k) can still be nontrivially
large. A higher decoupling order can reduce the error of the
analysis on decoupled k-jet system, but may result in smaller
validity region. So there exists a trade-off between the size
of validity region and accuracy. In the following section IV,
wewill elaborate the proposedNMDon nonlinear decoupling
of power systems and then in section V, we will compare
to normal form and demonstrate its accuracy. As mentioned
in the literature, there are other approaches such as a modal
series based approach [36] that can find an approximate but
more accurate solution of a nonlinear dynamical system than
normal form. Comparisons of NMD with other approaches
will be conducted in future.

III. NONLINEAR MODAL DECOUPLING OF
POWER SYSTEMS
This section will apply the proposed NMD analysis to
power systems. Firstly, the nonlinear differential equations
of a multi-machine power system and its equivalent multi-
oscillator system are introduced. Then, two forms of desired
modal nonlinearity are proposed and their corresponding
decoupled k-jet systems are derived. Finally, a first-integral
based method is applied to the decoupled k-jet systems to
demonstrate a sample application of NMD in power system
stability analysis.

A. POWER SYSTEM MODEL
Consider an m-machine power system model (32), where
each generator is represented by a 2nd-order classic model
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and all loads are modeled by constant impedances, while it
should be emphasized that this model considers the losses
from network parameters and loads:

δ̈i +
ςi

Mi
δ̇i +

ωs

Mi
(Pmi − Pei) = 0

Pei = E2
i gi +

m∑
j=1,j6=i

[
aij sin(δi − δj)+ bij cos(δi − δj)

]
(32)

where i ∈ {1, 2, . . . ,m}, δi, Pmi, Pei, Ei, Mi and ςi respec-
tively represent the absolute rotor angle, mechanical power,
electrical power, electromotive force, the inertia constant and
damping constant of machine i, and gi, aij, and bij represent
network parameters including all loads.

Assume that the system has a stable equilibrium point and
the system has a uniform damping, i.e. ςi/Mi is a common
constant for all i. It is shown in [48] that (i) the oscillatory
dynamics and stability of the system are dominated by the
relative motions [49], [50] among different machines; and
(ii) those relative motions can always be represented by an
(m− 1)-oscillator system.
Denote 1 = [δT δ̇T]T as the state vector. Then the first-

order representation of the system (32) has this form

1̇ = f0(1) (33)

Generate a transformation matrix R, whose columns are
right eigenvectors of f0’s Jacobian matrix. Apply R to both
sides of (33) and its modal space representation (34) can be
obtained, where y= [y1y2 . . . y2m]T is the state vector in the
modal space.

ẏ = R−1f0(Ry), where y = R−11 (34)

Without loss of generality, let y1, y2, . . . , y2m−2 represent
the relative motions of the system and that y2m−1 and y2m
represent the mean motion. It has been proved in [48] that the
relative motions can be represented by the (m− 1)-oscillator
system consisting of different equations about y1, y2, . . . ,
y2m−2, to which the proposed NMD will be applied.

Next, we present two ways to choose the desired modal
nonlinearity respectively under an SMIB assumption and
another small transfer (ST) assumption proposed below.

B. NMD UNDER THE SMIB ASSUMPTION
1) SMIB ASSUMPTION
The nonlinearity associated with each oscillatory mode has
the same form as an SMIB system. Under the SMIB assump-
tion, the proposed NMD will result in a number of fictitious
SMIB systems each of which is associated with a specific
2-way partition of all generators. The dynamics of each
fictitious SMIB system correspond to one oscillation mode
at which the two partitioned groups of generators oscillate.
Note: ‘‘fictitious’’ means that the single generator in each
resulting SMIB system does not solely linked to or dominated
by any physical generator; rather its behaviors depend on
every generator of the system as long as the system keeps
its integrity.

In practice, this assumption is intuitive to power system
scholars and engineers and hence has been widely used in
power system studies [32], [38]–[42]. For instance, a power
system that consists of two areas beingweakly interconnected
is often simplified to an SMIB system for stability studies
regarding the inter-area oscillation mode. In the following,
we study a general multi-machine power system and our goal
is to intentionally manipulate the nonlinear terms of each
decoupled system following a certain fictitious SMIB.

2) DESIRED DECOUPLED SYSTEM FOR MODE i
Under the SMIB assumption, the desired decoupled system
about mode i, associated with λ2i−1 and λ2i, can be written
as (35) [51].

ÿi + αiẏi + βi (sin(yi + yis)− sin yis) = 0 (35)

where yi is called a generalized angle of fititious generator i
(i.e. mode i), while αi, βi and yis are constants that can be
uniquely determined by (36).

yis =
m∑
j=1

τijδjs

αi = −2Re{λ2i−1}

βi =
λ2i−1λ2i

cos yis

(36)

where τij is the i-th row j-th column element from the matrix
of the left eigenvectors of the Jacobian of the third term
in (35) [32] and δjs is the steady-state value of δj.

3) NMD TRANSFORMATION
Assume each complex-valued decoupled system to be

ż2i−1 = λ2i−1z2i−1 +
∞∑
j=2

j∑
l=0

µi,l,j−lzl2i−1z
j−l
2i

ż2i = λ2iz2i +
∞∑
j=2

j∑
l=0

µ̄i,l,j−lzl2iz
j−l
2i−1

(37)

Toward the real-valued desired form of the decoupled sys-
tem in (35), µ-coefficients of intra-modal terms have to be
determined. Apply the following coordinate transformation
to (37) to obtain (40) where all quantities are real-valued.[

z2i−1
z2i

]
= Vmode i

[
ẏi
yi

]
(38)

where

Vmode i =
2

λ2i−1 − λ2i

[
1 −λ2i
−1 λ2i−1

]
(39)

dẏi
dt
+ αiẏi +

∞∑
n=1

rinyni = 0

dyi
dt
= ẏi

(40)

Coefficient rin is determined by (41) to make (35) and (40)
have identical nonlinearities up to the k-th order. Finally,
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the µ-coefficients can be determined by transforming (40)
back to the form of (37) using transformation defined
in (38) and (39).

rin =
βi cos

(
yis +

(n−1)π
2

)
n!

(41)

C. NMD UNDER THE ST ASSUMPTION
We also propose the following alternative assumption for
each desired mode-decoupled system and compare its result
with that from the SMIB assumption.

1) SMALL TRANSFER (ST) ASSUMPTION
Assume that the second equation of (11) to be zero, i.e.
hp+1,j,intra,α···γ =0.

2) NMD TRANSFORMATION
Under the ST assumption, the desired modal nonlinearity, i.e.
µ-coefficients, is calculated by (11) as

µj,intra,α···γ = cp+1,j,intra,α···γ (42)

Remark: The µ-coefficients determined by (42) is the
desired modal nonlinearities under the ST assumption, which
may give NMD transformation a relatively large validity
region such that the resulting decoupled k-jet systems can be
accurate for representing the dynamics of the original system
under relatively larger disturbances. The reasoning for this
will be shown below and supported by the numerical studies
in Section V. In addition, the form of each mode-decoupled
system under the ST assumption might not be as clear as
that of an SMIB system before the entire NMD process is
finished. However, the implementation is quite simple since
we just need to let the second equation in (11) be zero. The
physical insight behind this ST assumption is that we want to
limit the propagation of nonlinear terms to higher orders over
the transformation in (7), which can be seen in the example
below.

Without loss of generality, consider the system (43)
represented by two first-order differential equations with
polynomial nonlinearities up to the 2nd-order. λ1 and λ2
represent two different modes. Note that the observa-
tions below also apply to large systems having more state
variables.{

ẋ1 = λ1x1 + b1,11x21 + b1,12x1x2 + b1,22x
2
2

ẋ2 = λ2x2 + b2,11x21 + b2,12x1x2 + b2,22x
2
2

(43)

Intra-modal terms and inter-modal terms for these
two equations in (43) are respectively listed in
(44) and (45).{

b1,11x21 , b2,22x
2
2

}
(44){

b1,12x1x2, b1,22x22 , b2,11x
2
1 , b2,12x1x2

}
(45)

Then, apply a 2nd-order coordinate transformation (46): Sub-
stitute (46) into (43) and obtain a new system about z1 and z2,

where intra-modal terms and inter-modal terms are similar
to those in (44) and (45) in form. In the new system, utilize
the first equation of (11) to find coefficients h to cancel its
inter-modal terms as shown in (47) and obtain (48), where
P, Q, R and S are polynomial functions, the vector function
S satisfies (50), and the coefficients of the intra-modal terms
h1,11 and h2,22, denoted by hintra = [h1,11, h2,22]T, are yet to
be determined.

x1 = z1 + h1,11z21 + h1,12z1z2 + h1,22z
2
2

x2 = z2 + h2,11z21 + h2,12z1z2 + h2,22z
2
2

(46)

h1,12 =
b1,12
λ2

, h1,22 =
b1,22

2λ2 − λ1
,

h2,12 =
b2,12
λ1

, h2,11 =
b2,11

2λ1 − λ2
(47)

ż1 = λ1z1 + (b1,11 − h1,11λ1)z21

+

∞∑
i=3

∑
0≤j1,j2≤i
j1+j2=i

T1ij1j2z
j1
1 z

j2
2

ż2 = λ2z2 + (b2,22 − h2,22λ2)z22

+

∞∑
i=3

∑
0≤j1,j2≤i
j1+j2=i

T2ij1j2z
j1
1 z

j2
2

(48)



T1ij1j2 =
P10ij1j2 (λ)R10ij1j2 (b)

Q10ij1j2 (λ)

+
P11ij1j2 (λ)R11ij1j2 (b)

Q11ij1j2 (λ)
· S1ij1j2 (hintra)

T2ij1j2 =
P20ij1j2 (λ)R20ij1j2 (b)

Q20ij1j2 (λ)

+
P21ij1j2 (λ)R21ij1j2 (b)

Q21ij1j2 (λ)
· S2ij1j2 (hintra)

(49)

S(0) = 0 (50)

Note that the information corresponding to the 2nd-order
nonlinearities in system (43) spreads out to all higher order
nonlinear terms in system (48) through the transformation
in (46). Theoretically speaking, such a transfer of nonlinear-
ities does not impact the process of NMD if infinite non-
linear terms are kept in (48). However, the implementation
of NMD in practice can only keep nonlinear terms up to
a finite order, say k . Thus, it may be desired in NMD to
keep as few nonlinearities transferred to higher-order terms as
possible. For specific systems, it might be possible that there
exists a way to determine those non-zero hintra guaranteeing
a minimum transfer, e.g. (51) where D is a set of points
(z1, z2) containing all concerned dynamics of system (48).
In general, without a priori knowledge about the selection of
hintra, it might be preferred to let hintra = 0 in order to limit
the transfer of nonlinearities as in (50). Thus, this is called the
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ST assumption.

min
hintra


max

(u1,u2)∈D




∞∑
i=3

∑
0 ≤ j1, j2 ≤ i
j1 + j2 = i

T1ij1j2z
j1
1 z

j2
2


2

+

 ∞∑
i=3

∑
0≤j1,j2≤i
j1+j2=i

T2ij1j2z
j1
1 z

j2
2


2
 (51)

Remark: The coefficients hij in (46) (or µ in Eq. (2))
represent the extent and distribution of system nonlinearities,
especially the strength of nonlinear interactions between dif-
ferent modes (or states) [52].

D. NMD BASED STABILITY ANALYSIS
Application of the proposed NMD to a multi-machine power
system brings a new method for power system analysis, i.e.
analysis of a set of independent 2nd-order nonlinear dynamic
systems instead of the original system. This subsection adopts
the closest unstable equilibrium point method [53] to per-
form the conservative stability analysis individually on the
decoupled 2nd-order systems. Note that the purpose is just
to demonstrate how NMD enables new analysis methods
while other methods with less conservativeness, e.g. BCU
method [54], will be investigated in future.

The following assumption is adopted to create a first-
integral based transient energy function for stability analysis:
(52) and (53) holds for coefficients in (27).{
υijl = 0 for all j ≥ 1, l≥ 1, j+l ≤ k, (j, l) 6= (1, 0)
νijl = 0 for all j ≥ 0, l ≥ 0, 2 ≤ j+ l ≤ k

(52)

υi10 = 0 (53)

Then, (27) becomes (54).
ẇ2i−1 =

k∑
j=1

υijw
j
2i

ẇ2i = w2i−1

(54)

A transient energy function of the system in (54) is

Vi(w2i−1,w2i) =
w2
2i−1

2
+

z2i∫
0

k∑
j=1

υijsjds

=
w2
2i−1

2
+

k∑
j=1

υij

j+ 1
wj+12i (55)

The stability analysis of disturbed power systems is studied
by introducing the region of attraction (ROA). The ROA
of a dynamical system at its stable equilibrium point (SEP)
is defined as the region that if initializing the system with

any point in the region, the system trajectory will eventu-
ally approach the SEP. The power system stability analysis
is actually to determine whether a given initial condition
belongs to the ROA or not. Note that the system in (54)
has one SEP at the origin. The ROA with this SEP will be
approximated by using the closest unstable equilibrium point
(closest UEP) method [53]. The closest UEP can be obtained
by letting the right hand side of (54) be zero and solving
the resulting algebraic equations. Denote the closest UEP by
w2i,UEP. Then, detailed procedures are:
(i) Simulate the disturbed power system until the distur-

bance is cleared, transform the final system condition, i.e.
the initial condition of the post-disturbance system, to the
real-valued decoupled coordinates and denote as (w2i−1(0),
w2i(0)).
(ii) Compute the initial energy Vi(w2i−1(0), w2i(0)) and the

critical energy Vi(0, w2i,UEP) using (55).
(iii) If Vi(w2i−1(0), w2i(0)) < Vi(0, w2i,UEP), then the

initial condition (w2i−1(0), w2i(0)) belongs the ROA, i.e. the
post-disturbance power system is stable; Otherwise, the post-
disturbance power system is unstable.
Remark: Since the proposed NMD method is essentially

not a global method, similar to normal form in this sense, only
dynamics within the validity region of all transformations
can be analyzed. Thus, the above NMD based power system
stability analysis is not always achievable for a general power
system since the validity region might be smaller than the
stability region of the system. In this case, the dynamics under
a severe disturbance, e.g. leading to loss of stability, might
not be transformed between the original coordinates and the
coordinates of the decoupled k-jet. Investigations on the size
of the validity region and the comparison to the stability
region of a power system will be our future work.

IV. NUMERICAL STUDY
This section will present the numerical studies of the pro-
posed NMD on two test power systems: the IEEE 3-machine
9-bus system [55] and the New England 10-machine 39-bus
system [56]. Both are modeled by (32).

In the IEEE 9-bus power system, the detailed results
from the proposed NMD will be presented: 1) two sets of
decoupled system equations are respectively derived under
the SMIB and the ST assumptions; 2) numerical simula-
tion results on the decoupled 3-jet systems are created and
compared to that from the normal form method; 3) stability
on the original system is analyzed by means of analysis on
the decoupled 3-jet system. The New England 39-bus power
system is then used to demonstrate the applicability of the
proposed NMD method on a high-dimensional dynamical
system.

A. TEST ON THE IEEE 9-BUS SYSTEM
The IEEE 9-bus system is shown in Fig. 1. The following
disturbance is considered: a temporary three-phase fault is
added on bus 5 and cleared by disconnection of line 5-
7 after a fault duration time. The critical clearing time (CCT)
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FIGURE 1. IEEE 3-machine, 9-bus power system.

TABLE 1. Time domain errors of simulated responses.

of this disturbance, i.e. the longest fault duration without
causing instability, is found to be 0.17s. The post-disturbance
system corresponding to the model in (33) is represented by
differential equations in (56). A 3rd-order Taylor expansion
of (56) gives an estimate of CCT equal to 0.16s, which has
been very close to the accurate 0.17s, so the 3rd-order Taylor
expansion can credibly keep the stability information of the
original system and is used below as the basis for deriving
decoupled systems as well as the benchmark for comparison.
The 2-oscillator system derived from the 3rd-order Taylor
expansion of (56) is shown in (57) according to [48].

Following the NMD respectively under the SMIB and the
ST assumptions, the complex-valued decoupled 3-jet systems
are respectively shown in (58) and (59). As a comparison,
the counterpart from the 3rd-order normal form gives (60).
The time cost is investigated on an Inter CoreTM i7-6700
3.4GHz desktop computer, where the derivation of NMD
using the Symbolic Math Toolbox in Matlab takes about
4.5 seconds.

Systems (58), (59) and (60) are respectively named
NDSMIB, NDST and NF. Their dynamical performances
are compared under the same initial conditions from the
post-disturbance period. The error of each simulated system
response is calculated and compared to the ‘‘true’’ response,
i.e. the response of the 3rd-order Taylor expansion of (56).
The errors e(t) of these responses in the time domain are

calculated by (28) and shown in Table 1 for four disturbances
with increasing fault duration times from 0.01s to 0.15s. The
last one is a marginally stable case. The simulated responses
from these systems and their time domain errors are shown
in Fig. 2 to Fig. 5. From those figures and Table 1, the NDST
has the smallest error and the NDSMIB has the largest error.

Then, the stability analysis of the original system is studied
using the NDST system (59). Transform (59) into real-valued

FIGURE 2. Simulated system responses under the disturbance (fault
duration = 0.01s) respectively by 3rd-order Taylor expansion, NDSMIB,
NDST and NF.

FIGURE 3. Time domain error of the simulated system responses under
the disturbance (fault duration = 0.01s) respectively by NDSMIB, NDST
and NF.

FIGURE 4. Simulated system responses under the disturbance (fault
duration = 0.15s) respectively by 3rd-order Taylor expansion, NDSMIB,
NDST and NF.

equations by (25) and obtain (61). The four transformations
for transforming (56) to (61) are shown in Appendix.

E[e(t)] and Std[e(t)] are the expectation and standard devi-
ation of the error signal e(t), which are in degrees.

ẋ1 = x2 + 3.12

ẋ2 = −0.5x2 − 1.14 cos(x13 − 0.728)

− 6.25 sin(x13 − 0.728)− 1.56 cos(x15 − 0.463)

− 9.11 sin(x15 − 0.463)− 5.98

ẋ3 = x4 + 3.12

ẋ4 = −0.5x4 − 4.22 cos(x13 − 0.728)

+ 23.1 sin(x13 − 0.728)− 6.04 cos(x35 + 0.265)

− 38.0 sin(x35 + 0.265)− 5.98

ẋ5 = x6 + 3.12

ẋ6 = −0.5x6 − 12.3 cos(x15 − 0.463)

+ 71.6 sin(x15 − 0.463)− 12.8 cos(x35 + 0.265)
+ 80.7 sin(x35 + 0.265)− 5.98

(56)
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where xij = xi − xj

ẏ1 = (−0.25+ j12.9)y1 − (0.002+ j0.10)y21
+ (0.004− j0.20)y1y2

+ (0.006−j0.10)y22−(0.01+j0.27)y
3
1 − j0.81y

2
1y2

+ (0.03− j0.81)y1y22 + (0.02− j0.27)y32
− (0.03+ j0.72)y1y3 + (0.03− j0.72)y1y4

− (0.002+ j0.72)y2y3

+ (0.06− j0.71)y2y4 + (0.002+ j0.04)y21y3

− (0.001− j0.04)y21y4

− (0.02+ j0.21)y1y23 + (0.02− j0.21)y1y24
− (0.001− j0.04)y22y3

− (0.004− j0.04)y22y4 − (0.009+ j0.21)y2y23
+ (0.02− j0.21)y2y24
+ (0.002+ j0.08)y1y2y3 − (0.005− j0.08)y1y2y4

− j0.41y1y3y4

+ (0.02− j0.41)y2y3y4 − (0.005+ j0.07)y23
+ (0.003− j0.15)y3y4

+ (0.008− j0.07)y24 − (0.002+ j0.02)y33
− (0.001+ j0.05)y23y4

+ (0.003−j0.05)y3y24+(0.002−j0.02)y
3
4
def
= f(0)1 (y)

ẏ2 = f(0)2 (y) = f̄(0)1 (y)

ẏ3 = (−0.25+ j6.08)y3 − (0.02+ j0.57)y23
+ (0.05− j1.14)y3y4

+ (0.07−j0.57)y24−(0.008+ j0.10)y
3
3−j0.30y

2
3y4

+ (0.02− j0.30)y3y24 + (0.02− j0.10)y34
+ (0.001− j0.44)y21 + (0.03− j0.88)y1y2
+ (0.04− j0.44)y22
+ (0.001+ j0.05)y1y3 − (0.003− j0.05)y1y4
− (0.001− j0.05)y2y3
− (0.005− j0.05)y2y4 + (2×10−4 + j0.01)y31
− (0.001− j0.01)y32
− (0.001− j0.03)y21y2
− (0.007+ j0.17)y21y3 + (0.007− j0.17)y21y4
+ (0.007− j0.17)y22y3
+ (0.02− j0.17)y22y4 − (0.002− j0.03)y1y22
− (0.002+ j0.04)y1y23 + (0.004− j0.04)y1y24
− (0.001+ j0.04)y2y23
+ (0.005− j0.04)y2y24 − j0.34y1y2y3
+ (0.03− j0.34)y1y2y4
+ (0.002− j0.07)y1y3y4 + (0.004− j0.07)

y2y3y4
def
= f(0)3 (y)

ẏ4 = f(0)4 (y) = f̄(0)3 (y)
(57)



ż(3)1 = (−0.25+j12.9)z(3)1 −j2.83z
(3)
1 z(3)2−j1.08

(
z(3)1

)3
− j1.42

(
z(3)1

)2
− j1.08

(
z(3)2

)3
− j1.42

(
z(3)2

)2
− j3.23

(
z(3)1

)2
z(3)2 − j3.23z

(3)
1

(
z(3)2

)2
+O

(
z(3)
)4 def
= f (3)1,smib(z

(3))

ż(3)2 = f(3)2,smib(z
(3)) = f̄(3)1,smib(z

(3))

ż(3)3 = (−0.25+j6.08)z(3)3 −j1.52
(
z(3)3

)2
z(3)4 j0.51

(
z(3)3

)3
− j0.86

(
z(3)3

)2
− j0.51

(
z(3)4

)3
− j0.86

(
z(3)4

)2
− j1.72z(3)3 z(3)4 − j1.52z

(3)
3

(
z(3)4

)2
+O

(
z(3)
)4 def
= f (3)3,smib(z

(3))

ż(3)4 = f(3)4,smib(z
(3)) = f̄(3)3,smib(z

(3))

(58)

ż(3)1 = (−0.25+ j12.9)z(3)1 + O
(
z(3)
)4

− (0.0019+ j0.0975)
(
z(3)1

)2
+ (0.0057− j0.097)

(
z(3)2

)2
+ (0.0038− j0.195)z(3)1 z(3)2

+ (0.02− j0.262)
(
z(3)2

)3
− (0.0101+ j0.262)

(
z(3)1

)3
+ (1.3×10−4 − j1.01)

(
z(3)1

)2
z(3)2

+(0.0389− j1.01)z(3)1

(
z(3)2

)2 def
= f(3)1,st(z

(3))

ż(3)2 = f(3)2,st(z
(3)) = f̄(3)1,st(z

(3))

ż(3)3 = (−0.25+ j6.08)z(3)3 + O
(
z(3)
)4

− (0.023+j0.57)
(
z(3)3

)2
+(0.07−j0.566)

(
z(3)4

)2
+ (0.047−j1.14)z(3)3 z(3)4 +(0.017− j0.092)

(
z(3)4

)3
− (0.009+ j0.093)

(
z(3)3

)3
− (0.002+ j0.29)

(
z(3)3

)2
z(3)4

+ (0.025− j0.289)z(3)3

(
z(3)4

)2 def
= f(3)3,st(z

(3))

ż(3)4 = f(3)4,st(z
(3)) = f̄(3)3,st(z

(3))

(59)

ż(3)1 = (−0.25+ j12.9)z(3)1 + O
(
z(3)
)4

ż(3)2 = (−0.25− j12.9)z(3)2 + O
(
z(3)
)4

ż(3)3 = (−0.25+ j6.08)z(3)3 + O
(
z(3)
)4

ż(3)4 = (−0.25− j6.08)z(3)4 + O
(
z(3)
)4

(60)
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FIGURE 5. Time domain error of the simulated system responses under
the disturbance (fault duration = 0.15s) respectively by NDSMIB, NDST
and NF.

ẇ1 = −0.5w1 − 166.0w2 + 5.0w2
2 + 32.7w3

2

− 0.015w1w2 − 0.112w1w2
2 + 0.034w2

1w2

+ (1×10−5) · w2
1 − (5×10−5) · w3

1

ẇ2 = w1 + (2×10−8) · w2
1 + 0.008w2

2

− (2×10−5)w1w2

− (8×10−8) · w3
1 + 0.05w3

2 + (5× 10−5)w2
1w2

− (2×10−4) · w1w2
2

ẇ3 = −0.5w3 − 37.1w4 + 13.8w2
4 + 4.62w3

4

− 0.186w3w4 − 0.103w3w2
4 + 0.003w2

3w4

+ (6×10−4) · w2
3 − (2×10−5) · w3

3

ẇ4 = w3 + (4×10−6) · w2
3 + 0.093w2

4 − 0.0013w3w4

− (1×10−7) · w3
3 + 0.03w3

4 + (2×10−5)w2
3w4

− (7×10−4) · w3w2
4

(61)

Simplify (61) to (62) under assumption in (52) and (53):

ẇ1 = −166.0w2 + 5.0w2
2 + 32.7w3

2

ẇ2 = w1

ẇ3 = −37.1w4 + 13.8w2
4 + 4.62w3

4

ẇ4 = w3

(62)

Compare (62) with (61), the terms ignored according
to (53)-(54) are actually either small or related to the damp-
ing effects. Thus, the stability analysis results on (62) are
expected to be conservative for systems in (61). Then,
the first-integral based energy functions for the two modes
are calculated to be (63).

V1(w1,w2) =
w2
1

2
− 83w2

2 + 1.6667w3
2 + 8.175w4

2

V2(w3,w4) =
w2
3

2
− 18.55w2

4 + 4.6w3
4 + 1.155w4

4

(63)

Let the right hand side of (62) be zeros and solve
for the closest UEPs and get w2,UEP = 2.181 and
w4,UEP = 1.711. The critical energy for the two modes are

TABLE 2. Initial energy of NDST systems under different fault
durations.

FIGURE 6. Angle-speed trajectories of relative coordinates.

FIGURE 7. Angle-speed trajectories in decoupled systems.

V1(0,w2,UEP) = 193.671 and V2(0,w4,UEP) = 21.402.
Under different fault durations, the initial energy of the
decoupled systems is shown in Table II, which tells that
the initial energy of the system corresponding to the second
mode first exceeds its critical energy when the fault duration
reaches 0.16s, while the initial energy corresponding to the
first mode is always much smaller than its critical energy.
Table II also shows that the CCT found by this analysis is
0.15s, which is fairly accurate when compared to 0.16s, i.e.
the ‘‘true’’ CCT from the 3rd-order Taylor expansion of the
original system in (56).

Another benefit of the NMD is that the responses of
each decoupled system can be drawn in the corresponding
coordinates as a trajectory only about one mode. In that
sense, the original system’s trajectories regarding different
modes are also nonlinearly decoupled. For the marginally
stable case with fault duration = 0.15s, Fig. 6 plots the
trajectories of the original system in different coordinates
while Fig. 7 visualizes the modal trajectories in the coordi-
nates about each decoupled mode. In this case, both oscil-
latory modes of the system are excited, so trajectories in
the original coordinates may be tangled. However, the tra-
jectory of each decoupled system is clean and easier to
analyze.
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FIGURE 8. New England 39-bus power system.

FIGURE 9. Simulated system responses under the disturbance (fault
duration = 0.2s) respectively by 2nd-order Taylor expansion, NDST, NF
and NFSMIB.

B. TEST ON THE NEW ENGLAND 39-BUS SYSTEM
This subsection will test the proposed NMD on the
New England 10-machine, 39-bus power system as shown
in Fig. 8 [56]. Using the 2nd-order Taylor expansion of the
20 nonlinear differential equations to formulate a 9-oscillator
system and two sets of decoupled 2-jets can be obtained
respectively under the two assumptions in Section IV. With
the same desktop computer used above, the time cost of
NMD is 1810 seconds, i.e. about 0.5 hour. For applica-
tions involving analyzing system dynamic behaviors around
a specific stable equilibrium point, the NMD can be offline
derived for once and such time cost is not an issue. How-
ever, for real-time applications requiring very fast algo-
rithms, the current time cost is too high and needs to be
reduced. The current implementation of NMDusing the Sym-
bolic Math Toolbox treats all expressions as symbolic vari-
ables/functions and thereby is not efficient. A computation-
ally efficient implementation only handling the coefficients
of polynomials should be achievable and will be the future
work.

FIGURE 10. Time domain error of the simulated system responses under
the disturbance (fault duration = 0.2s) respectively by NDSMIB, NDST
and NF.

A three-phase fault is added on bus 16 and cleared after
0.2 second by disconnecting the line 15-16. With the same
initial condition under this fault, the 2nd-order Taylor expan-
sion of the original system, the two decoupled 2-jets, and the
2nd-order normal form are simulated and compared in the
original space, as shown in Fig. 9 and Fig. 10. Similar to the
case study on the IEEE 9-bus system, the error of NDST is
the smallest among the three.

V. CONCLUSION
This paper proposes the nonlinear modal decoupling (NMD)
analysis to transform a general multi-oscillator system
into a set of decoupled 2nd-order nonlinear single oscilla-
tor systems with polynomial nonlinearities up to a given
order. Since the decoupled systems are low-dimensional
and independent with each other up to the given order,
they can be easier analyzed compared to the original
system.

The derivation of the NMD adopts an idea similar to the
idea of the normal form method, and the decoupling trans-
formation turns out to be the composition of a set of nonlin-
ear homogeneous polynomial transformations. The key step
in deriving the NMD is the elimination of the inter-modal
terms and the retention of nonlinearities only related to the
intra-modal terms. The elimination of inter-modal terms can
be achieved uniquely while the intra-modal terms could be
maintained in an infinite number of ways such that a desired
form has to be specified.

Then, the NMD analysis is applied to power systems
toward two desired forms of decoupled systems: (i) the
single-machine-infinite-bus (SMIB) assumption; (ii) the
small transfer (ST) assumption. Note that the ST assumption
does not limit mode-decoupled systems to the power system
models; rather, they can be any other type of oscillator sys-
tems if a priori knowledge or preference on the form of mode-
decoupled systems is not available. Numerical studies on
both a small IEEE 3-machine 9-bus system and a larger New
England 10-machine 39-bus system show that the decoupled
system under the ST assumption has a larger validity region
than the decoupled systems under the SMIB assumption and
the transformed linear system from the normal form method.
It is also demonstrated that the decoupled systems enable
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easier and fairly accurate analyses, e.g. on stability of the
original system.

Appendix
The linear transformation for transforming (56) to (57) is

x1 = (−0.020+ j4× 10−4)y1 − (0.020+ j4× 10−4)y2

− 0.577y5 − (0.164− j0.007)y3

− (0.164+ j0.007)y4 − 0.516y6

x2 = −j0.253y1 + j0.253y2 − jy3 + jy4 + 0.258y6

x3 = (−0.121+ j0.002)y1 − (0.121+ j0.002)y2

− 0.577y5 + (0.368− j0.015)y3

+ (0.368+ j0.015)y4 − 0.516y6

x4 = −j1.56y1 + j1.56y2 + j2.24y3 − j2.24y4 + 0.258y6

x5 = (0.412− j0.008)y1 + (0.412+ j0.008)y2 − 0.577y5

+ (0.198− j0.008)y3 + (0.198+ j0.008)y4

− 0.516y6

x6 = j5.31y1 − j5.31y2 + j1.2y3 − j1.2y4 + 0.258y6

(A1)

The two nonlinear transformations for transform-
ing (57) to (59) are

y1 = z(2)1 + (−0.117+ j0.010)z(2)1 z(2)3

+ (0.117+ j0.010)z(2)1 z(2)4

+ (0.036+ j4× 10−4)z(2)2 z(2)3

+ (0.022+ j0.002)z(2)2 z(2)4

+ (0.012+ j4× 10−5)z(2)3 z(2)4

+ (0.093+ j0.025)
(
z(2)3

)2
+ (0.003+ j3× 10−4)

(
z(2)4

)2
y2 = ȳ1

y3 = z(2)3 + (0.144+ j0.012)z(2)1 z(2)2

+ (0.004− j1× 10−4)z(2)1 z(2)3

+ (0.062− j0.017)z(2)1 z(2)4

− (0.004+ j1× 10−4)z(2)2 z(2)3

− (0.002+ j2× 10−4)z(2)2 z(2)4

− (0.022− j2× 10−4)
(
z(2)1

)2
+ (0.014+ j0.001)

(
z(2)2

)2
y4 = ȳ3

(A2)



z(2)1 = z(3)1 + (0.002− j2× 10−4)
(
z(3)1

)2
z(3)3

− (0.003− j0.002)
(
z(3)1

)2
z(3)4

+ (0.007+ j0.002)z(3)1 z(3)2 z(3)3
+ (1× 10−4 − j8× 10−4)z(3)1 z(3)2 z(3)4

− (0.024− j0.002)z(3)1

(
z(3)3

)2
− (0.007− j1.47)z(3)1 z(3)3 z(3)4

+ (0.039+ j0.004)z(3)1

(
z(3)4

)2
+ (0.001+ j5× 10−4)

(
z(3)2

)2
z(3)3

− (0.001+ j2× 10−4)
(
z(3)2

)2
z(3)4

+ (0.025+ j3× 10−4)z(3)2

(
z(3)3

)2
+ (0.018+ j9× 10−4)z(3)2 z(3)3 z(3)4

+ (0.004+ j3× 10−4)z(3)2

(
z(3)4

)2
+ (0.003+ j0.002)

(
z(3)3

)3
− (0.010+ j0.008)

(
z(3)3

)2
z(3)4

+ (0.002− j0.003)z(3)3

(
z(3)4

)2
+ (0.003− j3× 10−4)

(
z(3)4

)3
z(2)2 = z̄(2)1

z(2)3 = z(3)3 − (3× 10−4 + j7× 10−6)
(
z(3)1

)3
+ (0.003− j2× 10−4)

(
z(3)1

)2
z(3)2

− (0.003− j4× 10−6)
(
z(3)1

)2
z(3)3

− (0.021+ j7× 10−4)
(
z(3)1

)2
z(3)4

− (0.003+ j3× 10−4)z(3)1

(
z(3)2

)2
+ (0.002+ j1.43)z(3)1 z(3)2 z(3)3
+ (0.057+ j0.008)z(3)1 z(3)2 z(3)4

− (0.008+ j8× 10−5)z(3)1

(
z(3)3

)2
− (0.032− j0.009)z(3)1 z(3)3 z(3)4

+ (0.040− j0.004)z(3)1

(
z(3)4

)2
− (5× 10−4 + j6× 10−5)

(
z(3)2

)3
+ (0.011+ j5× 10−4)

(
z(3)2

)2
z(3)3

+ (0.002+ j2× 10−4)
(
z(3)2

)2
z(3)4

+ (0.026+ j0.009)z(3)2

(
z(3)3

)2
+ (0.008+ j0.002)z(3)2 z(3)3 z(3)4

+ (0.004− j2× 10−4)z(3)2

(
z(3)4

)2
z(2)4 = z̄(2)3

(A3)

The linear transformation for transforming (59) to (61) is


z(3)1 = −j0.078w1 + (1− j0.019)w2

z(3)2 = j0.078w1 + (1+ j0.019)w2

z(3)3 = −j0.164w3 + (1− j0.041)w4

z(3)4 = j0.164w3 + (1+ j0.041)w4

(A4)
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