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ABSTRACT Perceptual stereo image quality assessment (SIQA) aims to design computational models to
measure the stereo image quality in accordancewith human opinions. In this paper, a novel reduced-reference
(RR) SIQA is proposed by characterizing the statistical and perceptual properties of the stereo image in both
the spatial and gradient domains. To be specific, in the spatial domain, we extract the parameters of the
generalized Gaussian distribution fits of luminance wavelet coefficients to form the underlying features.
In the gradient domain, the modified gradient magnitudes maps are generated by jointly considering human
visual system’s contrast sensitivity and neighborhood gradient information to weight the gradient magnitudes
in a locally adaptive manner. Afterward, perceptual features are extracted based on the entropy of discrete
wavelet transform coefficients of modified gradient magnitudes. Furthermore, we consolidate the left and
right features into a single set of features per stereo image pair. Finally, the qualities of both the spatial
and gradient domains are combined to obtain the overall quality of stereo image. Extensive experiments
performed on popular data sets demonstrate that the proposed RR-SIQAmethod achieves highly competitive
performance as compared with the state-of-the-art RR-SIQA models as well as full-reference ones for both
symmetric and asymmetric distortions.

INDEX TERMS Reduced reference, stereo image quality assessment (SIQA), natural scene statistics,
discrete wavelet transform, gradient magnitudes.

I. INTRODUCTION
With the rapid development of the internet and modern infor-
mation technologies, people are in the information explosion
era. There is an old saying that one picture means a thousand
words. Thusly, the image plays a big role on the information
transmitting, and influences the people’s daily life deeply and
thoroughly.Meanwhile, as the ultimate receivers of any visual
information, people gradually incline to pursue multimedia
contents with higher quality of experiences (QoE) in the
traditional entertainment areas such as television pictures and
video games, as well as some more specialized applications,
including medical care, business and education. Therefore,
image quality assessment (IQA) has recently become a hot
research topic in the field of image processing [1]. In general,
subjective assessment is regarded as the most reliable and

accurate way to evaluate the image quality, but subjective
assessment is often costly, slow, and difficult to integrate into
real-time image processing systems [2]. For this reason, it is
necessary to design objective IQA methods to automatically
evaluate and control the perceptual quality of the image.

During the last decade, research on the traditional 2D
IQA methods have been extensively studied and many rep-
resentative works have been proposed, such as structural
similarity (SSIM) [3], gradient similarity (GSIM) [4], feature
similarity (FSIM) [5], video integrity oracle (VIIEDO) [6],
RRED indices (RRED) [7], RDCT [8] and so on. Recently,
stereo image for three-dimensional (3D) viewing has become
a significant contributor to entertainment industry and con-
sumer electronic market, and the demand for stereo image
quality assessment (SIQA) has subsequently drawn a high
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level of attention from not only researchers but also the
industries as well [9]. However, SIQA is still a more com-
plicated and challenging issue than its 2D counterparts with
consideration of both the 2D image quality and depth percep-
tual factors (i.e., additional depth cues [10], crosstalk [11],
binocular rivalry [12], and visual discomfort [13]).

Similar to objective 2D IQA methods, objective SIQA
methods can be divided into three categories depending on
the amount of reference information provided to the computa-
tional model. Specifically, full-reference (FR) SIQA metrics
operate on a distorted stereo image with an original stereo
image available for comparison, while no-reference (NR)
SIQA metrics predict the quality of distorted stereo images
without any knowledge of reference information. As a
compromise between the FR and NR SIQA methods,
reduced-reference (RR) SIQA metrics make use of partial
information or features extracted from the reference stereo
image to estimate the quality of distorted stereo images [9].
In this paper, the discussion is focused on RR SIQA model,
which is widely used to act as a guide to optimize 3D content
production.

Most of FR SIQA methods usually return the desired
results and perform well in prediction the quality scores
of human opinions in comparison with RR and NR SIQA
methods. However, in most present and emerging visual com-
munication environments, the reference stereo images are not
fully accessible. Without any information about the reference
stereo image, the SIQA task becomes very difficult. NRSIQA
can mainly be grouped into two classes: distortion-specific
(such as blocking, blurring, and compression) [14], [15]
and general-purpose metrics (distortion-agnostic) [16]–[19].
Distortion-specificmetrics are effective for specific distortion
when the distortion information is known, while general-
purpose metrics work for different distortions. Since the type
of distortion is usually unknown and the performance of
general-purpose NR SIQAmetrics are very limited, they may
not be mature enough to many practical 3D applications.

RR SIQA methods provide a solution to address the ref-
erence stereo image inaccessible restrictions. These methods
generally include a feature extraction process at the sender
sider for the reference stereo image and a feature extraction at
the receiver side for the distorted stereo image. The key point
of RR SIQA methods is to find a balance between the data
rate of RR features and the accuracy of stereo image quality
prediction. That is, the extracted RR features usually have
a much lower data rate than the stereo image data and are
typically transmitted to the receiver side through an ancillary
channel.

In designing RR SIQA algorithms it is important to select
the RR features in a way to be sensitive to different distortions
and be closely related to the visual perception of stereo image
quality. There are two main directions for RR SIQA metrics.
One is stereo image feature description based on natural
scene statistics (NSS). The other direction is stereo image
feature description based on the visual properties of human
visual system (HVS). Several studies have been conducted

for RR SIQA in recent years [20]–[25]. For NSS-based RR
SIQA, Wang et al. [20] proposed a novel 3D RRIQA met-
ric based on 3D NSS in contourlet domain. Ma et al. [21]
proposed a RR SIQA model by characterizing the statisti-
cal properties of stereo image in the reorganized discrete
cosine transform (RDCT) domain. For HVS-based RR SIQA,
Qi et al. [22] proposed a RR SIQA model based on binocular
perceptual information (BPI). BPI is represented by the dis-
tribution statistics of visual primitives in left and right view’s
image, which are extracted by sparse coding and represen-
tation. Xu et al. [23] proposed a RR SIQA model through
measuring structural degradation and saliency based parallax
compensation model (SSPM). Zheng et al. [24] proposed a
RR SIQA model based on binocular perceptual properties
of HVS. Hewage and Martini [25] predicted the quality of
color plus depth 3D video by using the extracted edge infor-
mation of depth maps and extracted information from the
corresponding color image in the areas approaching edges.
Even though the above-mentioned algorithms can provide a
useful and effective way to evaluate the quality of distorted
stereo image, the performance is still limited due to only
single strategy adopted. According to [26], Liu et al. have
indicated that the single method does not provide the best
performance in all situations, and proposed a multimethod
fusion approach to overcome the deficiency when only one
method is adopted.

Based on the above analysis, in this paper, we propose a
training-free general-purpose RR SIQA metric which com-
bines NSS-based features with HVS-based features. Our
motivation stems from the HVS is highly adapted for extract-
ing structural information from the input scene [3], and
the marginal distributions of luminance wavelet coefficients
are modelled well by the generalized Gaussian density
(GGD) [27]; The main contributions of this work are three-
fold. (1) The selected features are comprehensive and not
limited to NSS-based or HVS-based; (2) According to the
perceptual properties of HVS, we consolidate the left and
right HVS-based features into a single set of features per
stereo image pair by uncertainty weighting; (3) The new RR
SIQA can be used in general purpose without training and
tuning. Experimental results on LIVE 3D phase I [28] and
LIVE 3D phase II [29] demonstrate that the proposed metric
is efficient and promising compared with the state-of-the-art
methods.

This paper is organized as follows. An overview of related
work is given in section II. Section III presents the pro-
posed RR SIQA method. Experimental results are drawn in
section IV, followed by a conclusion in section V.

II. RELATED WORK
Owing to the thriving market of stereo image based various of
applications, efficient and effective SIQA techniques become
colossally required these days. Existing perceptual quality
metrics for stereo images can be grouped into three cate-
gories, named qualitymodel extended from 2D IQAmethods,
the quality model designed by considering the properties of
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HVS, and the quality model proposed by using the regulari-
ties of NSS.

In earlier research, since a 3D image consists of two
view’s 2D images, many SIQA metrics is simply extended
from the existing 2D IQA methods. These models handle
each view of stereo image independently. The overall quality
index of the stereo image is determined by integrating the
obtained quality index of each view image. For example,
Campisi et al. [30], Gorley and Holliman [31],
Benoit et al. [32] and You et al. [33] utilized a straightforward
way to apply the existing 2D IQA methods in their SIQA
metrics. Hewage et al. [34] studies the correlation between
subjective opinions and three quality metrics, including
PSNR, Video Quality Model (VQM) [35] and SSIM [3]
for stereo video content. Such models handle each view
image independently without consider the binocular vision
properties. Obviously, the simple combination of two views’
image quality is not consistent with human opinions.

Aiming to further optimize the performance of SIQA met-
rics, the specific properties of HVS, such as the binocular
vision and depth perception properties are taken into account
for SIQA design. Bensalma and Larabi [36] proposed a SIQA
metric based on binocular energy perception. Chen et al. [29]
proposed a ‘‘cyclopean image’’ model to account for binoc-
ular rivalry. Shao et al. [37] proposed a new FR-SIQA met-
ric by learning binocular receptive field properties. In [38],
a FR-SIQA metric based on monocular and binocular visual
perception was presented. Shao et al. [39] proposed a per-
ceptual quality assessment approach for stereoscopic images
by modeling visual properties of the primary visual cortex.
Likewise, Shao et al. [40] developed a new NR-SIQA by
using joint sparse representation. Lin and Wu [41] proposed
a quality index for stereo images by using the binocular com-
bination and the binocular frequency integration as the bases.
Zhou et al. [42] proposed an efficient NR-SIQA metric that
utilizes binocular vision-based dictionary learning (DL) and
k-nearest-neighbors (KNN)-based machine learning (ML)
to more accurately align with human opinions. However,
the aforementioned metrics depend on the entire original
stereo image or depth/disparity information to evaluate the
quality of the distorted stereo image, they are regarded as
very complex, and not suitable for real-time 3D applications.
Besides, such models only consider the properties of HVS for
SIQA design, which are incompetent to accurately reflect the
change caused by different distortions.

Recently, the statistical properties of stereo images have
been extensively studied, several SIQA models have been
proposed. For example, Chen et al. [16] extracted 2D
and 3D features from the ‘‘cyclopean image’’ and the
‘‘uncertainty image’’ based on NSS for SIQA. Su et al. [17]
proposed aNRSIQAmetric by extracting bivariate and corre-
lation NSS features from distorted stereoparis, which dubbed
stereoscopic/3D blind image naturalness quality index
(S3D-BLINQ Index). Md et al. [18] utilized the parame-
ters of GDD fits of luminance wavelet coefficients along
with correlation values form excellent features for SIQA.

Hachicha et al. [19] proposed a NR SIQA based on joint
wavelet decomposition and GGD models. However, these
models need to perform the disparity map estimation (the
computational complexity is high), which is not suitable for
real-time image processing system. What’s more, HVS per-
ception properties of stereo images have not been adequately
considered, which significantly affect the quality analysis
of stereo image. To devise an efficient RR SIQA metric,
we have explored the fusion features which contained NSS-
based features and HVS-based features to build the new
quality assessment model for stereo image.

III. PROPOSED RR-SIQA INDEX
The framework of our proposed RRSIQAmetric is illustrated
in Fig. 1. We consider not only the statistical properties of
the stereo image in the spatial domain but also the percep-
tual properties of HVS in gradient domain. At the sender
side, in space domain, each view image of stereo image
is first converted to grayscale images IV ,V ∈ {L,R} (L
refers to left image, R refers to right image). Subsequently,
the original grayscale images are decomposed to subbands
with L-level by discrete wavelet transform (DWT), and the
parameters of GGD fits of luminance wavelet coefficients
are extracted to form the NSS-based features. Moreover, in
gradient domain, each view image of stereo image is first
processed by applying a contrast sensitivity function (CSF)
based filter resulting in the filtered images IVCF ,V = {L,R}.
Then, the gradient magnitude maps, IVGM ,V = {L,R} are
computed and locally weighted to generate modified gradient
magnitude maps ÎVGM ,V ∈ {L,R}. An L-level DWT of the
ÎVGM are performed, and the entropy of DWT coefficients of
the ÎVGM are computed as the HVS-based features. Note that,
details about the parameters of GGDfits, CSF-based filtering,
local adaptive weighting of gradient magnitudes, DWT and
entropy computations are given below. At the receiver side,
likewise, the distorted stereo images are processed by the
same procedure at the sender side for the statistical and
perceptual features. Besides, we consolidate the left and right
features into a single set of features per stereo image pair.
Finally, the stereo image qualities of both space and gradient
domains are combined to yield the overall quality of stereo
image. We describe our approach in the following.

A. NATURAL SCENE STATISTICS-BASED FEATURES
In the previous studies, there has beenmuch attention recently
to the statistics of natural images. The statistical proper-
ties of natural scenes have inspired scientific and engineer-
ing studies to understand and simulate visual perception
by designing artificial visual systems (i.e., image quality
assessment [16]–[19], image compression [43], and image
denoising [44], [45]). Our work is inspired by the sta-
tistical properties of marginal distributions of luminance
wavelet coefficients which can be modelled well by the
GGD model [27]. According to [27], one popular approach
is to model the wavelet coefficients distributions using a
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FIGURE 1. The framework of the proposed RR-SIQA metric.

FIGURE 2. The coefficient distribution of a luminance wavelet subband (first scale, 0◦) of natural image and its GGD
modeling curve. (a) natural image. (b) luminance plot with the GGD fitting.

generalized Gaussian distribution:

f (x) =
e−|x/s|

g

Z (x, g)
(1)

where Z (x, g) is a normalizing constant to force the integral
of f (x) to be 1, g controls the geometric shape and s con-
trols the spread. Note that, f (x) is Gaussian when g = 2,
and Laplacian when g = 1. As shown in Fig. 2, we can
observe that the wavelet coefficients of natural images yield
very good fits between empirical histograms and the GGD
model fitting. In this work, we illustrate how distortion affect
the luminance wavelet coefficients distributions using the
GGD model. From Fig. 3, it can be seen clearly from these
plots that the log-histograms of original image and its five

distorted images have shape peaks and heavy tails and there-
fore corroborate GGD modelling. In addition, the distortions
cause the histograms (and hence the GGD model parameters
(g, s)) to change significantly with respect to original image
statistics. Therefore, we can conclude that the GGD model
parameters serve as good discriminatory features for SIQA
task.

To capture above-mentioned NSS-based features of
stereo images, we have applied a steerable pyramid
decomposition [46], [47] whose space-scale-orientation
decomposition models the band pass filtering that occurs
in area V1 of primary visual cortex [48]. This decompo-
sition is performed at four scales (fine to coarse) and six
orientations (0◦, 30◦, 60◦, 90◦, 120◦, 150◦) to analyze stereo
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FIGURE 3. The log-histograms of original image and its distorted image
subbands.

images. Afterwards, GGDmodel fitting is performed on each
of the luminance subband histograms for both the original
and distorted stereo images. We utilize the method in [49]
for estimating the GGD model parameters (g, s). Following
the formula in (1), a pair of (g, s) values are computed for
each of the 24 luminance subband pairs and denoted by(
glj , slj

)
,
(
grj , srj

)
. Note that, the subscript l and r denote

the left and right subband respectively and j is the subband
index (1 ≤ j ≤ 24). With the left and right features, we
consolidate them into a single set of features per stereo image
pair. This consolidate is motivated by the fact that binocular
strength is a convex sum of monocular strengths [50]. That
is, the convex weights of left and right views rely on rel-
ative eye dominance that is particularly visible in the case
of asymmetric distortion. As we have 24 subbands of each
image, the stimulus strength is directly bound up with band
strength of each subband. According to [18], we adopt root
mean square (RMS) subband value as its band strength. Here,
band strenghs of the jth subband of left and right images are
denoted by plj and prj respectively. Therefore, the convex
weights of left and right views are calculated as follows:

wlj =
plj

plj + prj
(2)

wrj =
prj

plj + prj
(3)

The normalized weights are then used for feature vector
consolidation as follows:

gj = wljglj + wrjgrj (4)

sj = wljslj + wrjsrj (5)

As a result, the NSS-based features consist of one gj and
sj value of jth subband. As there are 24 subbands, we have
obtained 24-length vectors g = [g1, . . . g24]T and s =
[s1, . . . s24]T per stereo pair.

B. HUMAN VISUAL SYSTEM-BASED FEATURES
Apart from the statistical properties of natural images for
IQA, there are many HVS oriented theories about IQA met-
rics in the past few years. The one most widely accepted

today is based on the assumption that the HVS is highly
adapted for extracting structural information from the input
scene [3]. Moreover, the gradient of an image describes its
geometric features which conveys important visual informa-
tion for understanding. The gradient-relevant methods have
gotten big success in IQA [5], [51], [52]. In [53], it has
been discovered that there are some inherent limitations with
respect to the visibility of stimuli, the HVS is not equally
sensitive to all stimuli. Inspired by these previous works,
we jointly consider human visual system’s contrast sensi-
tivity and neighborhood gradient information to weight the
gradient magnitudes in a locally adaptive manner. Then, per-
ceptual features are extracted based on the entropy of DWT
coefficients of modified gradient magnitudes. The computa-
tional process of the HVS-based features is shown in Fig. 4.
Detailed implementation will be given in the following
subsection.

1) CSF BASED FILTERING
According to [53], the binocular visual sensitivity to stimulus
at different spatial frequencies is different which could be
modeled by an empirical CSF. In this paper, we consider
variations in sensitivity to spatial frequency by applying the
adjusted CSF filtering to both the reference and distorted
stereopairs. Here this adjusted CSF model [52] is given by:

HCSF (f , θ) = Ha (f , θ)Hb (f , θ) (6)

where f denotes the radial spatial frequency in cycles per
degree of visual angle (c/deg), θ ∈ [−π, π] denotes
the orientation. In equation (6), Ha (f , θ) is the fre-
quency response of a CSF model originally introduced by
Mannos and Sakrison [54] with adjustments specified by
Daly [55] and Hb (f , θ) is the frequency response of a
circularly symmetric Gaussian filter. Therefore, Ha (f , θ),
is denoted by:

Ha(f , θ)

=

{
2.6(0.0192+ λfθ ) exp[−(λfθ )1.1], if f ≥ fpeakc/ deg
0.981 otherwise

(7)

where fθ = f /[0.15 cos(4θ + 0.85)] accounts for the oblique
effect. Note that, we set λ = 0.114, resulting in a peak at a
frequency of fpeak ≈ 8c/ deg. The frequency response of the
Gaussian filter, Hb (f , θ), is denoted by:

Hb (f , θ) = exp
(
−2π2σ 2f 2

)
(8)

where σ is a parameter that controls the cutoff of the filter.
In our experiments, in order to filter out components of very
high frequency that are perceptually insignificant without
significantly affecting the perceptually relevant edge compo-
nents, we set a 5× 5 filter window size and a small σ = 0.5,
resulting in a lowpass filter with a relatively very high cutoff
frequency.

Suppose we apply the adjusted CSF filtering to the
left or right image of stereo images IV ,V ∈ {L,R}, This
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FIGURE 4. Block diagram illustrating the computation of the HVS-based features for the proposed RR SIQA metric.

FIGURE 5. Illustration of steps of the modified gradient images. (a) Original input images; (b) Distorted input images; (c) and (d) CSF filtered
images; (e) and (f) Gradient magnitude images; (g) and (h) Modified gradient magnitude images.

adjusted CSF filtering is performed in the frequency domain
via:

IVCF = F−1
(
ĤCSF (u, v)× F

(
IV
))

(9)

where u, v are the DFT indices, and F [·] and F−1 [·]
denote the DFT and inverse DFT, respectively. The quantity
ĤCSF (u, v) denotes a DFT based version of HCSF (u, v).

2) MODIFIED GRADIENT MAGNITUDES
From a computational point of view, the responses of classical
cortical receptive fields in the simple cells at different scales
and orientations can be modeled by Gaussian derivative func-
tions [56], and can be represented using gradient magnitudes.
Moreover, it has been discovered that edges of an image are
perceptually significant to the HVS, and the gradient of an
image corresponding to the edge is crucial importance to
observers. Therefore, at this stage, we calculate the gradient
magnitude IVGM of the stereo image IVCF resulted from the
previous CSF-based filtering stage. For simplicity, IVGM is
computed by using the Sobel operator [57]. However, since
the effect of luminance masking and contrast/texture mask-
ing directly influence the visibility of distortions, it is not
sufficient only by using gradient information to estimate the
image quality accurately. In order to enhance the local image
structure while removing the contrast variations, we compute
a locally weighted gradient image that utilize the informa-
tion in IVCF and IVGM jointly to consider the effect of local

background luminance (given by information in IVCF ) as well
as local image structure (given by information in IVGM ) on
distortion visibility [52]. To be specific, the modified gradient
magnitude image is calculated as follows:

ÎVGM =
IVGM (i, j)

β (i, j)+ ε
(10)

β (i, j) =
√∑∑

(i′,j′)∈�i,j
IVNF (i

′, j′)w (i′, j′) (11)

IVNF (i, j) =
IV2GM + I

V2
CF

2
(12)

w (i, j) =
K (i, j)∑
i,j K (i, j)

(13)

where ε is a small positive constant to avoid numerical
instability when β (i, j) has a small value. �i,j is a local
window centered at (i, j), and w

(
i′, j′

)
are positive symmetric

weights satisfying
∑

i′,j′ w
(
i′, j′

)
= 1 via equation (13).

K (i, j) denotes a Gaussian kernel coefficient at (i, j) with
window size 5 × 5 and σ = 0.5. Examples of modified
gradient magnitude images are shown in Fig. 5 (g) and (h).
Fig. 6 shows that the gradient magnitude map without the
local weighting operator fails in effectively capturing certain
types and levels of distortions. Moreover, from Fig. 6 (b),
it is quite clear that the gradient magnitude maps of the
input images have not changed significantly under different
types and levels of distortions (Fig.6 (b) and close-ups illus-
trated in Fig. 6 (d), (f), (h), (j), (l), (n)), while the modified
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FIGURE 6. Comparison between gradient magnitude and modified gradient magnitude maps. (a) First row represents the input image (original
image and its five distorted versions). (b) Second row represents the corresponding gradient images of the first row input images. (c) Third row
represents the corresponding modified gradient magnitude images. Close-up images of gradient images and modified gradient images are
given in the fourth row, where (d), (f), (h), (j), (l), and (n) are the corresponding gradient images in the second row, and
(e), (g), (i), (k), (m), and (o) are the corresponding modified gradient magnitude images in the third row.

gradient magnitude maps (Fig.6 (c) and close-ups illustrated
in Fig. 6 (e), (g), (i), (k), (m), (o)) can more clearly reflect
the local changes in the image structures caused by different
distortion types and levels.

3) DWT COEFFICIENTS COMPUTATION
In [58], it has been discovered that wavelet transform pro-
vides a convenient way for localized representation of sig-
nals simultaneously in space and frequency. They have been
widely used to model the processing in the early stages of
HVS and have also become the popular form of represen-
tations for IQA metrics [18], [19], [52]. Therefore, in this
paper, a steerable pyramid wavelet decomposition is used
to decompose the modified gradient magnitude maps (ÎVGM )
into components at six scales (fine to coarse) with four
orientations (0◦, 45◦, 90◦, 135◦) at each scale in order to
extract perceptual features that are sensitive to different image
distortions.

4) ENTROPY COMPUTATION AND POOLING
Information entropy, which is a fundamental measure of the
uncertainty associated with a probability distribution, is usu-
ally used to compute the uncertainty of shape and structure
information of an image [59]. In general, images with single
orientation and simple shapes have a low entropy, while
images with varying edge orientations and complex shapes

have a relatively high entropy. In this work, we calculate
the entropy of the wavelet coefficients of ÎVGM at each scale
and orientation in order to efficiently capture the image
structure information. The pooled entropies of the left and
right images across orientations at each scale are utilized as
HVS-based features and to evaluate the perceptual quality of
stereo image.

Let HV
S,O,V ∈ {L,R} (L and R denote the left and right

images of stereo image, respectively) denote the computed
entropy value of the DWT coefficients of each view of
stereo image, after removing the mean value and converting
to unsigned 8-bit integers, for the S th scale and Oth orien-
tation (IVS,ODWT ). Meanwhile, let IVS,O,KDWT ,K = 1, . . . ,MS,O,
denote all the values of IVS,ODWT . The entropy of IVS,ODWT is
defined by:

HV
S,O = −

MS,O∑
K=1

P
(
IVS,O,KDWT

)
logP

(
IVS,O,KDWT

)
(14)

where P denotes the probability density function associated
with IVS,ODWT . Subsequently, the entropies HV

S,O are pooled at
each scale S, S = 1, . . .NS along the orientations as follows:

HV
S =

NO∑
O=1

log
(
1+ HV

S,O

)
(15)

2774 VOLUME 6, 2018



J. Ma et al.: RR SIQA Using NSS and Structural Degradation

where HV
S is the pooled value of entropies over all the orien-

tation of the Sth scale.
After computing the entropies of left image HL

S and the
entropies of right imageHR

S as Eqs. (14) and (15), we consol-
idate them into a single set of features per stereo image pair
by uncertainty weighting as follows:

HS = WLHL
S +WRHR

S (16)

WL =
ĤL
S

ĤL
S + Ĥ

R
S

(17)

WR =
ĤL
S

ĤL
S + Ĥ

R
S

(18)

where ĤL
S and ĤR

S are pooled at each scale S, S = 1, . . .NS
along the orientations of left and right images of stereo image,
respectively. They are computed as follows:

ĤV
S =

NO∑
O=1

HV
S,O (19)

where V ∈ {L,R} (L and R denote the left and right images
of stereo image, respectively). The total number of RR HVS-
based features is equal to the number of scales NS ; that is,

HS =
[
HS1 , . . .HSNS

]T
. Since we decompose the modified

gradient magnitude maps (ÎVGM ) into components at six scales
(fine to coarse) with four orientations at each scale, resulting
in only six RR HVS-based features per stereo pair.

C. QUALITY INDEX COMPUTATION AND POOLING
In the receiver side, the extracted features of original and
distorted stereo image are compared to evaluate the stereo
image perceptual quality. First, the following two quality
indexes will be determined to measure the perceptual quality
degradation caused by the introduced distortion.

1) QUALITY INDEX IN SPACE DOMAIN
Based on the extracted NSS features, the quality index in
space domain is computed by using the standard Wave
Hedges distance [60], [61] metric as follows:

Qs
(
Dr
NSS,D

d
NSS

)
=

24∑
NSSi=1

∣∣∣Dr
NSSi
− Dd

NSSi

∣∣∣
max

(
Dr
NSSi

,Dd
NSSi

) (20)

where Dr
NSS =

[
gr; sr

]T, Dd
NSS =

[
gd; sd

]T
are the NSS fea-

ture vectors of stereo images. Note that, the superscript r and
d denote the reference and distorted stereo pairs respectively.

2) QUALITY INDEX IN GRADIENT DOMAIN
Let Hr

S and Hd
S represent pooled entropies of the reference

and distorted image at the S th scale, respectively. We denote
the quality index Qg in gradient domain, which is computed
as follows:

Qg = log

( NS∑
S=1

(
Hr

S −Hd
S

)2 (
T d + 1

)
+ 1

)
(21)

T d =
NS∑
S=1

NO∑
O=1

T dS,O (22)

T dS,O = WLT
dL
S,O +WRT

dR
S,O (23)

whereNS andNO denote the number of scales and orientation,
respectively. T dLS,O and T dRS,O are the mean absolute value of
DWT coefficients at the S th scale and Oth orientation for the
left and right images of the distorted stereo image. Note that,
T dS,O is computed based on Eqs. (17), (18) and (23).
Given the quality indexes Qs and Qg, the final perceptual

quality of the distorted stereo image Q is determined as

Q = log
((
Qs × Qg

)
+ 1

)
(24)

IV. EXPERIMENTAL RESULTS
In this section, the performance of our proposed RR SIQA
index is analyzed in terms of its ability to evaluate subjective
ratings of image quality for both symmetric and asymmetric
distortions of stereo images. We evaluate the performance in
terms of prediction accuracy, prediction monotonicity, and
prediction consistency and provide comparisons with existing
state-of-the-art FR-SIQA and RR-SIQA methods. Detailed
description will be given in the following subsection.

A. DATABASES AND PERFORMANCE MEASURES
We conducted experiments on two best-known 3D IQA
databases, i.e., Laboratory for Image and Video Engi-
neering (LIVE) 3D Phase I Database [28] and LIVE 3D
Phase II Database [29]. LIVE 3D phase I contains five dif-
ferent distortion categories including JPEG2000 compression
(JP2K), JPEG compression (JPEG), additive white Gaussian
noise (WN), Gaussian blur (Gblur), and fast fading (FF).
There is a total of 365 symmetrically distorted stereopairs
generated from 12 reference stereo images. Although the
LIVE 3D phase I database is an excellent tool to develop 3D
IQA methods, but it only considers symmetrically distorted
3D images. However, in certain 3D image processing appli-
cations, each of view of 3D images may be corrupted with
different amounts or types of distortions, which is also called
asymmetrically distorted stimuli. To fill this gap, the LIVE
3D phase II database contains 8 reference images and 360 dis-
torted images (72 each for JP2K, JPEG, WN, FF, and Gblur)
with co-registered human scores in the form of difference
mean opinion score (DMOS). For each distortion type, every
reference stereo pair is processed to create three symmetric
and six asymmetric distorted stereo pairs.
For objective evaluation, three popular criteria are used

to benchmark the performance of our proposed method: the
Pearson linear Correlation Coefficient (PLCC), the Spearman
Rank-order Correlation Coefficient (SROCC), and the Root
Mean Square Error (RMSE). The PLCC, SROCC, and RMSE
metrics measure prediction linearity, prediction monotonic-
ity, and prediction accuracy, respectively. The higher values
of PLCC and SROCC, the lower value of RMSE, represent
the better performance. Before computing the linear corre-
lation between the quality scores of the algorithm and the
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TABLE 1. Performance comparison of the proposed SIQA model and ten competing indices on two benchmark datasets.

subjective scores available with the two databases, a five
parameters logistic function is used for nonlinear regres-
sion [62].

f (x) = α1

(
1
2
−

1
1+ exp (a2 (x − α3))

)
+ α4x + α5

(25)

where x denotes the predicted quality of image and f (x)
denotes the quality score after nonlinear fitting, and ai, i =
1, 2, . . . , 5, are the regression model parameters to be fitted.

B. OVERALL PERFORMANCE COMPARISION
To investigate the effectiveness and robustness of our pro-
posed method for all distorted types, we choose several
existing state-of-art FR-SIQA and RR-SIQA metrics for
comparison, i.e., Chen et al. [29], Benoit et al. [32],
Bensalma and Larabi [36], Shao et al. [38], Lin and Wu [41],
RRED [7], RDCT [8], Ma et al. [21], Wang et al. [20],
and Hewage and Martini [25]. The overall performance
comparisons are tabulated in Table 1. Note that, in Table 1,
the best performing metrics for each database are high-
lighted in boldface. In our experiments, Chen et al. [29],
Benoit et al. [32], Bensalma and Larabi [36],
Shao et al. [38], and Lin and Wu [41] are five representative
state-of-art FR-SIQA metrics. For the RR-SIQA metrics,
we compare our proposed metric with RRED [7], RDCT [8],
Ma et al. [21],Wang et al. [20], and Hewage andMartini [25].
Note that, RRED [7] and DNT [8], which are extended from
the conventional 2D RR metrics. The two RR metrics will
perform the quality analysis for the left and right view image
independently. Then the average quality index is regarded as
the perceptual quality of the stereo image. From Table 1, it
can be observed that the proposed method correlates highly
with human opinion ratings, indicating that the statistical
properties of natural images and the properties of HVS are
sufficiently considered for RR-SIQA. To be specific, it has
been discovered that Chen’s metric [29], Shao’s metric [38],
and Ma’s metric [21] achieve reasonably well performance
for both symmetric and asymmetric distortions of stereo
images. One possible explanation is that the cyclopean map
model (Chen’s metric [29]), monocular and binocular visual
perception model (Shao’s metric [38]), and NSS features in
reorganized DCT domain (Ma’s metric [21]) are highly in
line with human subjective perception. However, Chen’s met-
ric [29] only takes into account binocular rivalry properties
of HVS. Shao’s metric [38] only simulates the response of

the receptive fields without consider the statistical proper-
ties of natural images. Ma’s metric [21] only extracts the
NSS features without consider the perceptual properties of
HVS. All of which are not adequately for SIQA design.
Moreover, observe that RRED [7] and RDCT [8] extended
from the RR 2D IQA models generally perform worse on
both symmetric and asymmetric distortions of stereo images.
Since our proposed metric more comprehensive considers
the statistical properties of natural images and the properties
of HVS, the performance is highly consistent with human
perception, which is markedly superior to all the other metrics
used for comparison on the two databases. Especially, for
the asymmetric distortion of stereo images, the proposed
metric achieves promising performance in terms of three
general criteria. Besides, as shown in Fig. 7, we also show
the scatter plots of objective scores predicted by the proposed
metric against subjective DMOS scores on the two databases.
In Fig. 7 (c) and (f), it clearly illustrates that our proposed
algorithm achieves significantly high consistent with human
opinions. Based on these observations, we can conclude that
the proposed metric is stably calibrated for quantifying and
assessing the perceptual distortions of stereo images.

C. PERFORMANCE ON INDIVIDUAL DISTORTION TYPES
In order to more comprehensively evaluate the prediction
performance of the proposed scheme, we compare the ten
schemes on each type of distortion. The PLCC and SROCC
results are tabulated in Table 2 and Table 3, where the best
metrics have been highlighted in boldface. One can see that
the performance of the proposed metric on some specific
types of distortions are among the top 7 times in terms of
PLCC and SROCC, followed by Shao’s metric [38] 5 times,
Wang’s metric [20] 4 times, Chen’s metric [29] 2 times,
and RDCT [8] 1 times. Particularly, the proposed metric
achieves very promising results for JP2K and FF distortions
on the LIVE 3D Phase I Database, and most of distortions
on the LIVE 3D Phase II Database. One likely reason is
that the proposed metric is more sensitive to these two kinds
of distortions. However, the proposed metric is not very
prominent for JPEG distortion. A plausible explanation is
that the luminance and gradient information cannot compre-
hensive reflect depth quality degradation of this distortion.
To be sure, the proposed metric achieves high consistent
with the subjective opinions, and can be competitive with
the most effective metric for individual types across the two
databases.
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FIGURE 7. Scatter plots of objective scores versus subjective data (DMOS). (a-c) LIVE 3D Phase I. (d-f) LIVE 3D Phase II.

TABLE 2. Performance comparison of the other ten metrics on each individual distortion types in terms of PLCC.

D. CONTRIBUTIONS OF THE NSS-BASED AND HVS-BASED
QUALITY-PREDICTIVE FEATURES IN THE
PROPOSED METRIC
To obtain additional and further insight into how the pre-
diction performance of the proposed scheme is enhanced by
considering NSS-based and HVS-based together, we design
two experiments for performance comparison, referred to as
metric-NSS and metric-HVS. For metric-NSS, we only apply
NSS-based features to yield the perceptual quality of stereo
image. For metric-HVS, only the HVS-based features are
adapted to measure the perceptual quality of stereo image.
The results of the metric-NSS, metric-HVS, and the proposed
model in terms of PLCC, SROCC, and RMSE are shown
in Table 4. One can see that the prediction performance
of the proposed scheme can be further improved by appro-
priately jointing the NSS-based and HVS-based features
together. Interestingly, the metric-NSS even achieves better

performance than metric-HVS on the two databases. The
most likely reason is that the statistical properties of HVS take
precedence over the perceptual properties of HVS. Further-
more, the scatter plots of objective scores predicted by using
theNSS-based, HVS-based features and the proposed scheme
against subjectiveDMOS scores are illustrated in Fig. 7 on the
two databases. From Fig. 7 (c) and (f), it is quite obvious that
the overall performance can be gradually enhanced by con-
sidering the NSS-based and HVS-based features simultane-
ously. Based on above observations, we can conclude that the
NSS-based and HVS-based features in the proposed scheme
play a complementary role for RR-SIQA.

E. IMPACT OF VARYING THE NUMBER OF SCALES
AND ORIENTATIONS
The steerable pyramid wavelet decomposition in the pro-
posed scheme may greatly affect the number of extracted
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TABLE 3. Performance comparison of the other ten metrics on each individual distortion types in terms of SROCC.

TABLE 4. Contributions of the NSS-based and HVS-based
quality-prediction features in the proposed scheme in
terms of PLCC, SROCC, and RMSE.

features, i.e., the GGD model parameters (g, s) and the
entropy of DWT coefficients of modified gradient mag-
nitudes will be affected by the steerable pyramid wavelet
decomposition. Based on such consider-ation, we design two
groups of experiments, referred to as MNSSS,O and MHVSS,O .
Note that, MNSSS,O denotes evaluating perceptual quality of
stereo image by using NSS-based features with S scales and
O orientations. Table 5 provides the results ofMNSSS,O metric
with different scales and orientations. Similarly, MHVSS,O

denotes evaluating perceptual quality of stereo image by
using HVS-based features with S scales and O orientations.
Table 6 shows the obtained performance of MHVSS,O metric
with different scales and orientations. From Table 5, we can
observe that the performance of the MNSSS,O metric can be
gradually enhanced with increasing the number of scales
from 2 to 4, and orientations from 2 to 6 on both symmetric
and asymmetric distortions. Furthermore, we also find that
the performance of theMNSSS,O metric can be improved with
the same scales and the larger number of the orientations
on the two databases. Meanwhile, in Table 6, one can see
that the performance of the MHVSS,O metric can be gradually
enhanced with increasing the number of scales from 3 to 6,
and orientations from 2 to 4 on asymmetric distortions. For
symmetric distortions (LIVE 3D Phase I), observe that the
performance of the MHVSS,O metric has a significant drop
in accuracy of the estimated quality with the same scales
and the larger orientations. One possible explanation for this
situation is that the changes of orientation play an important
role in binocular rivalry of HVS, while there is little or no
binocular rivalry in symmetrically distorted stereo images.
In general, our proposed multi-scale feature representation
can efficiently capture changes of the statistical properties

TABLE 5. Effect of changing the number of scales and orientations in
MNSSS,O metric in terms of PLCC, and SROCC for the LIVE 3D Phase I
and Phase II databases.

TABLE 6. Effect of changing the number of scales and orientations in
MHVSS,O metric in terms of PLCC, and SROCC for the LIVE 3D Phase I and
Phase II databases.

and the perceptual properties of stereo images using very few
parameters.

V. CONCLUSION
In this paper, we have presented a new RR-SIQA metric
by using natural scene statistics and structural degradation.
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The novelty of our research resides in the application of the
statistical properties of stereo images and perceptual proper-
ties of HVS together to predict the perceived quality of stereo
images. In general, most of the existing RR-SIQA metrics
need to either train or tune their methods to predict the quality
of the stereo images accurately. Unlike such frameworks, our
proposed method performs well without training and tuning.
Furthermore, finding a balance between the number of RR
features and the predicted stereo image quality plays a key
role in RR-SIQA design. Interestingly, our proposed method
not only needs a very small number of RR features (30 RR
features per stereo pair), but also yields a high accuracy
estimation on both symmetric and asymmetric stereo images.
In conclusion, the proposed scheme achieves significantly
better consistency with subjective opinions. In the future
work, we expect to extend our proposed method to RR stereo
video quality assessment (SVQA).
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