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ABSTRACT Intrusion detection techniques arewidely used to guarantee the security of people’s possessions.
With the rapid development of wireless communication, device-free passive human detection based on
wireless techniques may have more opportunities in intrusion detection. WiFi has been widely deployed
in both public and private areas, which can be used as generalized sensors to detect human motion beyond
communication. As a result, there have been several researches onWLAN-basedmotion detection. However,
the detection accuracy of previous approaches declines significantly when people’s moving speed becomes
very slow. In this paper, we explore a novel method which has a relative stable detection performance
under different moving speeds. We extract a novel feature representing the fluctuation of the whole channel
from channel state information at the physical layer of 802.11n wireless networks, and utilize a probability
technique to detect human motion. A hidden Markov model is leveraged as the classifier to make human
detection a probability problem. We implement the system using off-the-shelf WiFi devices and evaluate it
in two scenarios. As indicated in the evaluation results, our approach is an appropriate method for intrusion
detection.

INDEX TERMS Device-free passive, intrusion detection, channel state information, dynamic speed.

I. INTRODUCTION
Device-free passive human detection has attracted much
attention in recent years. It can detect whether there exists
any people in the area of interest without requiring the peo-
ple to use any electronic instruments [1], [2]. The wireless-
based human detection techniques that utilize off-the-shelf
infrastructure make it more pervasive. Intrusion detection [3],
border protection, smart homes [4]–[8], human identifica-
tion [9], [10] and elderly healthcare [11], [12] are some
representative applications of device-free human detection.
In these applications, it is unlikely that any devices are
attached to the people during the detection process. As a
result, device-free detection makes these applications more
applicable and does not have the problem of sensing cover-
age [13], [14] and key management [15]–[17] compared with
sensor-based approaches. Device-free passive entity detec-
tion plays a fundamental role in intrusion detection systems.
There already exist several approaches that can provide a
good detection accuracy such as video-based, infrared-based,
RFID, and UWB. However, they have many limitations that

hinder their wide deployment. One of the biggest limitations
is that they all need dedicated devices and specific using
conditions such as LOS and enough light. The video-based
approaches especially have the drawback of missing privacy.
A brief review discusses the advantages and drawbacks of dif-
ferent WSN-based localization and tracking approaches [18].

There has been increasing interest in employing WLAN-
based entity detection methods in recent years for their
cost-effectiveness and high accuracy. WLAN can be utilized
as a generalized heterogeneous sensor network [19]–[21].
A typical WLAN-based entity detection system contains
transmitters, receivers and an application server process-
ing the collected data. WLAN-based device-free detection
approaches only need WiFi transceivers that have already
been widely deployed in an indoor environment compared
with the approaches based on infrared, cameras, etc. Human
motion can result in fluctuation of signal strength, which is
the rationale of wireless-based human detection [22]. Earlier
WLAN-based device-free entity detection systems extract
features from the received signal strength indicator (RSSI) in
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theMAC layer due to its handy accessibility. RSSI is a coarse-
grained and low-resolution measurement especially when the
human body is away from the LOS. Wireless signals suffer
from rich multipath effect in indoor environments, and RSSI
is unstable when background noise exists. Recently, numer-
ous researches explore PHY layer information of wireless
networks to detect human presence. Channel state informa-
tion (CSI) from PHY layer is a fine-grained measurement,
and it has the advantage of beingmore sensitive to the changes
in the monitoring area, while having little fluctuation in static
environments [23], [24]. Additionally, it can be extracted
from certain NICs with little firmware modifications [25].
CSI contains the information of the subcarriers in the OFDM
framework, and has great improvements in detection accu-
racy compared to RSSI.

The impact of human motion on wireless signal becomes
smaller as the moving speed slows down. Previous
approaches utilize the information from only one subcarrier
of the channel, which is not always sensitive enough to cap-
ture very slow motion due to multipath effect. These systems
do not consider the impact of an entity’s dynamic speed on
detection performance. In practice, however, the intruder may
move at dynamic speed when approaching different areas of
the house. Therefore, previous methods are not proper for
intrusion detection systems.

Based on the above challenges, in this paper, we lever-
age the information of the whole channel in PHY layer to
implement a Speed Independent device-free Entity Detec-
tion (SIED) system that can accurately detect human motion.
The detection accuracy is less affected by people’s moving
speed. It models the channel fluctuation using a novel fea-
ture and detects human presence utilizing a Hidden Markov
Model (HMM). In this way, we make human detection a
probability problem. Furthermore, it requires little calibration
overhead, which results in independence of indoor scenarios.
It is evaluated in two scenarios, one of which is a typical labo-
ratory with numerous multipaths, while the other is a meeting
room with fewer multipaths. This paper is an extended ver-
sion of our previous work [26]; we evaluate SIED from more
aspects to verify its feasibility in human detection. The eval-
uation results indicate that SIED can achieve a high detection
accuracy when a person is moving at different speeds.

In summary, the main contributions of SIED are summa-
rized as follows:
• We propose a human detection approach utilizing the
fine-grained CSI from PHY layer that can detect humans
of different moving speeds. To the best of our knowl-
edge, SIED is the first intrusion detection system where
people’s moving speed has a non-significant influence
on detection accuracy.

• We extract a novel feature from the whole channel and
leverage a probability based classifier HMM. It is more
sensitive to human motion and has more robustness to
burst noise.

• We implement SIED using commodityWiFi devices and
evaluate it in two real scenarios. The results indicate that

it can effectively detect human motion and be practical
in intrusion detection.

The outline of the rest of the paper is as follows.
In Section II, the related work of entity detection is briefly
reviewed. In Section III, we present a brief preliminary about
device-free entity detection. The detailed description of SIED
is presented in Section IV, and SectionV gives the experimen-
tal settings and evaluation results. Discussion is presented
in Section VI including the limitations and future work of
this paper. Finally, the conclusion of our work is given in
Section VII.

II. RELATED WORK
Device-free localization technique has attracted much atten-
tion recently, as it has the ability to detect human pres-
ence and even identify the identity in the monitoring area.
Furthermore, the user does not have to carry any devices [1].
Entity detection is a fundamental component in the process
of localization. Usually there are transmitters, receivers and
an application server included in a typical WLAN-based
human detection system. APs can act as transmitters and
WiFi enabled devices act as receivers (MPs). The application
server processes the collected signals and runs the human
detection system. Received Signal Strength Indicator (RSSI)
is first utilized in WLAN-based human detection, and has
attracted much interest in human detection in recent years,
as it is easy to obtain. But, it has some disadvantages because
it is a coarse-grained measurement and unstable in static
environment. It also suffers from a severe multipath effect in
indoor scenarios; as a result of this, it is not sensitive enough
to human motion. To overcome the disadvantages of RSSI,
researchers are working hard on CSI to achieve device-free
passive indoor localization. In this section, related work about
passive entity detection is briefly reviewed.

A. RSSI-BASED DETECTION
Human presence has an impact on the received signal
strength. Moussa and Youssef [22] applied an approach based
on the Maximum Likelihood Estimator (MLE) to increase
detection precision in real environments. Existing RSS-based
device-free detection approaches primarily focus on RSS
changes due to human presence and movements. RSS can
not only be extracted from WiFi devices, but can also be
extracted from ZigBee devices or other wireless sensors.
In [27], Jie et al. considered different intrusion indicators and
proposed a joint learning method to enhance the performance
of the detection system. They extracted RSS from ZigBee
devices and utilized a clustering method to effectively iden-
tify the presence of intruders. The localization and tracking
problem was reformulated based on an inverse source by
exploiting RSS values obtained from WSN nodes in [28].
RASID is a robust detection approach that can adapt to
changes in the detection environment [29]. It used several
modules for statistical human detection that improved the
performance of detection. Another well-known RSS-based
passive entity detection scheme is Radio Tomographic
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Imaging (RTI) [30]–[32]. It improves the performance of
RSS-based schemes by deploying a sensor network to capture
the attenuation of RSS in the area of interest to detect and
localize an entity. It can detect intruders with high detection
rates and few false alarms. Recently, several varieties of
RTI-based techniques have been developed, including the
vRTI [33], kRTI [34], and dRTI [35]. Xiuyuan Zheng et al.
found that the localization accuracy degraded significantly
when the entity’s moving speed was dynamic. In [36], they
proposed a framework to improve the human detection and
localization performance according to the estimated moving
speed. It can adjust the time-window size adaptively based
on speed change detection results. To achieve a higher per-
formance, most RSS-based detection systems only deploy
networks with multiple transmitter-receiver pairs to detect
human presence. However, it raises the cost of labor and
instruments.

B. CSI-BASED DETECTION
As indicated in [25], CSI can be extracted from devices
equipped with commodity NICs, and only some slight
firmware modification is required so that CSI-based passive
detection approaches attract much attention in recent years.
CSI is a channel measurement at the granularity of sub-
carrier level in the framework of OFDM techniques. Most
CSI-based schemes treat CSI as extended RSS. In [37],
Liu et al. extracted the variance of CSI amplitude features
to detect human motion. Pilot utilized the correlations of CSI
at different times to detect human motion and determined the
location of the subject [38]. There exists a burst pattern of
CSI when there is someone moving in the area of wireless
signals. FIMD clustered on the largest eigenvalues of the
similarity matrix of CSIs that can find human presence at a
high accuracy [39]. Omni-PHD virtually tuned the detection
coverage into a omnidirectional disk-like range area [40].
PADS combined the amplitude and phase information of
CSI to extract features to make the human detection system
more sensitive, and it achieved in detecting humans moving
at different speeds [41]. DeMan took advantages of both
amplitude and phase information of CSI, and used different
features to detect the moving and stationary human [42].
It considered breathing as the intrinsic indicator of stationary
human presence. FCC extracted the variance of CSI and
explored the relationship between it and the number of mov-
ing entities to achieve counting crowd [43]. FRID proposed a
calibration-free humanmotion detection system, which could
not be affected by the indoor scenarios and was free of pre-
calibration or normal profile [44].

In summary, RSS-based approaches suffer from severe
multipath effects in indoor environments and cannot distin-
guish different paths. As a result, RSS is a coarse-grained
measurement of wireless signal. Fortunately, CSI can be
extracted from some commodity wireless NICs and used
as a much finer-grained measurement. However, existing
approaches fail to detect human presence when the mov-
ing speed is very slow, which is a fatal disadvantage for

intrusion detection systems. SIED, on one hand, captures the
fluctuation of the wireless channel at PHY layer level as a
more sensitive feature to human motion. On the other hand,
it utilizes an HMM, which is a probability technique to solve
the human detection problem, and makes it more accurate in
human detection.

III. PRELIMINARY
A. CHANNEL IMPULSE RESPONSE
In a common indoor scenario, the wireless signal propagates
through multiple paths to the receiver as shown in Fig. 1.
An LOS path and several reflection paths may exist, and
the received signal is the superposition of the signals from
the different paths. In OFDM systems, the wireless channel
in the time domain can be descripted by a channel impulse
response (CIR) to distinguish different paths. Under the
assumption of time-invariant, CIR can be expressed as:

h(τ ) =
N∑
i=1

αie−jθiδ(τ − τi)+ n(τ ) (1)

FIGURE 1. The path of wireless signal transmitting.

where
αi, θi, τi denote the amplitude, phase and time delay of the

signal from ith path, respectively,
N is the total number of paths,
n(τ ) is complex Gaussian white noise,
δ(τ ) is the Dirac delta function.
However, the RSSI, which is a measurement ofMAC layer,

fails to capture this multipath effect since it is the superpo-
sition of multipath signals. As a result, the performance of
RSSI-based approaches may degrade under some conditions.
To fully depict the paths, CIR can be utilized to model the
wireless propagation channel, but precise CIR cannot be
extracted from ordinary commodity infrastructures which is
inapplicable in a home environment.

B. CHANNEL FREQUENCY RESPONSE
To overcome the above limitations, in the frequency domain,
Channel Frequency Response (CFR) can model the transmit-
ting channel, which is composed of an amplitude-frequency
response and a phase-frequency response [40]. Given infinite
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bandwidth, CIR is equivalent to CFR, and CFR can be derived
by taking the Fast Fourier Transform (FFT) of CIR.

H = FFT (h(τ )) (2)

In the 802.11n wireless network, the spacing between two
adjacent subcarriers is 312.5KHz, which is balanced between
hardware cost and network throughput. The Linux kernel
driver of Intel 5300 NIC can be slightly modified to make
it convenient to obtain CFRs for N = 30 subcarriers in the
format of CSI:

H = [H (f1),H (f2), . . . ,H (fN )] (3)

The amplitude and phase of a subcarrier can be described
by CSI:

H (fk ) = ‖H (fk )‖ ej sin(
6 H ) (4)

where H (fk ) is the CSI of the subcarrier of which the central
frequency is fk , and 6 H denotes its phase. Therefore, a group
of CSIs H (fk ), (k = 1, . . . ,K ), reveals K sampled CFRs at
the granularity of subcarrier level [45].

Unlike RSSI, CSI consists of both the amplitude and phase
information of a subcarrier. As a result, compared to RSSI,
CSI is a finer-grained measurement, and it is the CSI’s intrin-
sic property that it has the ability to distinguish multipath
components at subcarrier level [46]. Furthermore, the ampli-
tude information is sensitive enough to extract features to
detect human motion. Therefore, we leverage CSI to detect
moving entities.

IV. DETECTION OF HUMAN MOTION
OF DIFFERENT MOVING SPEEDS
In this section, the detailed design of our Speed Independent
Entity Detection system, SIED, is described. It contains an
offline training phase and an online detection phase. The
architecture of SIED is shown in Fig. 2.

A. FEATURE EXTRACTION
A proper feature brings great benefit in device-free pas-
sive entity detection. Consequently, feature extraction is the
most important part of SIED. The MIMO technique is used
in 802.11n wireless networks and multiple antennas transmit
data simultaneously. The modified firmware of CSI tools can
be used to obtain a 3-demensional matrix of m×n×30 com-
posed of the rawCSIs, in whichm is the number of transmitter
antennas and n is the number of receiver antennas, while we
can extract CSIs of 30 subcarriers from the firmware.

Using multiple antennas is an effective method to improve
the detection performance, whichwill lead to a higher compu-
tation complex. Consequently, data fusion is the first step in
feature extraction. The median amplitudes of CSI are chosen
as the final amplitudes, which are from the subcarriers of the
same frequency.

An appropriate feature is extracted from these CFRs
after data fusion. During our research, we find that human
motion has different impacts on CSIs of different subcarriers.

FIGURE 2. SIED’s architecture.

However, previous works only use the information of one
subcarrier. It results in performance decreasing when peo-
ple’s moving speed is very slow. Many features are explored,
and we finally found that the distribution of the variance
of variances of CFRs of the subcarriers across the whole
channel is different when the subject’s moving speed varies,
as shown in Fig. 3. This feature reflects the fluctuation of the
whole wireless channel. It indicates that the distribution of the
variance in static environment is different from that of fast and
slow cases, while having overlapping parts with that of very
slow cases. The overlapping parts may lead to false detection.
Thus, a feasible method should be leveraged to handle it.

FIGURE 3. Distribution of variance of variances of different subcarriers.

Concretely, the successive CFRs are first processed starting
fromHk using a sliding windowwith the length of n; the CSIs
can be expressed as:

H = [Hk ,Hk+1, . . . ,Hk+n−1] (5)

where H is a 30 × n matrix that contains the CSIs within a
certain window. The variance of the amplitudes of subcarrier i
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within the sliding window of length n can be calculated as:

vi = var(
∣∣Hi,k ∣∣ , ∣∣Hi,k+1∣∣ , . . . , ∣∣Hi,k+n−1∣∣) (6)

Next, the fluctuation of the channel is calculated. A 30 × 1
vector that consists of the variance of the amplitudes of each
subcarrier in a certain sliding window can be expressed as:

Vw = [v1, v2, . . . , v30]T (7)

Finally we can easily calculate the variance of all subcarri-
ers V that represents the fluctuation of the wireless channel:

V = var(Vw) (8)

As can be seen from Fig. 3, the distribution of the variance
is much wider when human motion exists. Therefore, when
someone is moving in the monitoring area, V has a higher
probability to be larger. As a result, the feature we extracted
is sensitive to human motion.

B. ENTITY DETECTION
Like most of the entity detection systems, SIED also contains
an offline training phase and an online detection phase.

1) OFFLINE TRAINING PHASE
Human detection is the core module of SIED. In the offline
training phase, the training data are collected when there
is nobody in the monitoring area, and the entity’s moving
speed is fast, slow, and very slow, respectively. The goal of
the system is to reduce the impact of the overlapping parts
of variance between that of static and very slow in order to
achieve a higher detection accuracy. As a result, we combine a
threshold based scheme with HiddenMarkovModel (HMM),
which utilizes probability techniques to solve human detec-
tion. The threshold is based on the feature of the training data.
According to the training data, SIED decides the thresholds
to segment variance values. The segment values act as the
observed states that can be directly used by HMM in the
online detection phase.

FIGURE 4. HMM for SIED.

We use an HMM as the classifier of our human motion
detection system. It is assumed that in the system there
are two hidden states, which are someone that is mov-
ing or someone that is static, as shown in Fig. 4. The two
hidden states may exchange in the monitoring area with

a certain probability. Fortunately, HMM is an appropriate tool
to handle probability problems of state transition. HMM is
widely used in many kinds of pattern recognition problems,
for it has a good performance in speech recognition and hand-
writing recognition. Similar to speech recognition, HMM can
also be utilized in intrusion detection, which is a special case
of entity detection, as several states under human presence
exist. The observed feature values of HMM in intrusion detec-
tion are corresponding to the states of humanmotion or static,
and we assume that they are generated by a Markov
model.

In this HMM, the processed feature values can be seen as
observed states, while the states that generate those feature
values are hidden states. In other words, the variances can
be observed, but whether any human motion exists cannot
be observed. Fortunately, some probability relationships exist
between the variances and presence of humans. In other
words, whether someone is moving can be estimated via
the probability. The number of observed states needs to be
decided, and a group of thresholds is utilized to divide the
variances into several segments. SIED tries several combi-
nations of the number of states and the group of thresholds,
and the number of states that provides the best performance
is selected. As a result, the feature values are divided into n
segments, which are used as the final feature values since
only finite states can be processed by HMM, and the value
of n that is selected is usually between 4 and 7 to avoid a
high complexity. Intuitively, the observed states in a static
environment are 1 or 2 in a large extent while they are
distributed throughout the observed states when the entity is
moving.

The parameters of HMM are also trained in the offline
phase. The parameters of HMM include state transition prob-
ability and observation symbol probability. To estimate the
parameters of the HMM, SIED uses the well-known Maxi-
mum Likelihood Estimation algorithm. First, the statistic of
the feature values of all the sliding windows of CSI sequences
is calculated. The numbers of each feature value are divided
by the total number of the sequence, and the results constitute
the observation symbol matrix. The estimation of observation
symbol probability when the observation is k under state j is
shown in (9):

bj(k) =
Bjk
n∑

k=1
Bjk

, j = 1, 2; k = 1, . . . , n (9)

where Bjk is the number of observations of k under state j in
the training dataset.

The elements in the transition matrix are the transition
probabilities between the hidden states, which are assigned
intuitively for simplicity. Furthermore, we have tried many
different combinations of parameters in different environ-
ments, and it is guaranteed that the models can adapt to
different scenarios.
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2) ONLINE DETECTION PHASE
After offline training, the HMM has been trained and SIED
is ready to detect intrusion. In the online detection phase,
we put the AP and MP at the same position and collect data
using the same sampling rate as that in the offline training
phase. The same feature is also extracted from the collected
data. The Viterbi algorithm is utilized combining the trained
HMM, and feature values to estimate the probabilities of
hidden states from the collected CSI sequences in order to
decide whether someone is moving in the monitoring area.
If the probability that there exists human motion is larger
than that of static, the system alarms that intrusion exists,
otherwise, no alarm is reported.

V. EXPERIMENT AND EVALUATION
In this section, we will implement detailed experiments and
evaluations on SIED.

A. EXPERIMENTAL SETUP
We evaluate the performance of our system with real exper-
iments in a laboratory and a meeting room, which are two
typical scenarios as indicated in Fig. 5. There are several
desks with glass dam-boards and chairs in the laboratory and
some other furniture in the meeting room that creates various
multipath effects. There is NLOS transmission in the labora-
tory and LOS transmission in the meeting room. Specifically,
a FAST FW150RW wireless router with a single antenna is

FIGURE 5. Experimental testbeds. (a) laboratory. (b) meeting room.

used as the AP, while a Lenovo laptop equipped with a three-
antenna IntelWiFi Link 5300NIC running Ubuntu 10.04 LTS
OS is used as the MP. The firmware of the NIC is modified
to extract CSIs from data packets using the CSI tools. The
transmitter and receiver are placed about 0.7 m above the
floor and 4 m to 10 m away from each other in different
scenarios.

The sensing data is collected when the AP is sending ICMP
packets with the transmission rate configured to 20 Hz. At the
same time, a person walks back and forth in the monitoring
area at different moving speeds without anyone else in the
room. The data is collected for a few cycles, each of which
contains 2000 packets. The speed of fast, slow, and very
slow is about 1.5 m/s, 0.7 m/s and 0.2 m/s, respectively.
The transition probabilities of the two hidden states of the
HMM in the experiments of the two testbeds are assigned
to 0.5 and 0.5.

Three evaluation metrics are used in this paper, which are
false negative, false positive, and precision.
• False Negative (FN): the ratio that SIED fails to detect
human motion within the monitoring area.

• False Positive (FP): the ratio that SIED detects human
motion when nobody is in the monitoring area.

• Precision: the fraction that SIED correctly tells human
motion or static. The precision is integrated by FN and
FP that is calculated as follows:

Precision = 1−
FN + FP

L
× 100% (10)

where L is the number of sliding windows. Therefore, it can
be seen that the precision is the overall performance of detec-
tion systems.

B. PERFORMANCE EVALUATION
1) OVERALL PERFORMANCE
First, we evaluate the precision of our system under different
scenarios with the same sliding window size. The precision
of SIED in the two scenarios under different moving speeds
with the window size of 3 s is shown in Fig. 6. The precision

FIGURE 6. Precision of detection in different scenarios.
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in both scenarios achieves higher than 98% when the human
is moving under different speeds. The size of the room affects
the detection precision insignificantly, and the precision has
a slight decrease when SIED works in a larger room.

FIGURE 7. Precision of detection of different sliding window sizes.

In addition, the average precision of SIED in different win-
dow sizes in the two scenarios is presented. Fig. 7 shows the
precision under different moving speeds. As shown, the pre-
cision under fast and slow speed remains relatively stable as
the window size grows. The precision under the very slow
speed increases as the window size grows when the window
size is smaller than 6 s; it remains stable after the window size
grows larger than 6s.

2) PERFORMANCE COMPARISON UNDER
DIFFERENT WINDOWS SIZES
Furthermore, we also evaluate the performance compared
with two other CSI-based methods: FIMD, PADS, and an
RSS-based RASID-like approach under various conditions
are used to research the advantages of SIED. All methods are
tested under the same condition, and we have tried several
combinations of parameters of these methods and select a
group of parameters that produce the best results.

FIGURE 8. FN of SIED vs. other approaches with different window sizes.

Fig. 8 and 9 show the average FN and FP comparisons
respectively when the sliding window sizes are different.

The detection under a very slow moving speed is the most
difficult, and in consequence, we choose the comparison
under this speed. As can be seen from Fig. 8, the approach’s
FN rates declines from a general view as the sliding win-
dow size grows and SIED has a better performance than
the other methods. A larger window size can capture more
variance that makes FN rates lower. SIED has the lowest
FN rate among the four for all window sizes. The FN of
RSS-based approach is higher since RSS is not sensitive
enough to capture human motion when the speed is very
slow.

FIGURE 9. FP of SIED vs. other approaches with different window sizes.

As depicted in Fig. 9, SIED gets an FP rate below 2%,
which indicates that it makes very few false alarms and its FP
rate is affected non-significantly by window size. FIMD gets
a slightly higher FP rates than SIED, but PADS gets a much
higher FP rate of 11.5%, especially when the window size is
3 s. The peak value of PADS at window size of 3 s is because
it utilizes phase information of CSI. The phase of CSI is very
sensitive to environmental noise, and the effect of the noise
is the most significant at that window size. The overall FP of
RSS-based method is the highest among the four approaches
because the feature is close to that of static when the entity’s
moving speed is very slow.

The comparison of average precision among the
approaches when the sliding window sizes are different is
shown in Fig. 10. The precision is an overall performance
of the system. The precision of SIED and FIMD both have a
rise as the window size gets larger. Although the performance
of FIMD is better than PADS, it is a cluster-based approach
and it needs to collect too many packets. As can be seen,
SIED outperforms the other three approaches that confirm
the feasibility of SIED. It reaches higher than 98% when
the window size is 3 s. The RSS-based method can also
detect human motion effectively, but the precision is not high
enough for an intrusion detection system. As a result, SIED
can be considered as a high performance intrusion detection
system.
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FIGURE 10. Precision of SIED vs. other approaches with different window
sizes.

3) PERFORMANCE COMPARISON UNDER
DIFFERENT SPEEDS
According to the experiments above, Fig. 11 shows the aver-
age FN rate of the approaches when the moving speeds are
different, and thewindow size is 3 s. It can be seen that SIED’s
FN rates are the lowest among the four approaches. Even
when the entity is moving at a very slow speed, the average
FN rate increases to 2.1%, which is still acceptable.

FIGURE 11. FN of SIED vs. other approaches under different moving
speeds.

The comparison of average FP rates when the moving
speeds are different is shown in Fig. 12. As it is indicated,
the approaches all perform steadily. In addition, SIED and
FIMD both have satisfactory FP rates. Nevertheless, although
PADS leverages a more complicated characteristic, it obtains
a much higher FP rate of about 10%. This means that PADS
is more likely to make false alarms than the other methods.
The RSS-based method also has a high FP rate.

The comparison of the average precision when the moving
speeds are different is shown in Fig. 13. It can be seen that
SIED has a higher precision than the other three approaches.
All four approaches encounter a decrease in precision as

FIGURE 12. FP of SIED vs. other approaches under different moving
speeds.

FIGURE 13. Precision of SIED vs. other approaches under different
moving speeds.

the moving speed becomes slower, but SIED has the least
decrease. In other words, our system has more potential to
detect human motion of very slow speed.

4) PERFORMANCE COMPARISON UNDER
DIFFERENT RADIUSES
We have also conducted an experiment in our laboratory to
compare the performance under different radiuses. Detec-
tion range is an important criterion for intrusion detection
systems. In real environments, people’s walking path may
have diverse distances from the MP. It is expected that the
system should have a stable performance when the entity has
different distances from the MP. In consequence, we perform
the evaluation that gradually increases the walking radius
from 1 meter to 9 meters in our lab, as shown by the dotted
line in Fig. 14. It is evaluated under the moving speed of
very slow and a window size of 3 s. It is more challenging
that the impact of human motion gets smaller as the distance
between the entity and the MP increases. An entity walks
around the circumference of the circles, and the results of
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FIGURE 14. The diagram of testbed of radius experiment in the laboratory.

FIGURE 15. FN of SIED vs. other approaches under different radiuses.

FN are presented in Fig. 15. As can be clearly seen, with the
radiuses gradually increasing, the FN rates of FIMD, PADS,
and RASID-like all raise at a very high level. The difference
of FN rates of the approaches when the radius is 1 meter
is insignificant. However, the difference becomes significant
when the radius increases to 3 meters, especially because
FIMD and RASID-like are very sensitive to radius size. The
FN rates of FIMD and RASID-like even increase to about
90% when the radius increases to 7 meters and larger. The
FN rate of SIED is relatively stable as the radius increases.

The results of FP are presented in Fig. 16. As can be seen,
with the increasing of the radius, the FP rates of PADS and
RASID-like have an increasing trend, while SIED and FIMD
remains relatively stable; the FP rate of SIED is even lower
among these approaches. The FP rates of the approaches are
lower than their FN rates, which means they makes fewer
false alarms than misdetection.

Fig. 17 shows the results of precision. It can be seen that
our approach has stable performance, and the precision has
only a slight decrease as the radius grows. It still has a 94%

FIGURE 16. FP of SIED vs. other approaches under different radiuses.

FIGURE 17. Precision of SIED vs. other approaches under different
radiuses.

precision when the radius increases to 9 m. However, the pre-
cision of the other approaches declines significantly since the
radius becomes larger than 3 m. For FIMD and RASID-like,
the performance degrades especially sharply when the radius
increases, and the precision decreases to less than 50% when
the radius is 5 m and larger. As a result, it can be noted that
SIED outperforms the other approaches.

VI. DISCUSSION
We did several evaluations in this work to demonstrate the
advancement of SIED. But there still exist some limitations.
In this section, we will give a discussion about the limitations
and potentials of SIED that give the future direction of our
work.

First, the training data of SIED needs both static and
dynamic data. As a result, it is a threshold-based approach,
and the threshold is likely environment-tailored. We evalu-
ated SIED in two typical environments using the same thresh-
old, and it is indicated that it has the potential to find a unified
threshold or a scheme that can automatically calculate the
threshold.
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In addition, SIED is evaluated when the intruder is walking
upright. However, in real scenarios, the intruder is more likely
to move in an abnormal manner, which adds more challenges
into the intruder detection system. Consequently, we should
explore new features to model various kinds of humanmotion
to increase the robustness of the intruder detection system.

In our future work, we will focus on exploring novel and
effective features to improve the robustness of the intruder
detection system.

VII. CONCLUSIONS
In this paper, a device-free intrusion detection approach SIED
is proposed that the moving speed of the intruder has an
insignificant effect on the detection performance. It achieves
a good performance even when the human is moving at a very
slow speed. Only off-the-shelf WiFi devices are required, and
the feature is extracted from fine-grained CSI in wireless
channels. In order to extract an effective feature, the fluctua-
tion of the whole channel is calculated and divided into seg-
ments. Then the HMM is utilized as the classifier in human
detection. SIED leverages probability techniques to achieve a
more accurate detection of intrusion. Numerous experiments
from various aspects have proved that SIED can effectively
detect human motion, especially for human motion of very
slow speed.
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