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ABSTRACT This research proposes a graphical solution to arterial road dynamics simulation. An arte-
rial road consists of channelized and upstream sections. Traffic flow is mixed in the upstream section
(U-section) and operates without lateral interaction in the channelized section (C-section). Under over-
saturated conditions, C-section spillover occurrence governs the traffic flow dynamics of the entire road.
In order to capture the arterial road traffic flow dynamics, the proposed method takes advantage of the
following components: 1) a decompositionmechanism that uniforms the analysis of each lane; 2) a red–green
pair-based vehicle queue tracking component that describes traffic dynamics both temporally and spatially;
and 3) a well-defined converted cumulative curve that is capable of generating a queue solution directly.
The graphical method permits arbitrary traffic flow and signal settings input and can easily be automated,
as demonstrated in the example.

INDEX TERMS Traffic flow, arterial, graphical solution, simulation.

I. INTRODUCTION
The arterial road is one of the most important elements of
the road network. It consists of numerous lanes, and can be
divided into the channelized section (C-section) and upstream
section (U-section), as illustrated in Figure 1. Traffic flow
is mixed in the U-section, and enters target lanes in the
C-section, where the turning lanes are controlled by signals.
When vehicle queues are short, no interaction takes place
between the U-section and C-section. When vehicle queues
of certain lanes spill back into the U-section, the interface
is blocked; therefore, all of the inflow through the interface
is delayed. Furthermore, the inflow of other directions will
change due to spillover, resulting in the queue behavior being
altered.

Various methods have been proposed to study traffic flow
dynamics on typical urban roads, most of which are lane-
oriented. The seminar work of Lighthill et al. [3], [4] marked
the start of long-lasting research on road traffic flow dynam-
ics. The model was known as the LWR model for short, and
models road traffic flow dynamics in a manner mimicking
that of fluid. The model was later discretized, resulting in
the famous cell transmission model (CTM) [2], for which
the fundamental diagram was trapezoidal. The CTM made
use of a set of recursive equations to track the flow rate

FIGURE 1. Arterial road.

and density of the cells. Isaak [10] proposed the link trans-
mission model (LTM), and although time is discretized in
this approach, space is not; therefore, efficiency is improved.
Raadsen et al. [8] simplified the model by linearizing the
input flow, thereby obtaining an event-based network traf-
fic flow model, known as the event-based link transmission
model (eLTM).

Vehicle queue models can be further classified into point
and physical queues [5], and the two classes are also known
as the vertical queue and horizontal queue. The former treats
the queue as the vehicle number at the stop-line; therefore,
it bears no physical size. This simplifies analysis but leads
to errors when queues spill back. Another type of link model
is the store-and-forward model [1], [9], which is used exten-
sively in the optimal control field. The advantage of this
method is that the system can be described by recursive
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equations; however, traffic flow dynamics are given less
consideration.

All of themodels described treat roads as simple lanes or an
aggregation of lanes. Such simplificationmay result in signif-
icant bias, particularly under spillover conditions. Spillover
is an inevitable phenomenon when the vehicle queue is
longer than the link length, and creates discontinuity in
traffic flow dynamics. Spillover modeling encounters great
difficulties for this reason. We propose a converted cumula-
tive curve (CCC) to calculate vehicle queue dynamics. It is
demonstrated that, using a carefully designed grid plot, traf-
fic flow dynamics can be solved graphically. The resulting
dynamics not only depict the temporal evolution of the queue,
but also output the spillover behavior. The remainder of this
paper is arranged as follows. Firstly, the basic traffic flow
model is presented; then, the graphical solution is developed.
Following this, the automation and an example are provided.
The paper ends with certain conclusions and remarks.

II. BASIC TRAFFIC FLOW MODELS
Qi et al. [6], [7] proposed a simple traffic flow model for
arterial roads, which tracks vehicle queue dynamics cycle by
cycle. Here, a cycle refers to the duration consisting of a red
and green signal. The red signal always precedes the green
one, and this is known as a red-green pair (RGP). The model
is briefly described in this section.

A. CONCEPTUALIZATION OF ARTERIAL ROAD
The road is decomposed into a series of inter-connected lanes.
For a common arterial road, as illustrated in Figure 1, there
are two sections: the U-section) and C-section. The input
demand includes three directional flows, namely the left-turn
flow, ql , through flow, qth, and right-turn flow, qr . These are
mixed uniformly at the entrance and obey the first-in-first-
out (FIFO) principle in the U-section.

The lanes in the C-section operate separately, while the
U-section is modeled as a single lane (that is, the demand is
evenly distributed across lanes), and all lanes are treated as
being signal controlled. In the U-section, when no spillover
occurs, the ’signal’ will always display green. When there
is left-turn flow spillover, through flow spillover, or both,
a virtual red signal will come into effect. Therefore, the focus
is placed on the signal-controlled lane model. The follow-
ing two sub-sections outline the lane queuing dynamics and
spillover component of the model.

B. LANE QUEUING MODEL
The signal is arranged as consecutive RGPs. During each red
signal, the vehicle queue is expected to increase; during each
green signal, the vehicle queue is shortened. Thus, the traf-
fic flow dynamics can be tracked cyclically along the time
horizon.

The relationship between flow rate and density, namely the
fundamental diagram (FD) is described by a triangle, as illus-
trated in Figure 2 (b). It is effectively determined by the fol-
lowing parameters: vf , the free flow speed, w, the backward

FIGURE 2. Lane queue dynamics and its FD.

wave, qm, the maximal flow rate that the lane can achieve, and
km, the density corresponding to qm. Figure 2 (a) depicts the
lane queuing dynamics, where the input demand is indicated
by q(t), the red duration at the k-th RGP is rk , and the green
duration is gk . Suppose that, at the beginning of cycle k ,
the residual queue length xk is zero, the last vehicle of the
last green signal enters the lane at moment ak , and it passes
the stop-line at moment

∑k−1
i=1 Ci, whereCi = ri+gi. Further-

more, we have ak =
∑k−1

i=1 Ci−
L
vf
, where L is the lane length.

The queue grows as a result of the red signal, and the rate is
dependent on the inflow rate q(t), t ≥ ak . The signal changes
to green at moment

∑k−1
i=1 Ci + rk . According to the FD,

a wave with speedw is formed and propagates upstream. This
starting wave intersects with the stopping wave, leading to the
queue tail point (yk , tyk ), which is the maximal queue length
measured from the stop-line. The final vehicle in the queue
enters the lane at moment bk . This vehicle trajectory proceeds
with a slope vf in the space-time diagram and intersects with
the next RGP starting wave, resulting in a new residual queue
length, zk , or equivalently, xk+1.

Therefore, the lane queue dynamics can be described cycle
by cycle. The traffic flow dynamics output during each RGP
include the residual queue length zk and entering moment bk .
These are directly mirrored to xk+1 and ak+1, which mark
the beginning of the traffic flow dynamics derivation of the
next RGP. The three points xk , yk , and zk are known as char-
acteristic queue tails, while ak , bk are known as characteristic
arrival moments.

Suppose that a vehicle enters the lane at moment t,
t ∈ [ak , bk ], and the cumulative vehicle number counted
from moment ak is Fak (t) =

∫ t
ak
q(t)dt . Therefore, when

this vehicle join the queue, the queue length is xk +
Fak (t)
kj

.
The duration for which this vehicle travels can be computed

as
L−(xk+

Fak (t)
kjam

)

vf
. Hence, the spatial-temporal coordinates of

the queue tail are ( xk +
Fak (t)
kjam

, ak +
L−(xk+

Fak (t)
kjam

)

vf
). The

characteristic queue tail point
(
yk , tyk

)
also satisfies the above

relationship. Moreover, this characteristic queue tail point is
located at the starting wave trajectory of the RGP cycle k ,
and therefore also satisfies tyk =

∑k−1
i=1 Ci + rk +

yk
w . Com-

bining the above two relationships, (yk , tyk ) can be solved
numerically.

According to shock wave theory, after the meeting of the
stopping and starting waves, a new wave forms and its speed
is vf , which coincides with the vehicle trajectory. If the wave
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passes the stop-line before termination of the green signal,
all of the vehicles can be cleared within this RGP; otherwise,
a residual queue exists. Under this condition, the trajectory
will intersect with the stopping wave of the next RGP. The
location and moment of the intersection point are zk and tzk .
Because both lines are linear, zk and tzk can be determined
easily:

zk =

wvf (tyk +
yk
vf
+

k∑
i=1

Ci)

w+ vf
; tzk = tyk +

yk − zk
vf

(1)

The coordinates (tzk , zk ) are the same as (txk+1 , xk+1). There-
fore, given the basic supply parameters:
• signal: rk , gk ;
• FD: vf , kj, vm, km

and the demand parameters:
• demand: ql(t), qth(t), qr (t),

the lane queuing system is effectively described by the fol-
lowing parameter group:
• characteristic arrival moments ak and bk ;
• queue profile l(t) and its byproducts, namely three char-
acteristic points: xk , yk , zk .

C. SPILLOVER COMPONENT
If the characteristic point yk is beyond the lane length L at
an RGP, a C-section spillover occurs.

1) VIRTUAL RED SIGNAL CONCEPT
AC-section spillover will block the interface and thus prevent
vehicles from entering this section. The effect is realized by
means of a virtual signal at the interface. It should be noted
that FIFO should be maintained, as this is the reason for
directional blockage, which creates green signal loss.

2) SPILLOVER DURATION DETERMINATION
The following figure presents the scheme for obtaining the
virtual red signal duration. Suppose that the characteristic
point Yk is beyond the lane length L at the k-th RGP. The
queue tail trajectory l(t) can be derived in the same manner
as when there no spillover exists. Once l(t) is available,
the spillover onset moment can be interpolated by l(t) = L.
The spillover termination moment is obtained in a similar
manner. The onset and termination moments are denoted by
yuk and yvk , respectively; thus, y

u
k = l−1(L) and yvk = tyk −

(tyk−txk−rk )
yk−L
yk−xk

, according to the geometrical relationship,
and l−1 (.) is the inverse curve of l(t).
Thereafter, the inflow rate profile in the C-section is

changed and the influenced inflow rate profile should be
reconstructed. The inflow rate during

[
yuk , y

v
k

]
is zero, and

during [yvk , y
v
k + g′k ] it is qm. Following this, the inflow rate

returns to its original profile.

III. GRAPHICAL SOLUTION DEVELOPMENT
A. SINGLE LANE WITH MIXED INFLOW
Suppose that a lane exists with length L. The inflow is mixed
by directional movements, denoted by the cumulative curve

FIGURE 3. Spillover component.

FIGURE 4. Parameters process.

N (t) = Nl(t)+Nth(t)+Nr (t), and obeys FIFO. The graphical
solution operates in an iterative manner. The basic inputs
for each iteration k are the characteristic arrival moment ak
and characteristic queue tail xk . The moment at which the
characteristic queue tail xk forms is denoted by txk , and can be
computed as txk = ak +

L−xk
vf

. Following one iteration, ak+1
and xk+1 of the next RGP are generated.

1) OVERALL PARAMETERS PROCESS
a: CASE WITH NO SPILLOVER
The algorithm is implemented in the following order:
• The characteristic arrival moment bk is obtained first.
• The characteristic queue tail yk is calculated accord-
ing to the intersection of the vehicle and starting wave
trajectories.

• The characteristic queue tail zk , which simultaneously
represents xk+1, is easily derived by the intersection of
the vehicle trajectory and stopping wave of the next
RGP, both of which are linear.

The above process is illustrated in the following figure:

b: CASE WHEN SPILLOVER EXISTS
However, when spillover occurs, the above process is inter-
rupted. The Extra stages considering spillover include the
following:
• Determine the spillover event duration, [yuk , y

v
k ].

• Determine the critical moment when the spillover cumu-
lative vehicle number curve coincides with the original
one, which is denoted by gvk .

• Reconstruct the cumulative vehicle curve, and redefine
the characteristic moments and queue tails.
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Therefore, the flow chart for spillover in a single lane is
illustrated in Figure 5.

FIGURE 5. Parameters process with spillover.

2) ESTABLISHMENT OF CONVERTED CUMULATIVE CURVE:
ONE-CYCLE SOLUTION WITHOUT SPILLOVER
a: DEFINITION OF CCC CURVE
Suppose that a vehicle enters the link at time t , t > αk . The
cumulative vehicle number between αk and t is Fαk (t) =
N (t) − N (αk ). Therefore, if this vehicle enters the queue
tail, namely point A in Figure 6, its spatial location is xk +
N (t)−N (αk )

kj
. The coordinates of point A, namely the queue tail,

are (t +
L−xk−

N (t)−N (αk )
kj

vf
, xk +

N (t)−N (αk )
kj

).

If follows that t +
L−xk−

N (t)−N (αk )
kj

vf
−

xk+
N (t)−N (αk )

kj
w = t ′.

Here, t ′ is temporal moment at the stop-line, as illustrated
in Figure 6. The above formula establishes a unique rela-
tionship between t and t ′. We denote l(t) = N (t)

kj
; then,

t + L−xk−l(t)+l(ak )
vf

−
xk+l(t)−l(ak )

w = t ′. The above formula

leads to t ′ = t − l(t)w+vfwvf
+ tf − xk

w+vf
wvf

, where tf = L
vf
. Let

η =
w+vf
wvf

; then, we have t ′ = t+ tf −ηxk −η(l(t)− l(ak )) =
t − ηl(t)+ tf − ηxk + ηl(ak ).

FIGURE 6. Converted cumulative curve.

Let g (t) = t − ηl (t) = t − l (t) w+vfwvf
= t − N (t)

qm
; then,

t ′ = t − ηl(t) − (ak − ηl(ak )) + ak + tf − ηxk = g(t) −
g(ak ) + ak + tf − ηxk . Simultaneously, ak + tf − ηxk =∑k−1

i=1 Ci, in which Ci is the time duration of RGP cycle i
and

∑k−1
i=1 Ci is the termination moment of RGP cycle k − 1.

Finally, t ′ −
∑k−1

i=1 Ci = g(t)− g(ak ).

We therefore obtain two corresponding temporal incre-
ments: one from

∑k−1
i=1 Ci to t

′, and the other from ak to t .
With t , we can calculate t ′; inversely, t can be computed
from t ′. When we set t ′ to rk , we obtain the characteristic
arrival moment bk .

The function g(t) is monotonically increasing with t;
that is, dg(t)

dt ≥ 0. This is known as the converted cumu-
lative curve (CCC). Once the CCC is available, the arrival
characteristic moments can easily be determined by a simple
graphical method, as shown in Figure 6 (b). Suppose the
characteristic arrival moment is ak in sub-figure (b). From
g(ak ), we map the red duration rk to the vertical axis, and
obtain g(ak ) + rk . A line is drawn horizontally from this
y-axis point and the intersection of the line with CCC directly
gives bk .
Once bk is available, xk+1 is easily solved graphically, as

shown in Figure 6 (a) by intersecting the vehicle trajectory
with the stopping wave of the next RGP cycle.

Whether bk can be set to ak+1 depends on the green
duration gk+1. When the k-th RGP is under-saturated,
ak+1 =

∑k−1
i=1 Ci −

L
vf
.

b: EXAMPLE
The above figure illustrates an example in which the CCC is
applied to solve the queue dynamics in a single lane without
spillover. It makes use of the CCC curve and spatial-temporal
plot, and the temporal axes of the two plots are aligned. The
spatial-temporal plot has two parallel time axes, namely an
upper and lower axis. The initial conditions are ak and xk ,
and xk = 0 because the cycle k − 1 is under-saturated,
without a residual queue. Therefore, ak =

∑k−1
i=1 Ci −

L
vf

in the figure. At cycle k , the red signal duration is projected
onto the y-axis in sub-figure (a). The baseline of this rk is
g(ak ). The red signal is projected to the right and intersects
with the g (t) curve at point A. The x-coordinate of point A is
then bk , which can be projected downwards; thus, we have the
characteristic arrival moment bk at sub-plot (b). At this arrival
moment, a vehicle enters the lane with a free-flow speed. The
trajectory is linear, and intersects with the starting wave of
cycle k at the characteristic queue tail yk . The queue tail still
moves forward, and intersects with the stopping wave of the
next cycle k + 1 at the characteristic queue tail zk ; therefore,
we have xk+1 = zk .
For the queue tail at any moment between txk and tyk

(here txk =
∑k−1

i=1 Ci), the solution is as follows. From txk ,
suppose a time increment of 1rk is provided, where 0 ≤
1rk ≤ rk . For any such increment, a unique moment t exists,
which is indicated on the up-time axis in sub-figure (b). The
moment represents a ‘‘characteristic’’ arrival moment if the
red signal duration is1rk . Therefore, we apply the projection
onto the y-axis on the g(t) curve and obtain moment t . The
trajectory line begins from moment t and intersects with
the virtual starting wave, which leads to the queue tail. The
queue tail at other moments can be obtained in a similar
manner.
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The characteristic arrival moment bk+1 is derived accord-
ing to the samemethod. However, the trajectory of the vehicle
entering the lane at bk+1 intersects with the green duration;
therefore, cycle k + 1 is not saturated. Hence, the outflow of
this lane in [bk+1 + L

vf
,
∑k+1

i=1 Ci] is the same as the inflow

rate, with a L
vf

lag.
Since cycle k + 1 is not saturated, the characteristic arrival

moment ak+2 is not bk+1. Moment ak+2 is directly plotted in
sub-figure (b) as ak+2 =

∑k+1
i=1 Ci −

L
vf
.

Finally, the traffic flow dynamics for this lane are solved
graphically.

3) CCC INFLUENCED BY SPILLOVER: ONE RGP
SOLUTION WITH SPILLOVER
When spillover occurs, the cumulative vehicle curve is
affected by the inflow restriction; therefore, the CCC should
be updated. The cumulative curve is required in order to
obtain the spillover onset moment.

FIGURE 7. Single-lane example.

a: SPILLOVER DURATION
Whether or not spillover exists in the current RGP cycle can
easily be judged from the figures. In Figure 7, the resulting
moment bk precedes point B in sub-figure (b), which is
the intersection point of the starting wave extension in the
current cycle and the temporal axis at the lane entrance.
Therefore, spillover does not exist. If bk lies to the right
of point B, spillover exists. In Figure 8, when solving the
characteristic arrival moment bk+1, the resulting moment
first lies in point A in sub-figure (a), and this moment lags
behind moment B in sub-figure (c); hence, spillover exists.
Termination of the spillover interval is obtained simply by the
intersection of the starting wave line and temporal axis at the

FIGURE 8. CCC influenced by spillover.

lane entrance, namely, yvk+1, which coincides with point B.
However, as the converted curve g (t) contains no lane
length information, the solution requires a cumulative curve.
The three curves keep the temporal axis aligned, as shown
in Figure 8.

Suppose the spillover onset moment is yuk+1; Then, the
cumulative vehicle number between ak+1 and yuk+1 should
be L−xk+1

kj
. In Figure 8 (b), from the baseline of N (ak+1),

drawing a parallel line with a distance L−xk+1
kj

and projecting
it onto the temporal axis, we obtain yuk+1.

b: CCC RECONSTRUCTION
The queue tail between moments txk+1 and y

u
k+1 has already

been solved. Following spillover, at first the inflow is qm.
However, it remains unknown when the saturation flow rate
will end. Suppose that a virtual lane extension exists upstream
with sufficient physical length. The queue at this virtual lane
extension can be described in the same manner, but with a
different lane entrance. Suppose the virtual lane entrance is
as shown in Figure 8 (c), where the spillover cycle is k + 1.
We determine the characteristic arrival moment avk+1 by the
line start from bk in the actual entrance with slope vf . In prin-
ciple, the characteristic arrival moment bvk+1 can be solved
by the CCC; however, the known CCC is at the actual lane
entrance, as opposed to the virtual one. Suppose the CCC at
the virtual entrance is gv(t). We have gv(t) = t− Nv(t)

qm
, where
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Nv (t) is the cumulative curve at the virtual lane entrance.
Furthermore, suppose that the free-flow travel time between
the actual and virtual entrances is tvf ; then, the cumulative
vehicle curve at the virtual entrance is Nv(t) = N (t − tvf ).
Hence, the CCC at the virtual entrance is gv(t) = t − Nv(t)

qm
=

t −
N (t−tvf )
qm

= (t − tvf ) −
N (t−tvf )
qm
+ tvf = g(t − tvf ) + tvf .

This implies that by moving curve g(t) at the actual entrance
to the right by tvf and further moving it upwards by tvf ,
we obtain gv(t).

Because gv(t) = g(t − tvf )+ t
v
f , gv(a

v
k+1) is obtained by the

following method. The target point gv(avk+1) has its counter-
part in g(t). Based on the relationship between g(t) and gv(t),
the counterpart point should be g(avk+1 − tvf ). Therefore,

by moving g(avk+1− t
v
f ) upwards by t

v
f , and projecting it onto

the vertical line at t = avk+1, we obtain the resulting point E.
Therefore, we also have gv(avk+1), as shown in Figure 8 (a).
From the baseline of gv(avk+1), we project the red signal
duration of cycle k + 1 to the right in order to obtain the
characteristic arrival moment bvk+1. However, again, because
we do not have gv(t), bvk+1 cannot be solved directly. In a
similar manner, we move point gv

(
avk+1 + rk+1

)
downwards

by tvf , obtain the counterpart point H in Figure 8 (a), and
move it to the right by tvf , so the resulting point F is expected,
which provides bvk+1. From moment bvk+1 at the virtual lane
entrance in Figure 8 (c), a vehicle trajectory is constructed
with free-flow speed, and intersects with the starting wave,
which leads to the queue tail in the virtual upstream lane. The
trajectory also provides the moment C at which all the resid-
ual vehicles are cleared. The inflow rate is regained following
moment C. During the interval between moments B and C in
Figure 8 (c), the inflow rate at the actual lane entrance is qm.
Therefore, the resulting queue tail increases at amaximal rate,
namely w.
Given the queue clearance moment C, and spillover dura-

tion [yuk+1, y
v
k+1], reconstruction of the cumulative curve and

CCC is a simple process, as shown in sub-figures (a) and (b)
in Figure 8. All of the curves are linear during the intervals
[yuk+1, y

v
k+1] and [yvk+1,C]. The slope of g′(t) can be deter-

mined by its derivative with respect to t. During [yuk+1, y
v
k+1],

the derivative is 1, and during [yvk+1,C], it is 0; hence,
we obtain the changed CCC.

Because the CCC is reconstructed, when solving the queue
dynamics in cycle k + 2, the baseline of g(ak+2) is also
changed, as shown on the y-axis of Figure 8 (a).

Finally, the queue dynamics due to spillover for the single
lane are solved graphically.

c: A SIMPLER SOLUTION
If we are not interested in the vehicle queue in the upstream
virtual extension lane, a significantly simpler solution is
available. When the spillover duration [yuk+1, y

v
k+1] is avail-

able, the unknown parameter is the saturation inflow duration
as a result of spillover, gvk , which is the temporal difference
between point C and yvk+1.

The cumulative vehicle curve slope within [yuk+1, y
v
k+1] is

zero, and qm within [yvk+1,C], following which N (t) merges
to the original path. Therefore, in Figure 8 (b), temporal
point J is readily obtained. Then, point C in sub-figure (c) is
simply the mirror point of J on the temporal axis. Moreover,
the CCC can easily be constructed, given that the slope within
[yuk+1, y

v
k+1] is 1 and that within [yvk+1,C] is 0.

B. ARTERIAL ROAD SOLUTION
1) CCC CONSTRUCTION
In the single-lane solution, the arrival flow is counted at the
lane entrance. On an arterial road, the flow ismixed and enters
the C-section based on the expected turning direction. There-
fore, in order to apply the single-lane graphical solution to an
arterial road, the input cumulative curve, which is calculated
at the road entrance, is moved to the C-section entrance. The
procedure is as follows:
• Construct the cumulative vehicle numberN (t) = Nl(t)+
Ns(t) + Nr (t) at the road entrance, where the subscript
l means left-turn, s means through flow, and r means
right-turn.

• Obtain the cumulative vehicle number at the C-section
entrance for each turning direction: N c

l (t) = Nl(t −
lu
vf
),

where lu is the physical length of the U-section; simi-
larly, we have N c

s (t) and N
c
r (t).

Therefore, the graphical solution can be applied to the
C-section lanes. However, when spillover occurs, the
U-section exit is blocked and N c

l (t),N
c
s (t),N

c
r (t), which are

counted at the C-section entrance, are subsequently changed.
Because the FIFO principle holds in the U-section, the left-
turn spillover will block the interface and through flow is
also blocked. When the queue is cleared, the inflow in the
C-section is compressed compared to the raw inflow. There-
fore, in the spillover scenario, the cumulative curves for dif-
ferent directions would be synchronized as a result of FIFO.

2) SYNCHRONIZATION OF CUMULATIVE VEHICLE
CURVE UNDER SPILLOVER
The key to the synchronization is to obtain the directional
cumulative vehicle curve and CCC. As a result of FIFO,
the cumulative vehicle number ratio between different direc-
tional flows in any location within the U-section remains
unchanged. For example, if the cumulative numbers of the
three turning directions are nl, ns and nr respectively, at the
arterial road entrance, at any location within the U-section,
when the left-turn cumulative curve is nl , the couterpart for
the through flow and right-turn flow must be ns and nr ,
respectively. Therefore, once it is determined at the arterial
road entrance, the cumulative curve ratio is fixed.

Suppose the left-turn flow experiences spillover during
cycle k; then, the resulting spillover duration is [yuk , y

v
k ].

Furthermore, following duration gvk , the residual vehicles are
cleared. The outflow rate at the U-section exit is qm. The
solution for the directional flow rate is illustrated in Figure 9,
which contains four sub-figures. Without loss of general-
ity, sub-figure (a) is the cumulative vehicle number for the
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FIGURE 9. Reconstruction of converted cumulative vehicle numbers.

left-turn flow, while (b) shows the proportion line for the
left-turn and through flows. This line remains unchanged
regardless of where the cumulative vehicle curve is counted.
Sub-figure (c) displays the relationship between the left-turn
flow and total cumulative curve, which also does not change
with time. Sub-figure (d) represents the total cumulative
curve with time.

Suppose that, at the spillover onset moment, the through
flow cumulative vehicle number is ns and that of the left-
turn flow is nl ; the total vehicle number is n. Therefore,
in Figure 9 (d), at moment yvk + gvk , the total cumulative
vehicle number is n+qmgvk (which can be projected onto sub-
figure (c)). Because the flow rate at the C-section entrance
is zero during spillover, the total cumulative vehicle number
remains unchanged in sub-figure (d). Thereafter, the cumula-
tive vehicle curve is linear, until moment yvk + g

v
k , when the

curve merges to its original counterpart.
However, the cumulative curve for the left-turn and through

flow remains unknown. The solution for the left-turn flow
Nl(t?) at moment t? is indicated in the figure with the blue
dotted line. The steps are as follows:
• For any moment t?, locate it on the time-axis in sub-
figures (d) and (a).

• From t? in sub-figure (d), obtain the total vehicle number
by drawing a line horizontally.

• From the intersection point, draw a vertical line and
obtain the intersection point with the curve in sub-
figure (c).

• From the intersection point in sub-figure (c), draw a
horizontal line all the way to sub-figure (a).

• The intersection point of the above horizontal line with
a vertical line from t? at the x-axis in sub-figure (a)
provides the solution, Nl(t?).

The curve can be plotted point by point. The red line in sub-
figures (a) and (d) provides the solved cumulative curve for
the left-turn flow. The cumulative curves for other directions
can be obtained in a similar manner.

3) SYNCHRONIZATION OF CCC
When the cumulative curve is reformulated, the CCC should
retain consistency. However, g(t) is not a linear function of t,
and does not change linearly with N (t). The reformulation is

FIGURE 10. Reformulation of CCC.

point-wise interpolated, the method for which is illustrated in
Figure 10. Within the spillover duration, the CCC is linear
with slope 1. Suppose that the reformulated CCC is g′(t),
where t ∈ [yvk , y

v
k + g′k ], and g

′
k is the duration required to

clear the queue in the U-section. Furthermore, suppose we
wish to compute g′(t ′); then, g′(t ′) = t ′ − N ′(t ′)

qm
. We also

have N ′(t ′) = N (t ′′), as shown in Figure 10(b). Therefore,
g′(t ′) = t ′ − N ′(t ′)

qm
= t ′ − N (t ′′)

qm
= t′′ + t ′ − N (t′′)

qm
− t′′.

Because t ′′ − N (t ′′))
qm
= g(t ′′), g′(t ′) = t ′ − t ′′ + g(t ′′). Finally,

we obtain g′(t ′).
If we are not concerned with the detailed queue evolution,

point-wise interpolation is not necessary, and only g′(ak ) will
be evaluated.

4) ORDER OF SPILLOVER OCCURRENCE
In an arterial road, spillovers are possible from any turning
direction, and obey the following principles:
• When two spillovers occur simultaneously, the ultimate
spillover duration is in accordance with the longer one.

• Two spillovers do not overlap; the gap between two
spillovers must be positive. This is because the preced-
ing spillover will block the entrance, thereby cutting off
the flow.

The above two principles can be generalized to multiple
turning direction spillovers.

The second principle means that if one spillover precedes
another, we can neglect the second and reconstruct the cumu-
lative curves and CCC. The behavior of the second spillover
is consequently changed due to the preceding spillover.

5) SOLUTION SCHEME AND GRID OF PLOTS DESIGN
All elements of the solution have been presented. In order
to solve the queue dynamics simultaneously, a grid of plots
is designed, as illustrated in Figure 11. Furthermore, the
solution requires a table to record the characteristic arrival
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FIGURE 11. Grid of plots.

moments and queue tails, as shown in Table 1. It should
be noted that column yk may contain a tuple of two values
if spillover exists; otherwise, it simply contains one value,
namely yk . Moreover, note that the final two columns, namely
txk and tyk , can be computed from other columns; thus, they
are not mandatory. Column zk also coincides with column xk ,
but with an RGP cycle lag.

TABLE 1. Characteristic points table.

FIGURE 12. Demand settings.

In the plots grid, sub-plots (a), (b), and (e) are for the
left-turn lane, while sub-plots (g), (h), and (i) are for the
through lane. Sub-plot (a) is a CCC, (b) is a cumulative curve,
and (e) is a spatial-temporal plot, which will provide the
queue dynamics and vehicle trajectories directly. Similarly,

FIGURE 13. Vehicle queue for through flow.

FIGURE 14. Vehicle queue for left-turn flow.

sub-plot (i), (h), and (g) are a CCC, cumulative curve, and
spatial-temporal diagram, respectively. Sub-plot (c) is the
proportion line between the left-turn flow and through flow
cumulative number; (d) is the cumulative curve relationship
between the left-turn and overall flow; and (f) is the overall
cumulative curve with time. The role of sub-plots (c), (d), and
(f) is to ensure the FIFO principle.

The temporal axes of (a), (b), and (e) are aligned; similarly,
sub-plots (g), (h) and (i), as well as (c) and (h), have aligned
axes, while further aligned axes can be observed in (c), (d),
and (f).

Using the plots grid, the overall procedure of the solution
is as follows:
• Simultaneously solve the vehicle dynamics at different
lanes in the C-section; if there no spillover exists for all
directions, the process can iterate, without considering
the interaction between the U-section and C-section.

• When one or more spillover occurrences exist, deter-
mine whether the spillovers start at the same moment;
if so, adopt the longest spillover, and reconstruct
the cumulative vehicle curves and CCC; if the onset
moments are not the same, adopt the earliest one, and
reconstruct the cumulative vehicle curves and CCC.

• Restart the process from the cycle when spillover occurs
until the next spillover occurrence.
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IV. AUTOMATION AND EXAMPLE
A. AUTOMATION
Due to its simplicity, this method is easily automated by
means of a program. The pseudo-code is as follows:

Algorithm 1
Input: Cumulative curve at arterial road entrance, N (t) =∑

i Ni(t); signal settings, r1i, g1i, r2i, g2i, . . . rki, gki, . . . for
each direction i; lengths of the U-section and C-section, lu
and ld , respectively.
Output: Vehicle queue dynamics for all directions.
Initialization:
SET the fundamental diagram parameters, vf , qm, and kj.
SET the shifted cumulative curve and CCC at the

C-section entrance, N ′i (t) = Ni(t −
lu
vf
) and g′i(t), where

g′i(t) = t −
N ′i (t)
qm

.
SET current RGP cycle c to 1 for each turning direction;

c will increase by 1 when queue dynamics of current RGP
cycle are solved.
While not terminating ∗∗

RUN solving vehicle queue dynamics from current RGP
cycle c until RGP cycle k , so that spillover occurs in
cycle k .
Spillover onset moment determination: If any

spillover exists, obtain the spillover duration that with
minimal onset moment, tspillover = {yku, ykv.
Demand reformulation: Change demands N ′i (t) and

g′i(t) for all turning directions.
RESET current RGP c for each direction; the reset is

determined based on yuk .
ENDWHILE
Note ∗∗ terminationmeans that all the demands are cleared,
which can be determined from the cumulative curve.

In the automation process, the demand is represented as
a piece-wise function. The process does need to divide the
space and time. Therefor the computation efficiency can be
guaranteed. Also note that, when the whole road experience
spillover, the input demandwould be limited either. The effect
can also be obtained, from the CCC curve at the interface.

B. EXAMPLE
This section presents a simple example of the arterial road
dynamics, based on the automated process. In order to create
spillovers, the demand is illustrated in the following figure.

The demand of each turning direction is set as the com-
bination of several parabolic curves. Each parabolic curve
governs part of the time horizon. The total demand is the
sum over all turning demands. Peak durations are observed
for both the left-turn and through flows, and these partly
overlap. The lengths of lu and ld are 100 m and 300 m,
respectively. The green and red signals of the left-turn flow
are 30 s and 90 s, as are those of the through flow. The through
signal lags behind the left-turn signal by 25 s. Jam density
kj is 135 veh/km; free-flow speed is set to 40km/h, and the

backward wave speed is −20km/h. The saturation flow rate
then can be calculated, which is 1800 veh/h. The resulting
queue dynamics are illustrated as follows:

The red lines in the above figures represent the queue tails,
while the blue lines indicate the starting waves. The gray lines
in the g(t) curve provide solutions for the characteristic arrival
moments.

Three spillover events occur. Among these, two spillover
intervals are caused by the left-turn flow, at the third
and fourth RGPs, with durations of [470.35, 504.0] and
[584.11, 624.0], respectively. One spillover interval is caused
by the through flow, at the seventh RGP, with a duration of
[876.47, 889.0].

V. CONCLUSION AND REMARKS
The arterial road is the basic element of the urban road
network, and its traffic flow dynamics provide a basis for
understanding the traffic flow dynamics of the entire net-
work. When the vehicle queue is short and within the
C-section, the traffic flow dynamics can be described effec-
tively using traditional methods. However, when C-section
spillover occurs, the directional traffic flows interact with one
another. The current method can simply describe this using
numerical or software simulation.

This research proposes a graphical method for solving
arterial road traffic flow dynamics. The method defines two
characteristic arrival moments and three characteristic queue
tail points for each RGP. These parameters can easily be
obtained using a graphical method, which is developed based
on the defined CCC. When the queue exceeds the C-section,
the spillover duration can also be solved. When multiple
spillovers occur, the first spillover will come into effect. The
proposed model can be viewed as a variant of shock wave
theory. When the parameters of the shockwave model are
calibrated, the calibration result can be directly embedded in
the proposed method.

Themethod can easily be integrated into the network traffic
flow model. However, certain limitations still exist, which
will be the focus of our next work:
• The C-section entrance capacity should not be iden-
tical to the saturation flow rate at the stop-line. This
difference is caused by the mutual interaction among
directional flows, such as lane changing. This capacity
degradation should furthermore depend on the ratios of
different turning flows; hence, the CCC curve requires
improvement.

• The proposed method can be extended easily to shared
lanes, with exogenous variable. Given the total demand,
the exogenous variable which is the lane sharing ratio,
will assign the total demand to each lane, either exclu-
sive or shared. Therefore, the proposed method can be
applied directly.

• When more than one upstream lanes exist, following
spillover (if there is any), the ultimate inflow into the
C-section will depend on demand and supply. Demand
is the flow rate at the U-section exit, while supply is how
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many vehicles the C-section can accommodate per unit
time while obeying FIFO. Such a mechanism is effec-
tively solved by the supply-demand scheme in models
such as CTM. However, embedding it into the graphical
process needs to be considered.
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