
Received October 26, 2017, accepted December 18, 2017, date of publication December 25, 2017,
date of current version February 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2787184

Fatigue Damage Mechanism-Based Dependent
Modeling With Stochastic Degradation and
Random Shocks
DAN XU, JIAOLAN HE , SHAOBO SUI , SHAN JIANG, AND WEI ZHANG
Science and Technology on Reliability and Environmental Engineering Laboratory, School of Reliability and Systems Engineering, Beihang University, Beijing
100191, China

Corresponding author: Wei Zhang (zhangwei.dse@buaa.edu.cn)

This work was supported by the National Science Foundation of China under Grant 61403010 and Grant 51405009.

ABSTRACT This paper proposes a dependent modeling method for reliability estimation of metal structures
under constant amplitude loading and random shocks considering the nonlinear damage accumulation mech-
anism. It is well known that a largemonotonic plastic zone ahead of a crack tip caused by a spike overloadwill
retard subsequent fatigue crack growth. However, most existing degradation-and-shock dependent models
cannot account for this retardation phenomenon. Moreover, the increase in damage caused by shock is
usually assumed to be independent of fatigue degradation. In this investigation, both fatigue degradation
and applied random shock damage are considered to have a coupled effect on the crack propagation
process. The nonlinear damage superposition approach is utilized herein to model the interaction between
fatigue loading and random shocks. Fatigue degradation is considered as a stochastic process influenced
by the uncertainties in material properties, and the applied shocks are regarded as random incidents. Next,
the piecewise deterministic Markov process is employed to describe the coupling relationship between this
stochastic degradation and the random shock process. In the proposed algorithm, Paris’ equation is utilized
to describe fatigue degradation, and the Willenborg model is employed to describe retardation caused by
random shock loads. A simulation is performed to validate the proposed method, and the proposed method
is compared with the traditional method.

INDEX TERMS Dependent modeling, degradation-and-shock, retardation, Paris model, Willenborg model,
PDMP.

I. INTRODUCTION
THE airframe, one of the most important components of an
airplane, is commonly designed using the damage tolerance
concept. During service, the airframe is usually subjected
to fatigue loading caused by air flow-induced vibration and
occasional shocks caused by turbulence. This loading condi-
tion can be idealized as a combination of a fatigue loading
sequence and spike overloads. Researchers usually construct
a degradationmodel with shock damage to simulate the actual
physical process.

Many studies have modeled fatigue degradation and shock
damage. Li and Pham [1] developed a generalized multi-state
degraded reliability system subject to multiple independent
failures, including two degradation processes and random
shocks. Lehmann [2] considered a class of degradation–
threshold–shock (DTS) models that provided a rich con-
ceptual framework for the study of degradation and shock.

In addition, Castro et al. [3] analyzed a condition-basedmain-
tenance approach to the DTS model with multiple indepen-
dent degradation processes and external shocks. Ye et al. [4]
considered two degradation-and-shock failure models related
to the failure time and the failure mode. In these models,
the degradation process and shock are assumed to be indepen-
dent of each other; that is, no interaction effect is considered,
which is not consistent with the actual situation.

Other studies have improved the method to a certain extent
by considering the correlation between the degradation and
the shock process. Those studies have divided random shocks
into two types: fatal shocks (which cause the system to
fail immediately) and nonfatal shocks (which do not cause
catastrophic failure) [5], [6]. In the nonfatal shock situation,
there are two effects on the degradation process: the degra-
dation rate increases sharply after a shock [7], [8], and the
degradation damage increases upon the occurrence of shocks.
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Most studies have considered shock damage increments
superimposed on cumulative damage [5], [10]. Wang and
Pham [5] developed a time-varying copulamethod to describe
the relationship between degradation processes and random
shocks. Shu et al. [9] used a single stochastic process to
model cumulative degradation with random jump increments
caused by random shocks. In a departure from previous
research, Song et al. [10] extended the cumulative degrada-
tion to complex systems with multiple components. When
considering the increase in damage, the classification of
shocks has also been taken into account. Not every shock
affects the degradation process. For example, Jiang et al. [11]
addressed the safety zone by dividing shocks into three zones
based on their magnitudes. According to the interval and the
number of shock occurrences, Jiang et al. [12] proposed a
decrease in the hard failure threshold value to a lower level
corresponding to one of three types of shock models: the
generalized extreme shock model, the generalized δ-shock
model or the generalized m-shock model. For a multi-
component system, Song et al. [13] considered that each
component has its own shock set; as a result, random shocks
were classified into different sets, resulting in each com-
ponent having its own hard failure threshold value . Based
on physics-of-failure mechanisms, Keedy and Feng [14] and
Feng et al. [15] integrated two stochastic-based dependent
processes to model the crack growth of stents according to
the activity level of patients . These studies assumed only
that the shock performance always accelerates, rather than
slows, the degradation process. In addition, studies have not
considered the coupling relationship between degradation
and shock. Chen et al. [16], [17] filled this gap based on the
local stress-strain approach, and they calculated the effects of
shocks using theMiner linear cumulative law . However, ana-
lyzing coupling damage by stress-strain alone is not adequate
under actual circumstances. Moreover, the linear cumulative
law is no longer applicable to the case in which the crack
growth rate is reduced because of overload [18], [19].

In our study, the fatigue degradation process is character-
ized by the crack propagation process. This overall process is
described by a specific physical model that incorporates the
retardation effect. Moreover, the damage caused by overload
has a temporal effect determined by the current cumulative
damage; that is, the time at which spike overload occurs
will affect the size of the retardation zone. Under overloads,
the validated model indicates that the Willenborg model can
provide good prediction results [20], [21]. This paper pro-
poses a nonlinear damage superposition approach, which is
utilized herein to consider the interaction between fatigue
loading and random shocks.

In the proposed algorithm, the degradation process is a
deterministic process, and the applied shocks are regarded
as random incidents. The state transition between fatigue
loading and random shocks is taken into consideration. This
consideration requires a state model to describe the corre-
sponding interaction. Piecewise deterministic Markov pro-
cesses (PDMPs) [22] are processes related to state prediction

and are non-diffusion stochastic models that feature a mixture
of deterministic and jump motions. The advantage of PDMPs
is that they solve the problem of accounting for the interaction
between the deterministic dynamics and random shocks of a
system. Recently, PDMPs have also been utilized to model
corrosion [23]. Nguyen et al. [24] adopted a PDMP to address
the challenge of estimating the remaining useful life of a
closed-loop feedback system. Therefore, this paper imple-
ments a piecewise deterministic Markov process (PDMP) to
describe the deterministic fatigue degradation process and the
random shock process in building a coupling model. In the
coupling model, Paris’ equation is utilized to describe fatigue
degradation, and theWillenborg model is used to describe the
retardation caused by random shock loads. The model mainly
concentrates on two factors: 1) the greater the cumulative
damage before the occurrence of a shock is, the greater the
damage caused by random shocks will be, and 2) the super-
position of shock damage is nonlinear.

The rest of the paper is organized as follows. In Section II,
the framework of the methodology is described. Next, a case
study introduces our proposed method and the traditional
method in Section III. Section IV concludes the paper.

II. FRAMEWORK OF METHODOLOGY
The framework of the methodology consists of three parts.
Part one introduces the physically based fatigue degradation
model under constant amplitude loading and the retardation
effect caused by overload. Part two describes the shock load
model. Part three presents the dependent model under con-
stant amplitude loading and random shocks. One model is
the crack growth model that considers the retardation effect
based on a PDMP, and the other model is the traditional
method, which shows that the effects of shocks produce a
direct, random increase in degradation after the occurrence of
a shock. Compared with the traditional model, the proposed
PDMP-based dependent model is demonstrated to be more
effective.

A. DEGRADATION MODEL
1) FATIGUE DEGRADATION MODEL UNDER CONSTANT
AMPLITUDE LOADING
In the fatigue damage stage, the Paris model is adopted to
describe crack expansion under constant amplitude loading.
The Paris model, which is widely used in current crack
research, is expressed as follows [25]–[27]:

da
dn
= C (1K )m (1)

where C,m are the calibration factors, C ∼ N (µc, σ 2
c ), a is

the crack length, and n refers to the number of load cycles
suffered by the specimen.1K is the variation in the intensity
factor over a single load cycle, which is expressed by

1K = Y1σ
√
πa (n) (2)

1σ = σmax − σmin (3)
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FIGURE 1. Validation of the Willenborg model.

where 1σ represents the variation of stress within one load
cycle, a is the crack length, σmax is the peak load stress within
one load cycle, σmin is the corresponding bottom load stress.
Y is a geometric parameter, which can be calculated by [30]

Y =
1

√
πa (n)

(
2+ θ

(1− θ)3/2

)
(
0.886+ 4.64θ − 13.32θ2 + 14.72θ3 − 5.6θ4

)
θ =

a (n)
w

(4)

where w is the width of the specimen. The geometry factor
can also be simplified in a special situation. For a center crack
in a plate, the geometry factor is equal to 1.12, and for a
surface crack in a plate, the factor is approximated as 2.24

π
.

2) THE RETARDATION MODEL UNDER OVERLOADS
In practice, vibration loads do not have an ideal, constant
amplitude but random environmental shocks. For some mate-
rials, such as aluminum and iron, these overloads delay sur-
face crack expansion rather than accelerate its growth. This
delay represents the overload retardation caused by shocks.
Much research has been conducted on this phenomenon.
However, these studies have mainly been concerned with the
theories used in an attempt to determine the most appropriate
mathematic model, e.g., theWheeler andWillenborg models.
The issues of reliability and life prediction under these effects
have been less frequently considered.

Some studies have provided fatigue testing data under
shock loads [20], [21]. A comparison between Willenborg
model predictions and experimental data is shown in Fig. 1;
good agreement is observed. Note that the Willenborg model
can well account for the retardation effects. In this paper,
we study the reliability under overload using the most com-
monly used retardation model: Willenborg model.

The model proposed by Willenborg is based on plasticity.
When a shock load is applied, a large monotonic plastic zone
appears near the crack tip, and the crack growth rate reaches
the minimum value. In the following cycles, the retarda-
tion effect gradually decreases and then vanishes completely
when the current plastic zone exceeds the upper boundary
value. In the zone of retardation, fatigue crack growth can
be expressed by [29]

da(n)
dn
= C

(
1Keff

)m
1Keff = Y1σeff

√
πa (n)

1σeff = σmax eff − σmin eff

(5)

σmax eff =

{
σmax − σcomp

(
σmax > σcomp

)
0
(
σmax ≤ σcomp

)
σmin eff =

{
σmin − σcomp

(
σmin > σcomp

)
0
(
σmin ≤ σcomp

) (6)

σcomp = σreq − σmax (7)

where 1Keff refers to the variation of these effective
stress intensity factors;σmax eff , σmin eff are the effective load
stresses corresponding to σmax, σmin; σcomp is the equivalent
residual stress after the overload; and σreq is the stress at
which there is no retardation. Themagnitude of σreq is derived
by the Irwin function [29], [30] and the geometric principle

ρreq = ρres (8)

ρres = ρol − (a (n)− aol) (9)

ρol =
Y 2aol
α

(
σol

σys

)2

(10)

ρreq =
Y 2a (n)
α

(
σreq

σys

)2

(11)

where aol a is the crack length at the shock arrival time,
aol = a(Ti). ρol is the maximum plastic zone size caused
by the shock. a is the current crack length. ρres is the maxi-
mum plastic zone size caused by the residual overload. ρreq
indicates the plastic zone size produced by σreq. σreq refers to
the shock load stress. σys is the yield stress of the material. α
is the constant coefficient in the Irwin function. In this paper,
the study object is a thin plate of uniform thickness. Crack
growth on the plate can be cast as a plane stress problem,
where α is equal to 1 [29].

Based on equations (8)-(11), σreq is written as

σreq =
σys

Y

√
aol + ρol − a (n)

a (n)
(12)

The duration of retardation depends on the corresponding
size of the plastic zone. Based on equations (21) and (24),
the duration can be determined when the stress satisfies the
relation

σmin > σreq − σmax (13)

The effective stress variation 1σeff in the Willenborg model
is equal to the variation1σ in the Paris model. In other words,
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FIGURE 2. The overall process of crack growth.

the overload retardation ends when equation (13) is met. The
stress determined in this manner can be substituted into the
expression for determining crack length based on equations
(12) and (13)

a (n) >
1

1+ [Y (1+ r)σmax
σys

]2
(aol + ρol) (14)

where min max r = σmin/σmax. When the current crack
length satisfies equation (14), the retardation disappears, and
thus, the rule governing crack growth once again follows the
Paris model.

From formulas (1), (2) and (5) of the fatigue models,
it is well known that the future crack growth rate depends
on the current crack length. Therefore, the traditional linear
cumulative law is no longer applicable for calculating the
crack length of the segment. For this case, a nonlinear damage
accumulation mechanism is proposed in this paper.

B. SHOCK LOAD MODEL
In practice, constant amplitude loading is accompanied by
random shocks. The overall process of crack growth is shown
in Fig. 2. In Fig. 2, TN is the time at which the N th
shock occurs, and KN is the shock’s intensity. In this paper,
we assume that the shocks are large enough and that all shocks
used to calculate the effect of retardation are called overloads.
It is assumed that the number of shocks follows a Poisson
distribution with intensity λ: {N (n), n ≥ 0} ∼ Poisson(λ),
and the magnitude of shock σol follows a normal distribution:

σol ∼ N
(
µol, δ

2
ol

)
(15)

Before the first shock arrives, the crack propagation is deter-
mined solely by constant amplitude loading. When the N th
shock occurs, the crack will be in the plastic zone caused
by overload, and its growth rate will remain low until the
plastic zone disappears. The crack growth rate will then revert
to the normal degradation rate before the (N + 1)th shock
appears. The shock process is equivalent to a jump process.
The degradation process under constant amplitude loading
is a deterministic process that is constantly updated over
time. X (n) is assumed to be the state of crack growth under
degradation and the shock process. X (n) is expressed by

X (n) = Xn, n ∈ [TN ,TN+1) (16)

C. DEGRADATION-AND-SHOCK DEPENDENT MODEL
We apply two different methods to build the dependent
model coupling with constant amplitude loading and ran-
dom shocks. In the first model, the effect of overload-
ing on crack growth is considered retardation, as verified
in [31] and [32]. The piecewise deterministic Markov process
(PDMP) method is adopted to build the crack growth model
with retardation, where the retardation effect leads to a lower
crack growth rate than before. In the other model, the effect
of random shocks on crack growth is considered to be an
increase in damage. A model based on overloading as the
cause of an increase in damage is utilized to build the crack
growth model, which is compared with the proposed PDMP-
based modeling method.

1) THE PDMP-BASED DEPENDENT MODEL WITH THE
RETARDATION EFFECT
In this section, the crack growth model with retardation
caused by overloading is built. In the retardation process,
the path of crack growth is affected by many random factors
caused by the shock process, such as the shock arrival time,
the size of the shock, the corresponding crack length, and
the properties of the material. Here, the Willenborg model is
used to describe this relationship between the random shock
load and the crack growth rate. The Paris model is then
utilized to describe crack growth under constant amplitude
loading, when there is no retardation. Considering the above-
mentioned random factors, the PDMP process is adopted
to establish the intrinsic relationship between the random
shock process and the deterministic crack growth model.
Generally, a PDMP is suitable for describing deterministic
processes coupled with random gaps. In this paper, the deter-
ministic process refers to fatigue degradation, whereas ran-
dom incidents refer to random shocks. Thus, a PDMP is
used to describe the coupling relationship between fatigue
degradation and random shock. According to [33] and [34],
the piecewise deterministic Markov process is determined by
the following three characteristics:

¬ Path ϕ;
 Jump process (XN ,TN ,N ) ,N ≥ 0, where XN is the

crack growth state at time TN ;
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FIGURE 3. Modeling process of the PDMP method.

® A state transition. This paper describes the state transi-
tion between fatigue degradation and random shocks.

This piecewise deterministic Markov process can be sum-
marized as a three-step strategy, as shown in Fig. 3.

Step 1: Select the behavior vector.
In this step, a multi-dimensional behavior vector Z (n)with

environmental and stress variation is constructed to describe
the crack state of a specimen:

Z (n) =


a (n)
da(n)
dn

Kmax (n)
X (n)

 (17)

where n is the number of loading cycles; a (n) is the current
crack length; da(n)dn represents the crack growth rate; Kmax is
the maximum stress intensity factor loaded by environmental
stress; and X (n) refers to the crack propagation state between
two adjacent shocks.

Step 2: Derive stream function ϕ.
The aim of this step is to find the deterministic path

between two random shocks. Assuming the times at which
two random shocks occur are TN and TN+1, the stream func-
tion ϕ (Z , n) is

ϕ (Z , n) =



a (n) = X (n)+ a (TN )

da(n)
dn
=

{
C
(
1Keff

)m
, a (n) ≤ ηTN

C (1K )m , a (n) > ηTN

Kmax (n) = Y
√
πa (n) ∗Max (σmax, σol)

X (n) =
∫ n
TN

da (n)
dn

dn

(18)

where η (TN ) expresses the crack length at the moment at
which the N th shock occurs. Moreover, the boundary con-
dition, regardless of whether the retardation effect occurs, is

η (TN ) =
1

1+
[
Y (1+ r) σmax

σys

]2 (a (TN )+ ρol) (19)

Step 3: Derive the jump process.
This step involves the derivation of the jump time Tn and

the corresponding size of the loading shock. The size of the

FIGURE 4. Algorithm flowchart of crack growth.

shock follows a normal distribution σol ∼ N
(
µol, δ

2
ol

)
, where

µol and δol are the shock’s mean and standard variance. The
time interval between two adjacent random shocks follows
an exponential distribution with intensity λ. In the process of
simulation, this formula can be expressed in order to generate
random numbers of exponential distribution,

TN+1 − TN=exprnd (1/λ) (20)

The PDMP algorithm flow is presented as follows in Fig. 4.
In Fig. 4, nmax is the given maximum number of loading
cycles.

The reliability conditions of the fatigue crack are that
the maximum stress intensity factor Kmax cannot exceed the
threshold Kthreshold and that the crack length cannot exceed
the threshold athreshold . The reliability can be written as

R (n) = P {Kmax (n) ≤ Kthreshold ∩ a (n) ≤ athreshold } (21)

2) THE TRADITIONAL METHOD-BASED DEPENDENT MODEL
The fatigue degradation and random shock coupling model is
used to describe two competing failure processes, continuous
degradation and random shocks. In the model, the instan-
taneous damage from random shocks is assumed to be an
increment added to the damage amplitude [11].

In general, fatigue crack propagation is described in terms
of a Paris power law formulation, as demonstrated in equa-
tion (1). When the degradation or crack size is greater than
threshold athreshold , continuous failure occurs.
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TABLE 1. Parameters of models.

After integrating formula (1), the crack length can be
expressed by [25]

a(n) =
a(0)(

1− 1
2C
′ (m− 2)a(0)(m−2)/2n

)2/(m−2) (22)

whereC ′ = C(Y1σ
√
π )m and a(0) is the initial crack length.

Instantaneous damage is caused by overloads. Instanta-
neous failure occurs when the fracture toughness Kj of the
jth shock exceeds the threshold Kthreshold . We consider that
overloads occur according to a Poisson process, and the
number of shocks as a function of the number of load cycles
n is {Nn, n ≥ 0} ∼ Poisson(λ). Kj is expressed by

Kj = Yσol
√
πa(n) (23)

The cumulative damage size depends on the magnitude of
the overload.When themagnitude of the overload falls within
the interval (W ,Kthreshold ), the effect of random shocks on
a crack is considered to be an increase in damage on the
crack [11]. The damage increment can be expressed by

Hj =

{
b(Kj −W ) if Kj > W
0 if Kj ≤ W

(24)

where b is a predetermined constant. After the jth shock
occurs, the crack length is expressed as as(n) = a(n)+ Hj.
Failure will not occur when the crack length is less

than athreshold and the magnitude of the overload is smaller
than Kthreshold . The reliability function is the same as
formula (21).

III. CASE STUDY AND RESULTS
To illustrate our proposed PDMP-based method, we consider
the effects of retardation on fatigue crack growth. Moreover,
the larger the crack length at the time at which a shock
occurs is, the greater the damage caused by the shock will be.
In this section, we first present our PDMP-based method for
addressing this problem. Next, the traditional method is pre-
sented. AMonte Carlo-based simulation is performed to vali-
date the proposed method via comparison with the traditional
method. The model parameters are presented in Table 1. The
loading cyclic stress is shown in Fig. 5.

Algorithm 1 Steps for Monte Carlo simulation
Step 1: Define the sample sizeM and the maximum num-
ber of loading cycles nmax
Step 2: Set i = 1. Sample the calibration factor C ; the
value can be selected randomly from a normal distribution
C ∼ N (µc, σ 2

c ).
Step 3: SetN = 1. Sample the time at which theN th shock
occurs and the shock load stress σol . The time interval
between two consecutive shocks is extracted randomly
using an exponential distribution with intensity λ. The
values can be selected randomly from a normal distribution
σol ∼ N

(
µol, δ

2
ol

)
. Assume that T0 = 0 and that the time at

which theN th shock occurs is TN = TN−1+exp rnd(1/λ).
Step 4: Set N = N + 1. If TN is less than the given
maximum number of loading cycles nmax, go back to step
3. If TN is greater than nmax, go to step 5.
Step 5: Set i = i+1. If i = M , the process is over. If i < M ,
go back to step 2

FIGURE 5. Cyclic stress level with shock.

In Monte Carlo simulation, the steps of the random sam-
pling are presented as follows.

In this study, because of the limited computational power
of the computer used, M = 1500 samples were simulated
in MATLAB R2014a and the number of loading cycles was
nmax = 4× 104.
In Fig. 5, 1T refers to the time interval between

two random shocks that follow an exponential distribu-
tion with intensity λ. The corresponding probability den-
sity function and cumulative distribution function are shown
in Fig. 6(a) and (b) respectively.

A. DEGRADATION-AND-SHOCK DEPENDENT MODELING
METHOD BASED ON PDMP
This section focuses on how to formulate our proposed
PDMP-based method. Overloads will result in a retardation
effect. The crack growth process under this effect is described
in detail.
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FIGURE 6. Distribution curves. (a) The probability distribution of time
interval between two random shocks. (b) The cumulative distribution of
time interval between two random shocks.

According to the Willenborg model, retardation occurs
if the current crack length satisfies the following condition
when overloading occurs,

a (n) <
1

1+
[
Y (1+r) σmax

σys

]2 (aol + ρol)
σreq < 2σmax

(25)

Specifically, Ti < n ≤ Ten, where Ti refers to the arrival
time of the ith shock, and crack growth is retarded within
this interval time. Ten is the end time of overload retardation.
It’s worth noting that when equation (25) is not satisfied,
the value of Ten is determined and Ten = n at that moment.
In the calculation process, it is difficult to obtain the mathe-
matical analytical form of theWillenborgmodel, so we utilize
the forward Euler method with 1n = 1 to simulate crack

FIGURE 7. Part of the simulated crack path.

growth,

η = 1

1+
[
Y (1+r) σmax

σys

]2 (a (Ti)+ ρol)
a(n) = a(n−1n)+ da
da = C

(
1keff

)m
1Keff = Y1σeff

√
πa(n−1n)

1σeff = 2σmax − σreq

σreq =
σys
Y

√
aol+ρol−a(n)

a(n)

N (n) ∼ Poisson (λ)
Kmax (n) = Y

√
πa(n) ∗Max (σmax, σol)

(26)

Crack growth can be described by amulti-dimensional ran-
dom variable Z (n) consisting of the variation in environmen-
tal stress and variation in state, as indicated in equation (17).
Considering that materials properties vary within the same
batch, the geometric factor is randomized, C ∼ N (µc, δc).
As the crack grows in the plastic zone, the crack

becomes longer. The retardation effect ends when the cur-
rent crack length a(n) satisfies the condition given by
equation (14).

The crack propagation law then follows the Paris model,
Ten < n ≤ Ti+1, and is written as

a(n) =
a(Ten)(

1− 1
2C
′ (m− 2)a(Ten)(m−2)/2(n− Ten)

)2/(m−2) Ten
< n < Ti+1 (27)

where Ti+1 refers to the arrival time of the (i+ 1)th shock.
Next, the Monte Carlo method is adopted to simulate crack

growth according to a PDMP. Part of the simulated crack
path results are shown in Fig. 7. It is observed that random
factors caused by the shock process affect the crack growth
rate, including the shock arrival time corresponding to the
retardation start time, the size of the shock, the corresponding
crack length, and the properties of the material. This process
diversifies the crack path.
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FIGURE 8. Comparison of reliability of specimen.

B. DEGRADATION-AND-SHOCK DEPENDENT MODEL
BASED ON TRADITIONAL METHOD
The retardation effect caused by overloads is not considered
in this section, whereas the damage increment caused by
overloads is considered. The traditional method based on
fatigue damage and shock damage is used to calculate crack
propagation considering continuous and instantaneous dam-
age. The main goal is to compare the results of this method
with those of the PDMP method; we then explain how the
retardation effect substantially delays crack propagation.

Before a shock occurs, crack propagation follows the Paris
model, as indicated in equation (22). Once the jth shock
occurs and its magnitude exceeds the value W , the crack
length will increase because of an increase in damage,
as expressed by

as(n) = a(n)+ b(Kj −W ) (28)

Crack growth will then follow the Paris model again. How-
ever, the initial crack length is updated as

a(0) = as(n) (29)

At that moment, the equation describing crack growth
when the jth shock occurs at Tj becomes

a(n)=
as(n)(

1− 1
2C
′ (m− 2)as(n)(m−2)/2(n− Tj)

)2/(m−2) (30)

C. ANALYSIS AND COMPARISON OF THE PDMP METHOD
AND THE TRADITIONAL METHOD DEGRADATION
Using both the PDMP-based method and the traditional
method, the reliability curves of crack growth and the cor-
responding probability density functions of the first passage
time are shown in Fig. 8 and Fig. 9, respectively.

In Figs. 8 and 9, the curves of the PDMP-based model with
retardation are shown in blue and the curves of the traditional
model are shown in red, respectively. The curves move to

FIGURE 9. Comparison of probability density functions of the first
passage time.

the right with an increase in the number of loading cycles.
The estimated accuracy is improved with the progression of
the retardation effect. For example, the number of loading
cycles at a reliability value of 0.9 is 10,000 cycles based
on our proposed method with retardation, and the number
of loading cycles is 8518 based on the traditional model,
as shown in Fig. 8. The result shows that the crack propaga-
tion rate is influenced by overloads. Moreover, this influence
delays, rather than accelerates, crack growth. Therefore, it is
important to consider the effects of the time at which shocks
occur and retardation when evaluating crack growth.

IV. CONCLUSION
This article proposed a novel dependent modeling method
that incorporates constant amplitude loading cycles and ran-
dom shocks based on failure damage mechanisms. This
dependent model considers the coupling relationship between
degradation and shock damage. Unlike most existing meth-
ods (which treat soft shock damage as a mechanism that
accelerates crack growth and rarely consider the effects of
the time at which shocks occur), the proposed model con-
siders that overloads retard crack propagation. Therefore,
in the proposed model, based on nonlinear damage caused
by shocks, a Markov process is used to describe the state of
crack propagation in the presence of shocks. In this article, the
degradation process was considered a deterministic process,
and the shock process was assumed to be random; thus,
it was natural to model the overall crack growth process as
a piecewise deterministic Markov process (PDMP). In addi-
tion, retardation was considered via the Willenborg model,
and the Paris model was applied to the non-retardation zone.
Finally, the Monte Carlo method was adopted to simulate the
crack propagation process via our PDMP-based method and
the traditional method. The comparison results verified the
effects of nonlinear cumulative damage and retardation on the
degradation behavior and demonstrated the effectiveness of
the proposed method.

One limitation of the current study is that it focused only
on uniaxial loading without considering crack arrest. In the
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future, more complex loading conditions will be investigated,
such as adjacent spike loads and large spike loads.
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