
SPECIAL SECTION ON MOBILE EDGE COMPUTING

Received November 1, 2017, accepted December 12, 2017, date of publication December 25, 2017,
date of current version February 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2786662

Full-Duplex Aided User Virtualization for Mobile
Edge Computing in 5G Networks
MING LIU, YUMING MAO, SUPENG LENG , AND SUN MAO
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Supeng Leng (spleng@uestc.edu.cn)

This work was supported in part by the Fundamental Research Funds for the Central Universities, China, under Grant ZYGX2016Z011,
in part by the National Natural Science Foundation of China under Grant 61374189, and in part by the Joint Fund of the Ministry of
Education of China and China Mobile under Grant MCM20160304.

ABSTRACT Driven by the increasing demand of intensive computing services and the resource limitation
of mobile devices at the edge of mobile networks, mobile edge computing (MEC) is concerned with
being an emerging paradigm towards the 5G communications. A main issue of MEC is the coordination
of communication, computation, and storage. In this paper, we propose a novel MEC framework with
a user virtualization scheme in the software-defined network virtualization cellular network, in which
radio resources are virtualized along with computation and storage resources to cooperatively finish MEC
services. Besides, we introduce the user virtualization assisted by the full-duplex communication which can
extend the radio resource of wireless networks and provide the potential to increase system performance.
Moreover, enabled by user virtualization, users can offload the edge computation tasks directly to the MEC
server implemented at infrastructure providers or via the virtualized mobile device attributed to different
mobile virtual network operators (MVNOs). Under this MEC framework, we formulate the virtual resource
allocation as a joint optimization problem. A distributed resource allocation algorithm based on an alternating
direction method of multipliers is proposed which can reduce computational complexity and signaling
overhead. We evaluate the proposed algorithm through extensive simulations, and the results show that the
total utility of MVNOs can be improved significantly which benefited from user virtualization.

INDEX TERMS Full-duplex, mobile edge computing (MEC), resource allocation, software defined network
virtualization (SDNV), user virtualization.

I. INTRODUCTION
The increasing demand of computation intensive and latency
critical mobile services, such as video format transformation,
voice recognition, virtual reality and augmented reality, has
attracted great attentions [1]. These services promote the
requirement for communication and computation capabili-
ties [2], [3]. Although the performance of mobile devices are
benefited from the evolution of the CPU and flash memory
technologies, their computation capabilities are still limited
for future computation tasks. Furthermore, the battery of
mobile devices is a main constraint, which indicates plethoric
energy consumption from local intensive computing is
unacceptable for user experience.

Motivated by mobile cloud computing, mobile edge
computing (MEC) is an emerging technology to address
the intensive computation issues [4]–[6]. By pushing mobile
computing, network control and storage to the network edges,
MEC enable large-scale computation and storage resources

at network infrastructures. With MEC, the computation-
intensive and latency-critical applications can be achieved at
the resource-limited mobile devices [7]. Without relying on
the remote cloud server, the demands of rapid response from
edge users can be accomplished as long as the computation
and storage collaborate with communication.

The heterogeneity of computing, storage and communi-
cation resources, and the diversity requirement of network
services bring new challenges. Current cellular networks
are becoming incapable to meet the growing demand [8].
However, software defined network (SDN) and network func-
tion virtualization (NFV) possess potential to address these
challenges in future 5G networks [9], [10]. The combination
of SDN and NFV has attracted attention from both academia
and industry, which is named as software-defined network
virtualization (SDNV) [11]. Although large amounts of work
has been done in this area, current investigations custom-
arily following former researches by concentrating on the
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wireless virtualization of the infrastructures, generally ignore
the potential capabilities from mobile devices.

To exploit the potential capability of mobile devices,
we introduce the full-duplex (FD) communication into
the SDNV. The FD communication supports both transmis-
sion and receiving in the same band simultaneously [12].
Nodes implementedwith full-duplex support amplify and for-
ward (FD-AF) transmission, achieve lower delay and higher
spectrum efficiency [13], [14]. Offloading the computation
task through FD-AF relay increases the communication capa-
bility without extra memory occupation and delay augment.
The combination of FD communication and SDNV frame-
work may trigger innovative network design that fully exploit
the advantages of both two techniques. Besides, extra loop-
interference generates from simultaneous transmission and
receiving [15]. Furthermore, the extended virtual resources
and user mobility make it is difficult to accomplish the
resource management for computation offloading.

To the best knowledge of us, so far no investigation has
concerned the virtualization of mobile devices in SDNV
network with MEC. In this paper, we investigate the MEC
offloading with FD-assisted user virtualization in the SDNV
cellular network. Contributions of this paper are summarized
as follows:

1) We propose a novel MEC framework with user vir-
tualization scheme in SDNV cellular network, where radio
resources are virtualized along with computation and stor-
age resources to cooperatively accomplish MEC tasks.
Moreover, enabled by user virtualization, user can offload
the edge computation tasks directly to the MEC server
implemented via base stations (BSs) or via the virtualized
mobile device attributed to different mobile virtual network
operators (MVNOs).

2) In order to expand the virtual resources for MEC in
the SDNV network, we introduce the FD-assisted user vir-
tualization which enables amplify and forward (AF) trans-
mission for computation task offloading. The mobile devices
are virtualized along with infrastructures and controlled by
the SDN controller. The user virtualization scheme provides
the potential to increase the communication capability for
offloading without extra memory occupation and additional
delay augment.

3) We formulate the virtual resource allocation strategy as
a joint optimization problem. Due to the multi-dimensional
heterogeneous resources and the imperfect global channel
status indicator (CSI), the control and management of the
SDNV cellular network with user virtualization is intractable.
A distributed resource allocation algorithm based on alter-
nating direction method of multipliers (ADMM) is proposed
which can reduce the computational complexity and signaling
overhead.

4) We evaluate the proposed algorithm through extensive
simulations with different system parameters. Simulation
results show that the total utility of MVNOs can significantly
benefit from the user virtualization. Moreover, the proposed
distributed algorithm exhibits almost same performance

compared to the centralized algorithm while keeping a dis-
tributed manner.

The rest of this paper is organized as follows. Section II
presents the related work on MEC and SDNV. We introduce
the system model in Section III. In Section IV and V, we
formulate the joint resource allocation problem and solve it by
proposing a distributed algorithm for reducing the complexity
and signaling overhead. SectionVI provides simulation based
performance evaluation. Finally, we conclude this paper in
Section VII.

II. RELATED WORK
In this section, we generally summarize the related work
on software-defined network virtualization and mobile edge
computing.

A. SOFTWARE-DEFINED NETWORK VIRTUALIZATION
With the insulation of data and control and the abstraction of
PHY resources and internet services, SDN and NFV provide
more flexible access management and service scheduling.
One of the key issues in SDN is separating network control
and data forwarding functionalities, which lead to central-
ized and programmable network control [16]. Benefits intro-
duced by SDN include enhanced network control, flexible
and efficient network management, and improved network
service performance [17]–[19]. Key issue of NFV is provid-
ing specific mechanisms to decouple service functions from
infrastructure, leveraging virtualization technologies to trans-
fer network function from hardware appliances to software
applications. Advantages promised by NFV include simpli-
fied service development, more flexible service delivery, and
reduced network capital and operation costs [20]–[23]. Both
SDN and NFV share common goals and similar technical
ideas, and are complementary to each other. The combination
of SDN and NFV in future network has drawn attention from
both academia and industry [24]–[27]. A framework named
software-defined network virtualization (SDNV) combines
the SDN principle of separating data and control planes
with the NFV principle of decoupling service functions from
infrastructures, which gives a clear holistic vision of SDN
and NFV integration in 5G network [11]. Merging SDN and
NFV allows innovative network designs to fully exploit the
advantages of both paradigms. A number of research efforts
have been devoted to this area, current investigations cus-
tomarily following former researches by concentrating on the
wireless virtualization of the infrastructures, generally ignore
the potential capabilities from mobile devices. Consider the
gigantic quantities of mobile devices in future 5G network
which may consist a large amount of network resources, how
to effectively organize these resources is still a problem has
not been exploit yet.

B. MOBILE EDGE COMPUTING
The high-rate and highly-reliable air interface allows to run
computing services of mobile devices at the remote cloud
data center, resulting in the research area named Mobile
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Cloud Computing (MCC) [2]. However, MCC architecture
is inefficient to accomplish the computation-intensive and
latency-critical applications. MEC promises dramatic reduc-
tion in latency and mobile energy consumption, tackling
key challenges for materializing 5G vision [28]. A princi-
pal emphasis on MEC investigation is to seamlessly merge
the two disciplines of wireless communications and mobile
computing, producing a wide-range of new designs ranging
from computation offloading techniques to network archi-
tectures [30]. Generally, if a mobile device demands high
computation rate, or when executing a given task on the
mobile device consumes higher energy than executing on an
MEC server, computation offloading is performed. Mean-
while, MEC is expected to enable the network to support
extensive innovative services and applications. In the case
of LTE, the MEC server can be integrated into the eNodeB
directly [30]. Recent years, a lot of research efforts have been
devoted to MEC to enable real-time application and reducing
the energy consumption [31]–[35]. It should be noted that
as the MEC is a immature technology, there are still many
issues need to be addressed, such as the coordination of com-
munication, computation, and storage resources, computation
resource allocation and offloading decision.

III. SYSTEM MODEL
In this section, we present the system model for SDNV
with user virtualization, full-duplex communication and
computation.

A. SDVN WITH USER VIRTUALIZATION
Offloading the computation tasks to the base station (BS)may
cost quite a few energy for communication when the CSI is
poor for users at the edge network. Moreover, energy has
been concerned as a key parameter in 5G green networks.
Computation offloading via virtualized users may reduce the
energy consumption and improve the communication capa-
bility. That is cost-effective for offloading and motivates us to
exploit the better communication architecture. FD communi-
cation achieves better spectrum efficiency than conventional
half duplex communication, which enables transmission
and receiving in the same band simultaneously [13]. Thus,
we introduce the concept named user virtualization assisted
by FD communication which enables users to amplify and
forward (AF) transmission for computation task offloading.
User virtualization provides the abstraction of the mobile
devices which might attribute to different MVNOs.

As shown in Fig. 1, in our SDNV-MEC framework, users
attribute to different MVNOs are virtualized as complemen-
tary resources for InPs. Thus, mobile devices can access
cellular network through either network infrastructures or the
virtualized mobile devices. The control and management of
both infrastructure and virtualized users are implemented
by the SDN controller. Consider the mobility of users,
the mobile management function should be supplemented for
the SDN controller, that is not difficult by network function
virtualization [20]. The SDNV-MEC framework with user

FIGURE 1. SDNV-MEC framework with user virtualization.

virtualization assisted by FD communication promotes the
computation capability without extra memory occupation
and additional delay augment for computation offloading.
Accomplished by the MEC server, computation tasks will
be transmitted by the BS back to the offloading UE, via the
RSs or virtualized users. In order to focus on the computation
offloading in MEC with user virtualization, the results feed-
back of computation tasks are not investigated in out work.

It is assumed that a SDNV network contains multiple relay
stations (RSs) coexisted within the coverage of a number of
BSs as the infrastructure of InPs. The BS and RSs deployed
by InP are leased to multiple MVNOs through the network
function virtualization and management of virtualized wire-
less resources. The SDN controller is deployed at the BS
possesses the virtualized resource management function. The
set ofMVNOs is indicated asM, whereM = {0, 1, . . . ,M}.
For the sake of brevity, we denote K =

∑
kM ,M ∈ M as

the set of users attributed to different MVNOs. For all the
users with mobile edge computing tasks, we denote K =
{0, 1, . . . , k} as the set of users. Let N denotes the set of
InPs, where each InP consist a BS along with several RSs.
Then, the set of BSs is indicated as Nbs = {0, 1, . . . ,N }.
Assume there are few UEs are virtualized which are capable
of relaying the offloading data for other users. Thus, other
UEs are enabled to access the wireless network via virtualized
UEs in a FD-AF way without extra memory occupation and
additional delay augment. LetNvu = {1, . . .Nvu} be the set of
virtualized users who potentially perform a relay function for
InP.We assume there are at most two-hops relay transmission
for simplifying the resource management. It should be noted
that virtualized users are only allowed to access the BS when
playing the relay role. We denote Nrs as the set of FD-RSs,
where Nrs = {0, 1, . . . ,Nrs}. Let Jn = {0, . . . J} = Nvu ∪

Nrs∪Nbs represents the set of potentially offloading receivers
of the network including BSs, RSs and virtualized UEs in the
nth InP. In the context of SDNV networks, user kM of the
M th MVNO is associate with either the BS Nbs by one-hop
transmissions or the virtualized users Nvu and RSs Nrs via
two-hop relay transmissions.
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B. FULL-DUPLEX COMMUNICATION MODEL
Consider the spatial locations of UEs directly effect the distri-
bution of distance di,j between node i and node j, we employ
the combination of both large scale attenuation and small
scale attenuation as our channel model. The standard power
loss propagation model is used with a path loss exponent
σ > 2. As far as random channel effects such as fading
and shadowing, we assume, unless otherwise noted, that the
tagged base station and tagged user experience only Rayleigh
fading with mean 1. Then the receiving signal at a typical
node which is a distance di,j from its base station or paired
UE is given by

y(t) = x(t)h(t)d−σi,j (1)

The spectrum efficiency of the FD relay link between UE
to BS via the RSs is given by

rue,rs = min{log 2(1+
pue|hue,rs|2

N0 + prsη
),

× log 2(1+
prs|hrs,bs|2

N0 + pue|hue,bs|2
)} (2)

where pue and prs denote the transmission power of user and
RSs, respectively. hue,rs represents the channel gain between
UE and RS. hrs,bs represents the channel gain between RS
and BS. hue,bs represents the channel gain between UE
and BS. N0 denotes the power spectrum density (PSD) of the
additive white Gaussian noise (AWGN). η denotes the self-
interference factor of FD communication [36].

The spectrum efficiency of the directly access link between
UE and BS is given by

rue,bs = log 2(1+
pue|hue,bs|2

N0
) (3)

where pue denotes the transmission power of UE. hue,bs rep-
resents the channel gain between UE and the BS.

C. COMPUTATION MODEL
Assume the kM th user generate a computation task
AkM (LkM , τkM , ckM ) to be assigned to the MEC server n,
where LkM denotes the task input-data size of the kth user
of the M th MVNO (in bits), τkM denotes the completion
deadline (in second), and ckM denotes the computing ability
of the user kM required for accomplishing task, which can
be quantized by the amount of CPU cycles per bit. Let fkM ,n
denotes the computation capability of the BS n for the task
from the kM th user, which is quantized by the total number
of CPU cycles per second. Thus, execution latency for task
AkM (LkM , τkM , ckM ) at the nth MEC server can be calculated
accordingly to

dkM ,n =
ckMLkM
fkM ,n

(4)

Assume the time slot is t , then we have the total computa-
tion cycles of each slot at BS is fkM ,nt , which is denoted as the
computation capability of the MEC server. The computation

requirement of task kM quantized by the total number of CPU
cycles is given by

ωkM = LkM ckM (5)

Consider a MEC server that handle several computation
tasks from UEs and the kM th task is allocated with ωkM CPU
cycles with CPU-cycle frequency fkM ,n. The power consump-
tion of CPU can be divided into several factors including
the dynamic, short-circuit, and leakage power consumption,
where the dynamic power consumption dominates the oth-
ers [37]. The energy consumption of a CPU cycle is given by
ξ f 2, where ξ is a constant related to the hardware architec-
ture [38]. Hence, the total energy consumed by CPU of the
MEC server n is denoted by En can be expressed as

En =
K∑

kM=1

ξωkM f
2
n,i (6)

whereωkM = LkM ckM denotes the total number of CPU cycles
which was given in (5).

IV. PROBLEM FORMULATION
In this section, we formulate the user association, radio
resource allocation and computation offloading as a joint
optimization problem.

A. CONSTRAINTS
Assume that each user has a computation task to be completed
with a certain requirement of computation rate. Let binary
akM ,n denotes the user association indicator, ie., akM ,n =
0 represents that the kM th user from the M th MVNO is
associate with the nth potentially receiver and 0 otherwise.
Practically, each user can be associated with only one
receiver, thus∑

n∈N
akM ,n = 1, ∀kM ∈ K, M ∈M (7)

We employ xkM ,n indicates the allocated band from spec-
trum provider to user i via the nth potentially receiver, where
xkM ,n ∈ [0, 1]. Due to the limitation of the spectrum provider,
total allocated bandwidth to users is constrained as∑

kM∈K

∑
M∈M

∑
j∈J

akM ,njxkM ,njBn ≤ Bn, ∀n ∈ Nbs (8)

The communication data rate for offloading the computa-
tion task AkM should be guaranteed no less than the data rate
requirement.∑
n∈N

akM ,nxkM ,nBrkM ,n ≥ R
min
kM ,n, ∀kM ∈ K, M ∈M (9)

The latency of computation task should be guaranteed less
than the completion deadline τkM , we have∑

n∈Nbs

dkM ,n ≤ τkM , ∀kM ∈ K, M ∈M (10)

Let ykM ,n denotes the computation resource of MEC
server n allocated to the kM th task, where ykM ,n ∈ [0, 1].
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Then, ykM ,nfkM ,nt denotes the total computation cycles allo-
cated to task kM . By substituting ykM ,nfkM ,nt into (10),
we have∑
n∈N

akM ,nykM ,nfkM ,nt ≥ ωkM , ∀kM ∈ K, M ∈M (11)

where ωkM = LkM ckM . This constraints the computation
rate is no less than task requirement. It should be noted that
the computation ability at each BS is limited, the total request
computation resources cannot exceed the total amount of the
computation resource of the MEC server.∑

kM∈K

∑
M∈M

∑
j∈J

akM ,njykM ,nj ≤ 1, ∀n ∈ Nbs (12)

Each task AkM consists data size LkM which cause to mem-
ory occupation, but the memory at each MEC server is not
infinity. Thus, the total memory occupation of all the tasks
offloaded at the MEC server is strictly no more than the
maximum memory size Cbs.∑

kM∈K

∑
M∈M

∑
j∈J

akM ,njLkM ≤ Cn, ∀n ∈ Nbs (13)

B. UTILITY FUNCTION
In this paper, we set the maximization of the revenue of
MVNOs as our goal. The utility for the potential transmission
between users kM and BS (n ∈ Nbs) can be defined as

UkM ,n = akM ,nαnxkM ,nBrkM ,n + akM ,nφnRkM ,n
− akM ,nxkM ,nβn−akM ,nψnEkM ,n − akM ,njLkM δn

(14)

where term akM ,nαnxkM ,nBrkM ,n denotes the income of
MVNO from users to access the SDNV networks, α denotes
the revenue per unit of the data rate. akM ,nxkM ,nβn denotes
the expense of MVNOs to pay for the usage of spectrum
bandwidth, β is the price per unit of the consumed spectrum.
akM ,nφnRkM ,n denotes the income of MVNOs from users to
access the MEC servers for executing the offloaded com-
putation tasks, φ is the price per unit of the computation
rate. akM ,nψnEkM ,n denotes the cost of MVNOs to pay for
the usage of MEC servers, ψ is the cost per unit of the
computation energy. The last term akM ,njLkM δn represents the
fee from MVNOs on caching the computation tasks, δ is cost
per unit of the storage occupation.

The utility for the potential transmission between users kM
and RSs or virtualized UE (n ∈ Nvu ∪Nrs) is

UkM ,n = akM ,nαnxkM ,nBrkM ,n + akM ,nφnRkM ,n
− akM ,nxkM ,nβn − akM ,nϕn − akM ,nψnEkM ,n
− akM ,njLkM δn (15)

where the term akM ,nϕn evaluating the expense of MVNO to
pay for the usage of RS or virtualized UEs, where ϕn denotes
the unit fee for user virtualization.

C. PROBLEM FORMULATION
We adopt the utility function proposed in (15) as the objective
function of our optimization problem, and the problem is
formulated as

P1 :

max
akM ,n,xkM ,n,ykM ,n

∑
kM∈K

∑
M∈M

∑
n∈N

UkM ,n

s.t. C1 :
∑
n∈N

akM ,n = 1, ∀kM ∈ K, M ∈M

C2 :
∑
kM∈K

∑
M∈M

∑
j∈J

akM ,njxkM ,nj ≤ 1, ∀n ∈ Nbs

C3 :
∑
n∈N

akM ,nxkM ,nBrkM ,n ≥ R
min
kM ,

∀kM ∈ K, M ∈M
C4 :

∑
n∈N

akM ,nykM ,nfkM ,nt ≥ ωkM ,

∀kM ∈ K, M ∈M
C5 :

∑
kM∈K

∑
M∈M

∑
j∈J

akM ,njykM ,nj ≤ 1,

∀n ∈ Nbs

C6 :
∑
kM∈K

∑
M∈M

∑
j∈J

akM ,njLkM ≤ Cn, ∀n ∈ Nbs

(16)

where UkM ,n is the potential utility of user kM associating
with receiver n. According to constraint C1, each user can
be associated with only one receiver. Constraint C2 denotes
that the total allocated bandwidth to all UEs associated with
BS n is unable to exceed the total bandwidth of BS n. In C3,
we guarantee the communication data rate requirement for
each task. C4 indicates that the executing latency cannot
exceed the task requirement. The computation and memory
resources of each MEC server at BS n is guaranteed by
C5 and C6, respectively.

D. PROBLEM REFORMULATION
Problem P1 is difficult to solve due to the following observa-
tions: Due to the fact that akM ,n is a binary variable, the fea-
sible set of problem P1 is non-convex. There exist product
relationships between akM ,n and linear function of xkM ,n,
as well as ykM ,n. Thus the objective function of problem P1 is
not a convex function.

The problem has a quite large size due to the characteristics
of the SDNV network. If we assume that the average number
of UEs of one MVNO is k , the number of variables in this
problem could reach kN , and the complexity for a central
algorithm to find a globally optimal solution will beO((kN )x)
(x > 0, x = 1 implies a linear algorithm while x > 1 implies
a polynomial time algorithm) even if we simply consider all
the variables as binary variables. In addition, the number of
MVNOs in the future SDNV network is increasing as time
goes on, which results in an even more radically increasing
complexity in our problem.
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As is shown, problem P1 is a mixed integer and non-
convex optimization problem [39], [40], and such problems
are usually considered as NP-hard problems [41]. Therefore,
a transformation and simplification of the original problem is
composed of the following two steps:

1) Binary variables relaxation: In order to transform the
nonconvex feasible set of original problem into a con-
vex set, we relax the binary association variable akM ,n
into a continuous variable such that 0 ≤ akM ,n ≤ 1,
which can be interpreted as the kM th user associating
with multiple receivers in a time-division multiple access
way [42].

2) Substitution of the product terms: Due to the non-
convex objective function, the problem is still intractable
even though we relax the binary variable. Then we will
propose a proposition of equivalent problem of P1 to
solve it.
Proposition 1: If we substitute x̂kM ,n = akM ,nxkM ,n, and

ŷkM ,n = akM ,nykM ,n into the original problem P1, there exists
an equivalent formulation, which is given by (17).

P2 :

max
akM ,n,x̃kM ,n,ỹkM ,n

∑
kM∈K

∑
M∈M

∑
n∈N

U kM ,n

s.t. C1 :
∑
n∈N

akM ,n = 1, ∀kM ∈ K, M ∈M

C2 :
∑
kM∈K

∑
M∈M

∑
j∈J

x̃kM ,nj ≤ 1, ∀n∈Nbs

C3 :
∑
n∈N

x̃kM ,nBrkM ,n ≥ R
min
kM ,

∀kM ∈ K, M ∈M
C4 :

∑
n∈N

ỹkM ,nfkM ,nt ≥ ωkM ,

∀kM ∈ K, M ∈M
C5 :

∑
kM∈K

∑
M∈M

∑
j∈J

ỹkM ,nj ≤ 1, ∀n∈Nbs

C6 :
∑
kM∈K

∑
M∈M

∑
j∈J

akM ,njLkM ≤ Cn, ∀n ∈ Nbs

C7 : akM ,n ≥ x̃kM ,n, akM ,n ≥ ỹkM ,n,

∀kM ∈ K, M ∈Mn ∈ N (17)

Where constraint C7 enforces that the association indicator
is no less than the spectrum resource allocation indicator
and computing resource indicator. Intuitively, if akM ,n > 0,
x̃kM ,n can be any nonnegative; if akM ,n = 0, x̃kM ,n = 0
must hold. The relaxed problem P1 can be directly recovered
through substituting the variables x̃kM ,n = akM ,nxkM ,n, and
ỹkM ,n = akM ,nykM ,n into problem P2. Afterwards, the map-
ping between {akM ,n, xkM ,n, ykM ,n} and {akM ,n, x̃kM ,n, ỹkM ,n}
can be obtained as

xkM ,n =


x̃kM ,n
akM ,n

, akM ,n > 0

0, otherwise
(18)

ykM ,n =


ỹkM ,n
akM ,n

, akM ,n > 0

0, otherwise
(19)

Therefore, original problem P1 is transformed into a con-
vex problem P2. A lot of mathematical tools on convex
optimization can be used to solve this type of problems,
e.g. interior point method and dual decomposition [38]. How-
ever, the size of our problem will greatly increase when the
number of InPs and MVNOs grows in future 5G networks.
Besides, the signaling overhead of local information (such
as Channel Status Indicator (CSI)) acquirement could be
extremely high when the size of problem is large. Thus, it is
more efficient and practically to implement a distributed opti-
mization algorithm executing on each BS, and this method
significantly reduce the signaling overhead of the SDNV
wireless network.

V. ADMM-BASED DISTRIBUTED RESOURCE
ALLOCATION ALGORITHM
In this section, we introduce a distributed algorithm named
alternating direction method of multipliers (ADMM) [43] to
solve the optimization problem. Due to the coupling relation-
ship of global variables {a, x, y} and constraints C1, C3, and
C4, P2 is inseparable to be executed on each BS. In order
to apply the distributed algorithm, we first decouple the
problem P2.

A. PROBLEM DECOMPOSITION
In order to decouple the coupling variables, we introduce
local copies of {akM ,n, x̃kM ,n, and ỹkM ,n} for each BS n ∈ Nbs,
which can be locally determined at each BS. To lighten the
notation, k is employed to denote each user instead of kM .
Let {ânk,i}, {x̂

n
k,i}, and{ŷ

n
k,i} be the local copies of {ak,n}, {x̃k,n},

and{ỹk,n}, respectively. Then, the feasible set of local vari-
ables for each BS n can be defined as

χn =



{ânk,i}

{x̂nk,i}

{ŷnk,i}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i∈N

∑
j∈Jn

ânk,ij = 1,∀k ∈ K

∑
k∈K

x̂nk,i +
∑
k∈K

∑
j∈Jn

x̂nk,ij ≤ 1,∀i ∈ Nb∫∑
i∈N

∑
j∈Jn

x̂nk,ijBrk,ij ≥ R
min
k ,∀k ∈ K

∑
i∈N

∑
j∈Jn

ŷnk,ij fit ≥ ωk ,∀k ∈ K

∑
k∈K

∑
j∈Jn

ŷnk,ij ≤ 1,∀i ∈ Nbs∑
k∈K

∑
j∈Jn

ânk,ijLk ≤ Ci,∀i ∈ Nbs

ânk,ij ≥ x̂
n
k,ij , â

n
k,ij ≥ ŷ

n
k,ij ,

∀k ∈ K, j ∈ Jn, i ∈ N


(20)
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The local utility function of each BS n ∈ Nbs is given by

fn =

{
−
∑

k∈K Ûk,n, ({ânk,i}, {x̂
n
k,i}, {ŷ

n
k,i}) ∈ χn

0, otherwise.
(21)

where Ûk,n is obtained by substituting {ânk,i}, {x̂
n
k,i}, and{ŷ

n
k,i}

into U k,n in (17). The object function is obviously convex
with respect to ({ânk,i}, {x̂

n
k,i}, {ŷ

n
k,i}). Problem P2 can be

equivalently rewritten as

P3 : min
∑
n∈Nbs

fn(ânk,i, x̂
n
k,i, ŷ

n
k,i)

s.t. {ânk,i} = {ak,i}, {x̂
n
k,i} = {x̃k,i}, {ŷ

n
k,i} = {ỹk,i}

∀i, k, n (22)

It can be observed that, the objective function is separable
across all BSs, but the consensus constraints are still coupled
on BSs.

B. PROBLEM SOLVING VIA ADMM
After the decomposition of problem, we intend to derive
a distributed consensus optimization via ADMM. Firstly,
we formulate the augmented Lagrangian [43] for (22) which
is given by

Lρ({â, x̂, ŷ}, {a, x̃, ỹ},λ,µ, ν)
=

∑
n∈Nbs

fn(ânk,i, x̂
n
k,i, ŷ

n
k,i)+

∑
n∈Nbs

∑
i∈Nbs
k∈K

λnk,i(â
n
k,i − ak,i)

+

∑
n∈Nbs

∑
i∈Nbs
k∈K

µnk,i(x̂
n
k,i − x̃k,i)+

∑
n∈Nbs

∑
i∈Nbs
k∈K

νnk,i(ŷ
n
k,i − ỹk,i)

+
ρ

2

∑
n∈Nbs

∑
i∈Nbs
k∈K

(ânk,i − ak,i)
2
+
ρ

2

∑
n∈Nbs

∑
i∈Nbs
k∈K

(x̂nk,i − x̃k,i)
2

+
ρ

2

∑
n∈Nbs

∑
i∈Nbs
k∈K

(ŷnk,i − ỹk,i)
2 (23)

where ρ is named the penalty parameter, â = {ânk,i}, x̂ =
{x̂nk,i}, ŷ = {ŷ

n
k,i}. a = {ak,i}, x̃ = {x̃k,i}, ỹ = {ỹk,i}. λ =

{λnk,i}, µ = {µnk,i}, and ν = {νnk,i} are the associated dual
variables. The convergence of the ADMM-based algorithm
is effected by the penalty parameter ρ. A larger value of ρ
will make the primal dual quick converge to zero, but it will
also result in an increased dual residual [44]. Thus, a proper
value of ρ is of enormous important to control the process of
the ADMMalgorithm. Compared to the standard Lagrangian,
the performance of the distributed algorithm can be promoted
by adding the quadratic penalty term. The solution of ADMM
algorithm is equivalent to problem P3 due to the penalty term
is generally zero for any feasible solution.

The process for solving the problem P3 with ADMM
algorithm consists the following iterations:

1) Local variables update

{ân, x̂n, ŷn}[t+1]n∈Nbs

= argmin
{
fn(ânk,i, x̂

n
k,i, ŷ

n
k,i)

+

∑
i∈Nbs
k∈K

λ
n[t]
k,i (â

n
k,i − a

[t]
k,i)+

∑
i∈Nbs
k∈K

µ
n[t]
k,i (x̂

n
k,i − x̃

[t]
k,i)

+

∑
i∈Nbs
k∈K

ν
n[t]
k,i (ŷ

n
k,i − ỹ

[t]
k,i)+

ρ

2

∑
i∈Nbs
k∈K

(ânk,i − a
[t]
k,i)

2

+
ρ

2

∑
i∈Nbs
k∈K

(x̂nk,i − x̃
[t]
k,i)

2
+
ρ

2

∑
i∈Nbs
k∈K

(ŷnk,i − ỹ
[t]
k,i)

2
}

(24)

where superscript [t] denotes the iteration index. After elim-
inating the constant term, the local variables can be updated
by solving the follow problem at iteration t + 1;

P4 : min−
∑
k∈K

Ûk,n +
∑
i∈Nbs
k∈K

λ
n[t]
k,i â

n
k,i +

∑
i∈Nbs
k∈K

µ
n[t]
k,i x̂

n
k,i

+

∑
i∈Nbs
k∈K

ν
n[t]
k,i ŷ

n
k,i +

ρ

2

∑
i∈Nbs
k∈K

(ânk,i − a
[t]
k,i)

2

+
ρ

2

∑
i∈Nbs
k∈K

(x̂nk,i − x̃
[t]
k,i)

2
+
ρ

2

∑
i∈Nbs
k∈K

(ŷnk,i − ỹ
[t]
k,i)

2

s.t. (ân, x̂n, ŷn) ∈ χn (25)

It can be proved P4 is a convex problem as its objective
function and feasible set are convex. The primal dual interior-
point method is an efficient way to solve this problem. The
details of primal dual interior-point method are omitted due
to the limited space.

2) Global variables update
In this step, global variables are updated according to

{a}[t+1] = argmin
{ ∑
n∈Nbs

∑
i∈Nbs
k∈K

λ
n[t]
k,i (â

n[t+1]
k,i − ak,i)

+
ρ

2

∑
n∈Nbs

∑
i∈Nbs
k∈K

(ân[t+1]k,i − ak,i)2
}

(26)

{x̃}[t+1] = argmin
{ ∑
n∈Nbs

∑
i∈Nbs
k∈K

µ
n[t]
k,i (x̂

n[t+1]
k,i − x̃k,i)

+
ρ

2

∑
n∈Nbs

∑
i∈Nbs
k∈K

(x̂n[t+1]k,i − x̃k,i)2
}

(27)

{ỹ}[t+1] = argmin
{ ∑
n∈Nbs

∑
i∈Nbs
k∈K

ν
n[t]
k,i (ŷ

n[t+1]
k,i − ỹk,i)

+
ρ

2

∑
n∈Nbs

∑
i∈Nbs
k∈K

(ŷn[t+1]k,i − ỹk,i)2
}

(28)

Owning to the quadratic regularization term has been
added to the augmented Lagrangian, the unconstraint
problems (26)-(28) are strictly convex with respect to
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(a, x̃, and ỹ). After setting the gradients to zero, we can have

a[t+1]k,i =
1
N

∑
n∈Nbs

(ân[t+1]k,i +
1
ρ
λ
n[t]
k,i )

x̃[t+1]k,i =
1
N

∑
n∈Nbs

(x̂n[t+1]k,i +
1
ρ
µ
n[t]
k,i )

ỹ[t+1]k,i =
1
N

∑
n∈Nbs

(ŷn[t+1]k,i +
1
ρ
ν
n[t]
k,i ) (29)

While the dual variables are initialized as zeros, we have∑
n∈Nbs λ

n[t]
k,i = 0,

∑
n∈Nbs µ

n[t]
k,i = 0, and

∑
n∈Nbs ν

n[t]
k,i = 0,

∀k, i, at each iteration t [42]. Then, (29) is reduced to

a[t+1]k,i =
1
N

∑
n∈Nbs

ân[t+1]k,i

x̃[t+1]k,i =
1
N

∑
n∈Nbs

x̂n[t+1]k,i

ỹ[t+1]k,i =
1
N

∑
n∈Nbs

ŷn[t+1]k,i (30)

We can observe that global variables are the average of
all the updated local copies in (30). This step of iteration is
implemented by the SDN controller of the network. Without
involving the dual variables, this step can significantly reduce
the signaling overhead.

3) Lagrange multipliers update
In the final step, the Lagrange multipliers is updated in this

step by gathering the values from the two steps before.

{λn}
[t+1]
n∈Nbs

= λn[t] + ρ
{
ân[t+1] − a[t+1]

}
(31)

{µn
}
[t+1]
n∈Nbs

= µn[t]
+ ρ

{
x̂n[t+1] − x̃[t+1]

}
(32)

{νn}
[t+1]
n∈Nbs

= νn[t] + ρ
{
ŷn[t+1] − ỹ[t+1]

}
(33)

where the augmented Lagrangian parameter ρ represents the
step size for updating. The first step and the third step can be
completely separable across BSs, when finding the optimal
local variables and local dual variables. The second step for
global update is implemented in the network manager for
SDNV.

The rational stopping criterion from [42] is introduced as
the stopping criterion for our algorithm. It has been demon-
strated that the solution satisfies the second dual feasibility
condition after the Lagrangemultipliers updating. The second
dual feasibility condition is obtained by getting gradients with
respect to global variables. In fact, the first dual feasibility
and primal feasibility actually do not hold. However, the first
dual residual and primal residual are able to converge to
zero, which indicates the first dual feasibility and the primal
feasibility are achieved when t towards infinity.

In previously problem transforming, we have relaxed
binary variables to continuous variables. After the ADMM-
based optimization, we intend to recover the association
indicator a from the optimal continuous variables to binary
variables. This procedure is computing the marginal benefit

for BS n on user k [45]. The binary association indicator can
be recovered as

a∗k,n =

{
1, If Qk,n = maxkQk,n, n ∈ Nbs

0, otherwise
(34)

where Qk,n denotes the first partial derivation of Uk,n with
respect to ak,n.
The convergence of ADMM algorithm has been proved

in [43]. The computational complexity of the centralized
algorithm with dual interior point method is O(((N + 1)k)i).
For the proposed ADMM-based distributed resource alloca-
tion algorithm, BSs only need to deal the local optimization
problem. Then, the computation complexity during local opti-
mization at each BS is O(k i), which is a polynomial time
algorithm when i > 1, otherwise, a linear algorithm when
i = 1. After local copy updating, SDN controller need to
gather all the results from each BS. Then, update global vari-
ables and dual variables during each iteration, the complexity
of this step isO((N + 1)k) for both global variables and dual
variables. Assuming P stands for the number of iterations
needed for the algorithm convergence, we summarize the
overall time complexity of the proposed distributed algorithm
as P(O((N + 1)k i + 2(N + 1)k)). It will be shown in simu-
lation, the number of iterations for algorithm convergence is
not large. The time complexity of the proposed distributed
algorithm is significantly smaller rather than the centralized
algorithm.

VI. SIMULATION RESULTS AND DISCUSSIONS
We implement a SDNV cellular network in a field of size
1000m × 1000m, where there are three InPs, each consists
a BS with a MEC server implemented. The computing and
storage capability of MEC server is limited which is prac-
tical. The location of BS is fixed, and several users around
follow the random uniform distributions. Among these users,
we assume there are a few users support user virtualiza-
tion for computation offloading. We adopt certain models
for the wireless channels in the proposed SDNV cellular
network [46]. The fading channels are assumed exhibit
Rayleigh fading, the channel coefficients are distributed as
CN (0, 1/(1+d)γ ) with a path loss exponent γ = 4, where d
denotes the distance. The noise equals to the additive Gaus-
sian noise. The proposed ADMM-based distributed resource
allocation algorithm has been implemented at the SDN con-
troller for all the users attributed to different MVNOs and
InPs. In order to highlight our work, we assume that each UE
has subscribed one content from content provider at the core
network, and all the contents can be delivered to the cellular
network.

In this paper, we evaluate the performance of the pro-
posed distributed virtual resource allocation algorithm by
simulation results and study the impact of the following
parameters: 1) the number of users; 2) the number of vir-
tualized users; 3) the average required data rate per task;
4) the average size of computation tasks; 5) the computa-
tion capability of MEC servers and 6) the self-interference

VOLUME 6, 2018 3003



M. Liu et al.: FD Aided User Virtualization for MEC in 5G Networks

cancellation factor.We employ the total utility of theMVNOs
tomeasure the performance of the proposed algorithm.Mean-
while, for performance comparison, the other two algorithms
are also evaluated. These algorithms are listed as follows:

1) the centralized algorithm with user virtualization,
in which the global CSI from all users is collected and the
resource allocation executes in a centralized manner;

2) the centralized algorithm without user virtualization,
in which computation tasks are only allowed to directly
offloaded to the BS.

TABLE 1. Simulation parameters.

Our simulation is implemented on the MATLAB, and the
Monte Carlo simulation is used for evaluating the perfor-
mance of the proposed algorithm. The locations of users are
changed in each simulation loop by the Monte Carlo simula-
tion. After a number of loops, the average value is obtained to
lessen the randomness effects. Simulation parameters of our
work are given in Table 1.

FIGURE 2. Total utility of MVNOs under different number of users.

Fig. 2 represents the impact of the number of users on the
performance of different algorithms. In this scenario, users
are attributed to 4MVNOs, and there are 3 InPs. The average
data rate requirement is 1Mb/s, and the SIC factor of FD
transmission is 10−11. As shown in Fig. 2, the total utility

obtained by three algorithms increase with the growth of
the number of users. This is because that a network incor-
porating more receivers will introduce multiuser diversity
gain. Note that in the conventional cellular network without
user virtualization, the users are only available to offload
the computation tasks directly to the BS. Thus, centralized
algorithm without user virtualization will result in the least
utility compared with the other two algorithms. The proposed
algorithm achieves almost same utility compared to the opti-
mal centralized algorithm, the dual residual cause to the gap
between these two algorithms. However, the distributed algo-
rithm can significantly reduce the computational complexity
and signaling overhead without gathering the global CSI.

FIGURE 3. Total utility of MVNOs via different number of virtualized
users.

In order to evaluate the performance gain from the pro-
posed user virtualization, we compared the system util-
ity under different setting of the virtualized user numbers
in Fig. 3. In following simulations, we set the same basic
scenario with Fig. 2, that there are 4MVNOs and 3 InPs. The
total number of users is 30. The average data rate requirement
is 1Mbps, and the SIC factor of FD transmission is 10−11.
As shown in Fig. 3, the total utility obtained by centralized
algorithm and the proposed distributed algorithm increase
with the growth of the number of virtualized users. This
is because that more virtualized users lead to better asso-
ciation choices for offloading, thus the communication cost
is reduced. The conventional cellular network without user
virtualization archives lower utility than other two algorithms
due to the users are only available to offload the computation
tasks directly to the BS.

In Fig. 4, we compare the total utility of MVNOs at
different average date rate requirements per tasks. The com-
putation capability of each MEC server is 10GHz, the aver-
age size of compuation task is 1Mb, and the SIC factor
of FD transmission is 10−11. The total utility obtained by
two algorithms declines when the average required data rate
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FIGURE 4. Performance evaluation under different parameter setting of
average date rate requirements.

increases. The reason for this trend is that larger average data
requirement will cost more for communication resources.
It should be noted that our proposed algorithm achieves better
performance than conventional cellular network without user
virtualization, because the communication capability of our
framework is larger.

FIGURE 5. Performance evaluation under different parameter setting of
average size of computation tasks.

In Fig. 5, the behavior of two algorithms at different aver-
age size of computation task is investigated, where the users
number is 30, and computation capability of eachMEC server
is 10GHz. The SIC factor of FD transmission is 10−11. The
total utility obtained by two algorithms declines when the
average size of computation task increases. That is because
computation tasks occupy the memory ofMEC servers which
cause to more caching fee for MVNOs, besides, some users
are incapable of accessing the cost-optimal MEC servers.
In Fig. 5, the proposed SDNV framework performs better
than the network without user virtualization due to the larger
revenue from communication.

FIGURE 6. Performance evaluation under different parameter setting of
computation capability of MEC servers.

In Fig. 6, we change the computation capability of each
MEC server to study the total utility of MVNOs respect to an
increasing computation capability, where the total users is 40.
The average data rate requirements is 1Mbps, and the average
size of compuation tasks is 1Mb. The SIC factor of FD
transmission is 10−11. The total utility obtained by different
framework increases when the computation capability rising
from 10GHz to 20GHz. Our proposed algorithm achieves
better performance than conventional cellular network due
to the communication capability of our framework is
higher.

FIGURE 7. Performance evaluation under different parameter setting of.

Fig. 7 shows the impact of the SIC factor on the perfor-
mance of different algorithms. In this scenario, the user num-
ber is set to 40, and the computation capability of each MEC
server is 10GHz. The average size of data rate requirement
is set 1Mbps. The average size of compuation tasks is 1Mb,
and the SIC factor of FD transmission is 10−11. In Fig. 7,
it can be observed that the total utility decrease when the
SIC factor of FD transmission increases. This is because the
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FIGURE 8. Convergence performance.

incremental of SIC factor has weakened the cancellation of
the self-interference, more self-interference will impact the
communication link.

We study the convergence behavior of the the proposed
distributed resource allocation algorithm in Fig. 8. the com-
putation capability of each MEC server is 10GHz,and the
average size of data rate requirement is set 1Mbps. The
average size of compuation task is 1Mb, and the SIC factor
of FD transmission is 10−11. We initialize the start point
with zero. It can be observed that our algorithm converges
almost the same value as the centralized algorithm, which
gather the global CSI with a huge amount signaling overhead.
Furthermore, our proposed distributed algorithm performs
better compared to the centralized algorithm without user
virtualization.

VII. CONCLUSION
In this paper, we proposed a novel MEC framework with
user virtualization scheme in SDNV cellular network. The
user virtualization scheme assisted by FD communication
was introduced which could extend the virtual resource
of virtualized networks without extra memory occupation
and additional delay augment. We formulated the virtual
resource allocation for MEC as a joint optimization problem.
An ADMM-based distributed resource allocation algorithm
was proposed which can significantly reduce the computa-
tional complexity and signaling overhead. Simulation results
indicated that the total utility of MVNOs was significantly
improved which benefited from the user virtualization, and
the proposed distributed algorithm achieved almost same
results compared to the centralized algorithm.
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