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ABSTRACT Feature extraction is vital for face recognition. In this paper, we focus on the general feature
extraction framework for robust face recognition. We collect about 300 papers regarding face feature
extraction. While some works apply handcrafted features, other works employ statistical learning methods.
We believe that a general framework for face feature extraction consists of four major components: filtering,
encoding, spatial pooling, and holistic representation.We analyze each component in detail. Each component
could be applied in a task with multiple levels. Then, we provide a brief review of deep learning networks,
which can be seen as a hierarchical extension of the framework above. Finally, we provide a detailed
performance comparison of various features on LFW and FERET face database.

INDEX TERMS Face recognition, feature extraction, filtering, feature encoding, feature aggregation.

I. INTRODUCTION
The ultimate aim of precise and automatic face recognition
is essential for certain fields such as forensic science, auto-
matic payment system, etc. In [1], face recognition is applied
to unconstrained scenarios. The task is rather challenging
and is still an open problem due to high variability such as
in illumination, scales, pose, and occlusion. To achieve the
object of robust face recognition, various approaches have
been made by extracting overcomplete and high-dimensional
local features from images and integrate them via learning
algorithms to handle large data variations and noises. Bag-
of-Features (BoF) model extracts local descriptors and then
encodes them with a codebook (or dictionary) generated by
machine learning techniques. Local features are encoded and
classification is performed [2].

In this paper, our pipeline for facial feature representation
is shown in Figure I.The pipeline is based on BoF model, but
alterations have been made to cater for facial images.

This pipeline consists of 4 major components: filtering,
encoding, spatial pooling and holistic representation.We ana-
lyze these features as follows:

• Filtering: to generate robust features for a given face
image, it is beneficial to convolve the image with a
specific filter, either using a pre-defined pattern, or using
a discriminative filter learned from training dataset. The
filtering could be multi-level to form cascaded filter
image features. Also, as filtering of image patches can
result in a huge collection of features which are prone to
noise and variations, sometimes we apply quantization
to compress local features to save computation time

FIGURE 1. General framework for face feature extraction.

and storage. Many classic handcrafted local features
combined filteringwith quantization and histogramming
techniques to form a robust mid-level feature.

• Encoding: The output of the encoding phase could be
a histogram or a feature vector. Many primitive works
encode local patterns via histogramming and thus do
not explicitly contain a dictionary, while many others
do. Dictionary and assignments can be generated via
soft or hard clustering algorithms. There could be mul-
tiple levels of encoder.

• Spatial pooling: Spatial pooling can be seen as a way
to further compress the coding vector according to the
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spatial layout of the image to form a final holistic fea-
ture. There are two classical pooling methods: average
pooling that preserves the average response, and max
pooling that preserve the maximum response. Block
division can be seen as a part of feature pooling, as fea-
tures extracted from different blocks are aggregated.
This could be quite beneficial to face recognition, as the
frontal structure of a face includes several distinct areas
(eyes, nose, mouth, etc.). Facial appearance is largely
based on those parts and is vital for recognition. Without
proper division, local features extracted from different
parts could be mingled together as we learn discriminant
features based on those ones.

• Holistic representation: Many classical face recognition
papers are mainly based on the holistic representation
of the face. An extremely simple method is the template
matching method for face recognition [3] that involved
the direct comparison of pixel intensity values taken
from facial images. Later, Eigenface method [4] calcu-
lated the eigenvectors and eigenvalues of the covariance
matrix of facial images and only the principal com-
ponents were preserved and compared. The Fisherface
method [5] used both principal component analysis and
linear discriminant analysis to produce a subspace pro-
jection matrix. The Fisherface method took advantage of
within-class information by minimizing variation within
each class, yet still maximizing class separation. How-
ever, for many recent face features, holistic representa-
tion is about dimensional reduction and feature fusion
of the final features. Concatenation of block-based fea-
tures could cause extremely high-dimensional features
and therefore proper dimensional reduction is needed.
Besides, to combine multiple features together, we have
to resort to decision-level feature fusion techniques.

In Section II we discuss various filtering techniques,
including Gabor, Difference of Gaussians, etc. We also
analyze a specific form of local feature quantization and
encoding based on histogramming. In Section III, we clas-
sify feature encoders with a codebook provided into several
categories. They are: encoders based on K-means, Gaussian
mixture models, sparse coding and tree models. Section IV
is on spatial pooling, where block division, multiscale fea-
ture extraction and feature transforms are discussed. We dis-
cuss features regarding the whole face image in Section V,
where we provide a deep analysis on works regarding feature
transform, selection, and fusion. Note that these categories
are not mutually exclusive, proper combinations of cate-
gories often yield decent performances. Towards the end of
the paper, Section VII analyzes the popular deep learning
frameworks. We provide intuitions and the reasons behind
their stunning performances and show their frameworks and
alterations made for face recognition. Section VIII compares
performances and intricacies of various feature extraction
approaches on FERET and LFW databases.

There are some surveys regarding face recognition con-
ducted on variations of local descriptors like Gabor [6]

and LBP [6]–[10]. Ahonen and Pietikäinen [11] presented an
evaluation of different filters and quantization based on LBP.
However, in those surveys, feature encoding and aggregation
procedures were elementary and not robust. We would see
that without proper algorithms, features and noises would be
mingled together in a high-dimensional array, making it diffi-
cult to classify them properly. Recently, Huang et al. [2] did
a theoretical survey on feature encoders and analyzed their
motivations from a different point of view. A recent survey
on pose-invariant face recognition gives several approaches
to classify faces under extreme poses [12]. Their works
enlighten us to do a review on face feature extraction.

II. FILTERING
In this section, we study the image texture and some
commonly filtering techniques to describe face features
locally. First, in Section II-A we discuss Gabor filters.
In Section II-B we first discuss the widely used LBP
descriptor. LBP is itself a filter (to extract pixel differ-
ence), a quantizer (binarize the difference and sum them
up) and an encoder (generate histograms). In Section II-C
we discuss histogram generation based on local textures.
In Section II-C non-histogramming features like SIFT and
HOG. Section II-D provides some inner relationships and
potential combinations of discussed features. Section II-E
discusses some of the preprocessing procedures. Section II-F
lists handcrafted and adaptive filtering techniques. Lastly in
Section II-G we list practices that realize the combination of
various features by cascading.

A. GABOR FILTERS
Gabor wavelets are widely used in image processing field
in that they capture local structure corresponding to spa-
tial frequency, spatial localization as well as orientation
selectivity. The definition of Gabor kernel is: φµ,ν =
k2µ,ν
σ 2

exp(
k2µ,νz

2

2σ 2
)[exp(ikµ,νz) − exp(−σ

2

2 )], whereµ and ν are
orientation and scale of the Gabor kernels respectively, and
z = (x, y) signifies spatial location. Wave vector is defined as
kµ,ν = kνeiφmu where kν = kmax/f µ and φµ = πµ/8 with
kmax being the maximum frequency and f being the spac-
ing factor between kernels in the frequency domain. Often,
ν ∈ {0, 1, 2, 3, 4} and µ ∈ {0, 1, 2, 3, 4, 5, 6, 7}, resulting
40 Gabor wavelets at 5 scales and 8 orientations, with σ =
2π , kmax = π/2 and f =

√
2. A Gabor representation is

obtained by convolving the input image with a set of Gabor
filters of various scales and orientations, and it is also known
to favor identity-related cues [13]. Moreover, the representa-
tion is robust to registration errors to an extent as the filters
are smooth and the magnitude of filtered images is robust to
small translation and rotations. However, convolution with a
large number of filters makes Gabor filtering computationally
costly and high dimensionality of the convolution output
renders a dimensionality reduction step essential.

As Gabor phase information is sensitive to misalignment,
many papers only extracted Gabor amplitude. Some practices
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are: concatenating magnitudes of all orientations and scales
into an augmented Gabor feature image and apply discrim-
inative dimensional reduction with Enhanced Fisher Linear
Discriminant Classifier(to be discussed in Section V-A) [14];
selecting most discriminative features via random forest [15];
constructing a Gabor image patch set for each Gabor kernel
and then applied clustering approaches to each patch set to
constitute a codebook to encode patterns via histograms [16];
extracting Gabor magnitudes on certain points determined
based on a 3D deformable model [17]; using magnitudes for
sparse representation and coding [18]; using magnitudes and
then maximized squares of intra-face correlations via Partial
Least Squares [19].

Though phase features are often ignored, we observe that
with proper quantization techniques, phase information is
beneficial for several face recognition scenario. A study by
Wang et al. [20] quantized phase into bins according to the
number of phase ranges and generate histograms based on
co-occurrence of phase patterns. Another instance features
Zhang et al. [21] that put forward Histogram of Gabor Phase
Patterns (HGPP) to integrate Gabor phase information into
the encoding scheme. HGPP was formulated with global
Gabor phases and local Gabor phases encoded with phase-
quadrant demodulation coding.

There are other ways of utilizing the Gabor filters. Full
(real and imaginary) Gabor response are used in [22] and [23].
In [22], imaginary and real parts of Gabor response are used
respectively to derive Local Gabor Textons, then they were
labeled accordingly and a histogram sequence is calculated.
Meyers and Wolf [23], on the contrary, do max pooling of
various neighborhood scales to get a down-sampled represen-
tation. Cascaded feature (often combined with LBP) would
be discussed in Section II-G. V1-like [24] models are com-
posed of normalized, thresholded and clipped Gabor wavelet
responses. The models are named after V1 cortex, or primary
visual cortex. There were total 96 Gabors chosen to span an
exhaustive cross of 16 orientations and 6 spatial frequencies.
Based on this model, authors elaborated several other features
by resizing, enlarging spatial frequencies and orientations
covered.

B. LOCAL BINARY PATTERN (LBP)
The computation procedure of LBP is simple yet efficient:
pixels of an image is labeled by thresholding the neighbor-
hood of the pixel locally compared to the pixel itself to a
binary number. Specifically, its feature vector is built by
comparing the pixel with each of its neighboring pixels, and
it interpolates values bilinearly at non-integer coordinates.
We could use notation (P,R) to signify LBP parameters,
which stands for extracting P sampling points on a circle of
radius of R. The LBP operator uses a (2R + 1) × (2R + 1)
kernel to summarize the local image structure. At a given
center, (xc, yc), it takes the (2R+ 1)× (2R+ 1) neighboring
pixels surrounding of the center pixel. However, R is often
assigned to 1, which results in 8 neighboring pixels excluding
the center itself. If the center pixel’s value is greater than

the neighbor’s value, mark it with ‘‘1’’; mark it with ‘‘0’’
otherwise. An 8-digit binary number suffice depicting local
texture pattern. The pattern is then transformed into a decimal
number by multiplying each digit by powers of two and sum.
Given an image I and denoting ic as the grey level of the pixel
c of the image I , the LBP operator on this pixel is defined as:

LBP(P,R) =
∑P−1

p=0 s(ip − ic)2
p, with s(x) =

{
1 if x ≥ 0;
0 otherwise.

For each image, the histogram is computed showing the
frequency of each occurring number. For LBP codes with
8 neighbors, the histogram should have 28 = 256 bins, thus
the range of LBP is from 0 to 255. An important property of
the LBP operator is its invariance to monotonic photometric
change caused probably by illumination variations.

Though LBP could be directly used in face recognition,
there are approaches to form a robust feature based on LBP.
Feature fusion is one perticular example: images blocks are
often used and histograms over cells are fused. However,
another extension worth noting is the uniform pattern [25]:

LBPuniformP,R =

{∑P−1
p=0 s(ip − ic) if U (LBPP,R) ≤ 2;

P+ 1 otherwise.
, where

U is a uniform measure defined as the number of spatial tran-
sitions (or bitwise 0/1 or 1/0 changes) in the binary pattern.
According to this formula, LBPs with U value up to 2 are
defined as uniform patterns and their labels are accumulated
respectively (there are 58 of them), while non-uniform pat-
terns are grouped into a single bin in the histogram. This
idea originated from the fact that certain binary patterns occur
more commonly in texture images than others. LBPs assign
separate bins for every uniform pattern in a histogram, while
all non-uniform patterns are assigned to a single bin. With
uniform patterns, the length of the histogramwith 8 neighbors
reduce from 256 to 59, and the code is robust to noise.
Uniform LBP is widely used in face recognition [26]–[33].

C. LOCAL FEATURES BASED ON HISTOGRAM
The pipeline of many local features are extremely similar to
LBPs: apply a filter to the image; use quantization techniques
and then obtain a histogram to represent the final feature.
We now analyze these features in detail.

A most straight-forward filter could be the difference
between pixel values of a center and its neighbor, or Pixel
difference vectors (PDV). It is applied in [34]–[37].
Lu et al. [34], [35] calculated pixel differences for 48 neigh-
bors within the 7 × 7 patch surrounding each pixel in the
image, and learn an adaptive projection matrix to project
the difference, and finally binarization via thresholding is
applied. Lei et al. [36] obtained a collection of s×s pixel dif-
ference matrices and stretch them into PDVs. PDVs extracted
would undergo a reduction in both dimensions and the num-
ber of features. Finally K-means clustering and labeling is
performed for reduced features.

A drawback of LBP is its liability to local intensity vari-
ations such as noise and small wear-able ornaments. Many
local features based on histogram attempt to alleviate the
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impact of noises. We list them below:

• Refined features: Extended LBP [38] modeled absolute
values of differences of the central point and its neigh-
boring pixels. The difference vector of the 8-neighbor
local descriptor d = [d0, d1, ..., d7]T was normalized
into [0, 1] as d̃i = (di−dmin)/(dmax−dmin).Values larger
than 0.5 was set to 1 and otherwise set to 0. In this way,
a supplemental code to the original LBP was obtained as
a compact 8-bit binary string. Completed LBP (CLBP)
[39] represented a local region by its center pixel as well
as the sign and magnitude of local intensity difference.
To effectively represent the magnitude information in
LBP style, the center pixel was simply thresholded by
the average gray level of the whole image as s(x) ={
1 if x ≥ cl ;
0 otherwise.

, where cl is the average gray level of

the whole image. Similarly, the difference magnitudes
were determined adaptively via a non-linear function

s(x) =

{
1 if x ≥ mp;
0 otherwise.

, where mp is the mean value of

the difference x. Local Directional Pattern [40] repre-
sentation captured relative edge response value in eight
directions at each pixel in the image. Local Gradient
Pattern (LGP) [41] generated constant patterns irrespec-
tive of local intensity variations along edges and had
a greater ability than LBP to determine the difference
between face histograms. At a given center pixel posi-
tion, gradient values between the center pixel and its
neighboring pixels were defined as gn = |xn − xc|, and

the average of gradient values was set as ḡ =
∑P−1

p=0 gp
P .

LGP was defined as LGP(P,R) =
∑P−1

p=0 s(gp − ḡ)2p.
Each bit of LGP was assigned ‘1’ if the neighboring
gradient of a given pixel was greater than the average
of eight neighboring gradients, and ‘0’ otherwise. LGP
was later used in [27] as a local feature extraction step
before feeding it to feature selection procedure.

• Refined samplingmethods: In order to reduce the impact
of noise, some papers compared not image intensity
but the average intensity of image blocks [26], [42],
[43]; or used multiple radius and patterns to sample
neighboring pixels [36], [44]–[46]; or used statistical
tools to adaptive determine sampling radius and pat-
tern [47]. Local Quantized Patterns (LQP) [48] used
not only a larger local neighborhood but also deeper
quantization.

• Refined quantization: Local Ternary Patterns (LTP)
[49] applied a 3-valued coding that had two thresholds
around zero for improved resistance to noise. Resulting
code can be treated as two separate channels of LBP
descriptors, and LTP inherited high computational effi-
ciency of LBP. Later an adaptive threshold for LTP using
mean and standard deviation of the local region was
put forward [50]. Some researchers based their encoder
on a N -nary coding quantization scheme instead of

binary coding method to preserve more structure infor-
mation [51]. Other than LTP, Noise-Resistant LBP [52]
introduced an uncertain state for small pixel differ-
ences, and attempted to determine the state with uni-
form patterns. We observe that several papers applied
soft histogram boundarieswith fuzzy membership func-
tions [53], and later an adaptive version was put forward
to determine the margin of decision boundary with his-
togram statistics [54].

• Refined procedure: Dominant LBP sorted occurring
frequency of all generated LBP of the training data
in descending order and found a number of patterns
accounting for 80% pattern occurrences; in order to
interact with distant pixels, they based their features on
Gabor filter responses. Another example is the patch-
level dual-cross patterns (DCP) [55] as a computation-
ally efficient variation of LBP that is extremely robust to
pose and expression variations. DCPs comprehensively
yet efficiently encoded the invariant characteristics of
a face image from multiple levels into patterns, and,
via second-order statistic extraction and grouping, it is
highly discriminative of inter-personal differences but
robust to intra-personal variations. It was used in [56]
for pose-invariant face recognition.

We now discuss other features. Local Phase Quantiza-
tion (LPQ) was proposed by Ojansivu and Heikkilä [57] for
blur insensitive texture classification through local Fourier
transformation. However, it gained popularity due to its
performance to non-blurred images and is often considered
as a replacement of LBP in face recognition. The perfor-
mance improvement may partially due to the size of local
description, as LBPs are usually extracted from smaller
regions with 3-pixel diameter, whereas LPQs are extracted
from larger regions [58]. LPQ uses local phase informa-
tion extracted using Short Term Fourier Transform (STFT)
computed over a local M ×M rectangle neighborhoods Nx.
At each pixel location x, STFT of the image f (x) is defined
as F(u, x) =

∑
y∈Nx

f (x − y)e−j2πu
T y
= wT

u fx, where
wu is the basis vector of STFT at frequency u, and fx is
another vector containing all M × M pixels from Nx. The
local Fourier coefficients are computed at four frequency
points: u1 = [a, 0]T ,u2 = [a, a]T ,u1 = [0, a]T ,u1 =
[a,−a]T , where a is a frequency parameter (a sufficient small
scalar). For each pixel position this results in a vector Fcx =
[F(u1, x),F(u2, x),F(u3, x),F(u4, x)]. The phase informa-
tion in the Fourier coefficients is recorded by examining the
signs of the real and imaginary parts of each component inFcx .
In detail, let Fx = [<{Fcx},={F

c
x}]

T , and for each component
fj in Fx, LPQ(x) =

∑8
p=1 fj2

p−1. Similarly to an LBP, an LPQ
describes the local neighborhood using an integer ranging
from 0 to 255, and simply by counting LPQ patterns result
in the local histograms with dimensionality 256. LPQ is
useful in face recognition. Chan et al. [59] extended their
Multi-scale LBP histogram in [60] to multi-scale LPQ his-
tograms. Another experimental study on CMU-PIE, YALE-B
and CAS-PEAL-R1 databases showed that low-level
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LPQ descriptor is effective for blurred as well as sharp
images [61].

Modified census transform (MCT) [62] operates on inten-
sity mean of neighborhood and takes all 9 pixels in the 3× 3
neighborhood (including the center). Denote intensity mean

as īc =
∑8

p=0 in
9 , MCT value for the center is calculated as

MCT =
∑8

p=0 s(ip − ī)2p. Chakraborti and Chatterjee [27]
used LBP, MCT and LGP as a local feature extraction pro-
cedure. Jeong et al. [26] extended the sampling radius and
could be applied to alleviate sensitivity of both LBP andMCT
to noise.

Scale-invariant feature transform (SIFT) [63] has the merit
of invariance to translations, rotations and scaling transfor-
mations in the image domain and robustness to moderate
perspective transformations and illumination variations. The
original SIFT descriptor firstly detect interest points from a
gray-level image and then statistics of local gradient direc-
tions of image intensities were accumulated to give a sum-
marizing description of the local image structures in a local
neighborhood around each interest point. SIFT descriptor
is computed as follows: it chooses a 16 × 16-pixel grid of
local image patch around a point and then divides it into
4 × 4 windows. Image gradients are computed over the
16× 16 array of locations in the image domain, and then the
gradient directions are quantized into 8 discrete directions.
During the accumulation of the histograms, the increments in
the histogram bins are weighted by the gradient magnitude.
Further, to give stronger weights to gradient orientations
near the interest point, the entries in the histogram are also
weighed by a Gaussian window function centered at the
interest point and with its size proportional to the detection
scale of the interest point. Thus SIFT descriptor is a local
histogram computed at the 4 × 4 windows with 8 quantized
directions, which lead to an image descriptor with 4 × 4 ×
8 = 128 dimensions for each interest point. To obtain
contrast invariance, the SIFT descriptor is normalized to
unit sum. In this way, the weighted entries in the histogram
will be invariant under local affine transformations of the
image intensities around the interest point, which improves
the robustness of the image descriptor under illumination
variations. Later, initiated in a scene classification application
[64], the Dense SIFT descriptor that applies SIFT at dense
grids which have been shown to lead to better performance.
A basic explanation for this is that a larger set of local image
descriptors computed over a dense grid usually provide more
information than corresponding descriptors evaluated at a
much sparser set of image points. Hu et al. [65] extracted
several forms of local features: uniform LBP of 8 × 15 non-
overlapping blocks, Dense SIFT descriptors on each 16× 16
patch without overlapping to obtain 45 SIFT descriptors;
Sparse SIFT computed at the nine fixed landmarks with three
different scales. Local descriptors of the same kind were
concatenated to form a global feature vector, forming three
feature vectors for each image. They were used to train a
deep neural network for metric learning, and score fusion

was performed. However, unlike [65] that concatenated local
features directly, Dense SIFT descriptors are usually accom-
panied with a clustering stage, where the individual SIFT
descriptors are reduced to a smaller vocabulary of visual
words and can then be combined with a bag-of-words (BoW)
model or related methods. Originally K-means clustering
(refer to Section III-B) are popular in generating codebooks,
yet recent papers tend to use soft assignment clustering
like sparse coding and Gaussian Mixture Model (GMM).
We briefly review some methods and will discuss in detail
in Section III-A. For example, Yang et al. [66] extracted
Dense SIFT, and computed a spatial-pyramid image repre-
sentation based on sparse codes of SIFT features, instead
of the K-means and vector quantization. Motivated by the
fact that kernel trick can capture the nonlinear similarity
of features, Gao et al. [67] provided an extension by incor-
porating Kernel Sparse Representation with Spatial Pyra-
mid Matching. Initiated in [68], Fisher vector described
features via a normalized residual with respect to Gaus-
sian cluster centers of GMM, this was later used in many
papers [69]–[73]. Baecchi et al. [74] clustered densely
extracted SIFT with Random Density Forest (RDF), an unsu-
pervised method to minimize the Gaussian differential
entropy of each split appears in as an alternative to GMM.

Speeded Up Robust Features (SURF) [75] is a variation of
SIFT and it is several times faster than SIFT and claimed by
its authors to be more robust against different image trans-
formations than SIFT. To detect interest points, SURF uses
an integer approximation of the determinant of Hessian blob
detector, which can be computed using a precomputed inte-
gral image. The interest area is divided into 4×4 subareas that
are described by the values of a wavelet response in x and y
directions. To describe the subarea, the components involved
in the calculations are {

∑
dx,

∑
|dx|,

∑
dy,

∑
|dy|}. SURF

is used in [69] as a feature extractor.
Inspired by the SIFT descriptor, Dalal and Triggs [76]

proposed Histograms of oriented gradients (HOG), a similar
descriptor based on gradient orientation histograms com-
puted over a grid of scale space. However, unlike the local
image descriptor SIFT, HOG is computed within a region
in a sliding window fashion and has the benefit of semi-
global representation. The basic HOG includes the following
computation: divide the image into smaller cells and compute
edges of the imagewith the Canny edge detector; compute the
orientation of each edge pixel; generate histogram by sum-
ming up the gradients having orientations in a certain range
over every pixel within each cell in an image. In contrast to the
SIFT descriptor, the HOG descriptor is not normalized with
respect to orientation and thus does not possess rotational
invariance. However, the histograms in the HOG operator
are normalized with respect to image contrast. A variation of
the method includes 2D HOG [77]. The algorithm employed
the HOG which was reformulated in a 2D representation.
Each bin represented one of the desired angles and was
represented in the matrix, where the spatial relations were
maintained and dealt with separately. HOG is widely used
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in facial expression recognition. Albiol et al. [78] localized
a set of 25 facial landmarks using the Elastic Bunch Graph
Matching framework. The HOG features extracted from the
vicinity in each of these 25 facial landmarks were used for
classification, using nearest neighbor and Euclidean distance.
Arguing that performance of [78] may crucially depend on
the reliability of the landmark localizations, Déniz et al. [10]
proposed to extract HOG descriptors from a regular grid in
order to compensate for errors in facial feature detection due
to occlusions, pose and illumination changes. Similarly, Berg
and Belhumeur [79] extracted HOG, color histogram as well
as an 8-bin gradient direction histogram from each grid cell
and concatenated histograms over all cells. Another similar
approach was to apply multi-kernel learning using HOG and
LBP descriptor extracted in a regular grid manner [80].

2D Discrete Fourier Transform (DFT) could be used in
face representation to provides a tool to remove unnecessary
parts of frequency features [81]. Analyzing the face model
in Fourier frequency domain provides more chances to pick
out useful features on the assumption that we have known
whether frequency bands are important or not. In the paper,
Fourier features were learned independently from diverse
frequency bands. Authors extracted Fourier features from
three different Fourier domains: real and imaginary compo-
nent domain, Fourier magnitude domain, and phase angle
domain. Fourier spectrum is easily used to as a compensator
for the phase shift faced with small spatial displacements
caused by misalignment, and on the other hand, the com-
plex phase spectrum is invariant to illumination variations
and is tolerant to occlusion problems. This was later inte-
grated into the proposed band selection scheme by choos-
ing lower frequency information of a face model and then
higher frequency information for analyzing more detail con-
tours. The proposed band selections basically included the
lower frequency, but on the other hand, they had differ-
ent higher frequency bandwidths because higher bandwidths
in company with the lower frequency have more discrim-
inative information for detail facial components. Discrete
Cosine Transform (DCT) decomposition is similar to DFT
and it acts like a low-pass filter [82], [83]. Another similar
Local Walsh-Hadamard Transform [84] applies a small size
of Walsh-Hadamard Transform (WHT) to each pixel of an
image by sliding the transform on the image pixel by pixel.
The transform is believed to be robust to local variations and
is later integrated to form a histogram by calculating phase-
magnitude relationship.

We briefly introduce other methods:
• Higher-order derivatives: a high-order local pattern
descriptor could encode local high-order derivative vari-
ations. While LBP can be viewed as a nondirectional
first-order local pattern, second-order LDP can cap-
ture the change of derivative directions among local
neighbors by encoding the turning point in a given
direction [85]–[87].

• Code co-occurrence: LBP co-occurrence [88], HOG
co-occurrence [89], or co-occurrence matrices based

on quantized Gaussian phase information, and the fre-
quency of each co-occurrence pattern with a fixed dis-
tance and along a specified direction were used to obtain
the feature histogram [20].

• Similarity between oriented gradients: capture local geo-
metric structure between a pixel and its neighborhoods
by calculating the similarity between oriented gradi-
ents without quantization [90]. The descriptor is rather
redundant so dimension reduction is utilized, then logis-
tic function is used to binarize the feature.

• Feature interdependence relationship: considering each
local region inside a face image as a graph vertex,
set up an undirected connected graph capturing feature
interdependence based information shared among the
vertices [91].

• Binary optimization: Compact Binary Face Descriptor
[34] is an optimization scheme for feature mapping to
obtain binary discriminative features based on PDV.
Optimization objectives were: maximizing the variance
of binary code to obtain a compact code; minimizing
binary quantization loss; ensuring even distribution of
feature bins in the learned binary codes. To make more
data-adaptive representation, the code was subsequently
clustered and pooled. In their recent paper [35], cluster-
ing was integrated into binary discriminative mapping to
form Simultaneous Local Binary Feature Learning and
Encoding (SLBFLE) that could learn projection matrix,
dictionary and coefficient matrix in an iterative manner
and finally represented histogram feature with a learned
dictionary.

• Feature selection: binarized pixel difference features are
strongly correlated, thus feature selection could be made
based on conditional mutual information [92]

We state again that the methods above are not mutually
exclusive and proper combination could yield decent per-
formance. Murala’s paper [86] can serve as an illustration:
it used average image intensity within a block to combat
noise; the encoder was a three-bit derivative pattern along
four defined directions, resulting in a 12-bit representation.
For robust representation, pattern related to the magnitude of
the center pixel was calculated and the two histograms were
combined to obtain final feature. The framework of [87] is
quite similar.

D. COMPLEMENTARY FEATURE EXTRACTION
We have introduced many ways to extract local features.
Readers may easily find that these features, rather than
mutually exclusive, are often utilized simultaneously to
accomplish tasks. Features may be extracted and integrated
in parallel, or in a cascaded manner.

We would like to mention backgrounds of individual fea-
tures. Gabor filters, which are spatially localized and selec-
tive to spatial orientations and scales, are comparable to the
receptive fields of simple cells in the mammalian visual cor-
tex. Because of their biological relevance and computational
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properties, Gabor filters have been adopted in face recog-
nition. Since Gabor filters detect amplitude-invariant spatial
frequencies of pixel gray values, they are known to be robust
to illumination changes. LBP is widely used in analyzing
textures, as it labels each pixel through binary gray scale
difference of its 8 neighbors. The stunning performance of
the descriptor in texture classification leads to its popularity
and many variations and improvements are put forward. LBP
is, by definition, invariant under any monotonic transfor-
mation of the pixel gray values. However, LBP is signifi-
cantly affected by non-monotonic gray value transformations.
Unfortunately, in contrast to the flat surfaces where texture
images are usually captured, faces are not flat, therefore
non-monotonic gray value transformations (manifested by
shadows and bright spots) occur, and their positions could be
changed depending on the illumination. LBP can be expected
to have problems dealing with illumination variations in face
recognition. Unlike LBP, SIFT and HOG depict the point in
feature space by its weighted spatial histogram of gradients
of its neighbors. Both SIFT and HOG are orientation-based,
robust to brightness changes, and computation initiatives of
the two descriptors for individual pixels are similar. SIFT is
often combinedwith a detector of interest point tomatch local
regions of interest. However, it has been shown that densely
extracted SIFT descriptors are helpful in recognition and thus
it is extracted in a Bag-of-words fashion and widely used in
computer vision.

Some papers compare the performance of these descriptors
on their feature extraction algorithms. Lu et al. [28] verified
the performance of their proposed Random Path measure (to
be discussed in Section IV-A) with four popular descriptors
in face recognition: LBP, HOG, Gabor, and a statistically
learned descriptor. Chen et al. [29] investigated the effect of
the dimensionality of the feature on face verification accu-
racy. They tested on LBP, SIFT, HOG, Gabor to find out
high-dimensional feature resulted in high performance. There
was a 6% − 7% improvement in accuracy when increasing
the dimensionality from 1K to over 100K for all descrip-
tors. Recently, Zhu et al. [30] employed the over-complete
high-dimensional features proposed in [29], including high-
dimensional Gabor and LBP as face representation as well
as a pose and expression normalization method for face
recognition.

Local features like LBP, SIFT or HOG only capture tex-
ture or gradients in a small region and may ignore holistic
characteristics. In addition, one single feature suffers from
the insufficiency in describing discriminant structures for
classification. Thus these features may be considered as
complementary and in Section II-G and Section IV-C we
see many encoding practices that integrate one feature (for
instance LBP) with other features in a cascaded way or fusion
on a certain level and apply voting for the final decision.
In practice, a sensible combination of complementary local
patterns could be beneficial for generating robust features to
tackle face recognition problems, especially on datasets with
large variation in illumination, background, pose, etc.

E. PREPROCESSING
With a fixed-sized face image, it is a common practice to
start extracting local features right away. However, our facial
images at hand may contain a large portion of background
irrelevant to our objective. Thus in practice, our first step is
to crop the face part out. Face detectors such as the Voila-
Jones detector [93] is mostly used to locate landmarks and
accordingly crop out (and rescale to) a uniformly sized face
part. In addition, approaches in handling lighting variations
have been studied and readers may refer to [94] for a compre-
hensive understanding in illumination preprocessing for face
recognition. Some preprocessing procedures are observed in
several papers.

• Downsampling: downsample the image before LBP
extraction to enhance execution time [95].

• Filtering: preprocessed images with Difference-of-
Gaussians (DoG) filter for their proposed LBP-like
descriptor [44], [45]. Applying DoG could remove high-
frequency noise and low-frequency illumination varia-
tions, thus providing a robust result.

• Color space transform: Liu and Liu [96] based their
descriptor on a novel hybrid RCrQ color space that is
constructed out of RGB,YCbCr and YIQ color spaces.
Component images in the novel color space possess
complementary characteristics and enhance the discrim-
inating power for face recognition.

F. OTHER FILTER DESIGN TECHNIQUES
In this section we briefly discuss filters that use other encod-
ing methods other than histogramming. Relative intensity
contrast between neighbors utilized by LBP could be an
inadequate filter in some scenarios, so many papers try to
grasp more discriminative features than intensity contrast.

• prominent directions: edge information could be bene-
ficial to classification, and edge response prominences
of different directions could be used. Local Directional
Patterns (LDP) [97] computed the edge response values
in all eight directions at each pixel position and gener-
ated a code from the relative strengthmagnitude. Given a
central pixel in the image, applying the Kirsch compass
edge detector could obtain eight edge response values
m0,m1, ...,m7. By finding the top k values of |mi| and
set them to 1, and by setting the remaining 8 − k bits
of 8-bit LDP pattern to 0, the LDP code was calculated
as follows: LDPk =

∑7
p=0 s(mp − mk )2p. Zhong and

Zhang [98] refined the procedure above by taking into
account the distinction between most and second-most
prominent edge response directions.

• rectangle filters: Jones and Viola [99] used a set of com-
putationally efficient rectangle filters to describe local
features. Each features measured input images at partic-
ular locations, scales and orientations. Later Adaboost
was used to select discriminative features.

There are works on obtaining a discriminative image filter
via statistical learning. A simple supervised machine learning
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utility, Fisher Separation Criteria (FSC), argues that discrim-
inability is achieved bymaximizing the ratio of between-class
scatter and within-class scatter. FSC is also the criterion
function to be maximized in Linear Discriminant Analy-
sis (LDA), a supervised dimension reduction method. FSC
is widely used for learning discriminative mapping as well
as discriminative sampling procedures. For example, FSC
could help choose from many neighborhoods the most dis-
criminative ones the central pixel to compare with [36], [38],
and [100]; to help determine the value of respective filters
via optimization [36], [38]; approximately solve non-linear
kernel functional mapping of image patches [101].

Beside FSC-based, other discriminative sampling and fil-
tering discriminative mapping and sampling observed are:

• Binarized Statistical Image Features (BSIF) [102] could
describe a pixel’s neighborhood by a binary code
obtained by convolving the image with a set of lin-
ear filters and then binarization. Unlike LBP and LPQ,
the set of filters in BSIF was learned from a training
set by maximizing the statistical independence of the
filter responses. Each bit of BSIF was associated with
certain filter and the value of each bit in BSIF code string
was computed by binarizing the response of a linear
filter with a threshold at zero. To be precise, it projected
image patches to a subspace which basis vectors were
learned from Independent Component Analysis, then
binarizes them by thresholding. The bits in the code
string corresponded to binarized responses of different
filters.

• Observing that severe self-occlusion hampers block-
based methods, Ding et al. [56] proposed Patch-based
Partial Representation by extract facial textures from
unoccluded blocks only. Each block adopted Multi-task
Learning to learn transformation dictionary that trans-
formed the features of different poses into a common
discriminative subspace to enhance recognition ability.
Separate transformation dictionary was learned for each
patch, thus the number of resulting transformation dic-
tionaries equated to the number of blocks.

G. CASCADED FEATURES
LBP is a texture encoder that encodes intensity difference
between pixels. However, our images at hand may subject
to noise or large variations, so it is beneficial to use its
histogram on other features. On the other hand, Gabor feature
could capture the local structure corresponding to specific
frequency, spatial locality and selective orientation and it has
been demonstrated to be robust to noise, illumination and
expression changes. Therefore many researchers attempted
to apply LBP on Gabor-like features rather than the pixel
intensity to obtain sufficient and stable representations.

Among papers, the most popular could be LBP on multi-
orientation and multi-scale Gabor magnitudes, which is
named Local Gabor Binary Pattern (LGBP) [103]. Its merit
over LBP lies in its capacity of representing face images as

many spatial histograms with varying orientations and scales.
It is believed that Gabor feature and LBP characterize the
property of local texture distributions in distinct and comple-
mentary ways, thus combining them can be beneficial. The
feature histogram is obtained by the following steps: convolve
the input face imagewith 40multi-orientation andmulti-scale
Gabor filters to obtain 40 Gabor Magnitude Pictures (GMPs)
in frequency domain; each GMPwas further encoded by LBP
and converted to binary LGBP Maps; each LGBP Map was
further divided into non-overlapping rectangle regions with
specific size, and histogram was computed for each region;
LGBP histograms of all the LGBP Maps were concatenated
to form the final histogram sequence as the model of the face.
Later authors proposed to encode real and imaginary Gabor
Feature Map with LBP histograms based on exactly the same
procedure [104] Similar studies include: performing LBP
on multi-orientation log-Gabor image in order to be robust
to illumination and expression changes [105]; performing
LPQ and LBP fusion on Gabor features, so that the feature
could utilize blur invariant property and texture information
to recognizing blurred or low-resolution face images [106];
performing LQP on Gabor filtered images and utilizing vec-
tor quantization and lookup table to refine quantization while
keeping low computational complexity [107].

Lei et al. [108] made a generalization of previous
approaches by viewing Gabor faces as a stack where three
axes X, Y, T respectively denotes rows, columns of face
images and different types of Gabor filters. Existing methods
applied LBP on XY plane, while authors proposed Gabor
Volume LBP (GVLBP) by conducting analysis on XT and
YT planes: projecting neighboring relationship of different
face images filtered by Gabor of various orientations and
scales. The projected feature lay in three 2D spaces: one
image space (XY), and two spaces that account for varia-
tions of different face images (XT and YT) and image space
coordinates XY respectively. The paper also proposed an
effective version (E-GV-LBP) to encode features from three
domains simultaneously (the 8 neighborhoods consists of:
2 orientation neighboring pixels, 2 scale neighboring ones
and 4 neighboring pixels in spatial domains). In light of
uniform LBP, authors proposed statistical uniform pattern
to generate histograms. Though E-GV-LBP representation
was more efficient than GV-LBP-TOP, it was still of a huge
dimension and its redundancy greatly affected the efficiency
in feature matching process. Thus authors later utilized Con-
ditional Mutual Information for feature selection and then
LDA for feature transformation.

Inspired by HGPP [21] (as we mentioned in
Section II-A), two attempts were made [109], [110] to inte-
grate Gabor phases with Gabor magnitudes. They argued
that though Gabor phases are sensitive to local varia-
tions, they could discriminate between patterns with sim-
ilar magnitudes and provide more detailed information
about the local image features. The two works differenti-
ate mainly after calculating the posterior to the encoding
scheme: Zhang et al. [109] matched features with histogram
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intersection, while Guo et al. [110] resorted to sparse coding.
Experiments also demonstrated that encoded phases, unlike
their magnitude counterpart, are resistant to illumination
[109]. Xie et al. [111] encoded Gabor phase by XOR oper-
ator. To alleviate the sensitivity of Gabor phase to the vary-
ing positions, phases were firstly quantized into a different
range, two phases were believed similar local features if they
belonged to the same interval and reflected different local
features otherwise.

Apart from Gabor, there are other possible alternatives to
feed into an LBP encoder.

• Using color information to combat illumination vari-
ations: independently extracting LBP from each color
channel [112]; introducing color vectors at each pixel
location within each of the local face regions of multiple
spectral-band images [113].

• Using derivatives of Gaussian-like function G(x, y) =

e
−(x2+y2)

σ2 to avoid redundancy of Gabor feature: feeding
normalized first and second order derivatives to LBP
[114]; exploiting the first derivative of Gaussian to form
a multi-directional pattern for DCP [55]. Experiments
demonstrated that first and second order derivatives
were excellent descriptors for features such as bars,
blobs and corners in images and higher order features
could describe more complicated structures but were
difficult to exploit because of their sensitivity to noise.

• Decomposition of face image using curvelet transform:
applying logarithm transform and LBP encoder to the
lowest frequency band to represent face structure, and
normalizing other frequency bands to reflect edge struc-
ture changes [115]. Both logarithm transform and nor-
malization were done in order to remove dominance of
specific values.

• Sobel filter: enhancing edge information by building
LBP on Sobel filtered faces [116]. Gabor real/imaginary
parts could also be done prior to Sobel operation to form
G_Sobel-LBP.

• Adaptive filters: learning the filter via FSC in a super-
vised way to achieve discriminate ability and encoding
with LBP [38].

• Similar to LGBP, Patterns of Oriented Edge Magni-
tudes (POEM) [117] encoded relationships between
local edge magnitude distributions through different
orientations. The algorithm was proved to have low
computational complexity compared to LGBP and thus
capable of high-performance real-time face recogni-
tion. Vu and Caplier [118], authors fused POEM with
a complementary PDO (patterns of dominant orienta-
tions) descriptor. Unlike POEM that considered the rela-
tionship between edge magnitude distributions, PDO
encoded the relationships between dominantİ orienta-
tion of local image patches by firstly calculated and
assigned the block’s dominant orientation to its cen-
tral pixel, and then encoded the dominant orientation
using an operator. In a later paper [119], the authors

TABLE 1. Cascaded features.

put forward a complementary Patterns of Orientation
Difference (POD) descriptor to capture the relationship
between orientation of image patches. POD differed
from PDO in the sense that it did not require estimat-
ing the dominant orientation of patch and thus it both
avoided possible estimation errors and reduced the com-
putational complexity.

Juefei-Xu and Savvides [120] studied the real-world sce-
narios where only a partial face is captured or instances when
only the eye region of a face is visible, especially for the cases
of uncooperative and non-cooperative subjects. They encoded
coefficients of a variety of discrete transforms including
Walsh-Hadamard Transform (DWT), Discrete Cosine Trans-
form (DCT), Discrete Hartley Transform (DHT) and dis-
crete polynomial transforms. LBP on these frequency domain
representations had much richer and more discriminative
information than spatial-domain representation. And later
they employed several subspace representations (princi-
pal component analysis (PCA), unsupervised discriminant
projection (UDP), kernel class-dependence feature analy-
sis (KCFA), and kernel discriminant analysis (KDA)) on
them to match the periocular region on a large data set
such as NISTs Face Recognition Grand Challenge (FRGC)
ver2.0 database. Verification results on periocular images
matching showed the merit of discrete transforms over mere
LBP.

We selectively summarize papers cascading various local
features in Table 1.

III. FEATURE ENCODING
In the previous section, we have discussed the filters and the
generation of histograms without a codebook. Histograms
without a codebook are easily implemented yet they could
not adapt to specific dataset. In this section, we would dis-
cuss a more general way of encoding filter responses. Our
discussions focus on four facets: encoders based on K-means,
encoders based on GMM, sparse representation and tree-
based encoder. The encoders are often based on codebooks
learned. Section III-B, Section III-C deals with encoders
on K-means and GMM generated codebooks respectively.
Section III-D is about Sparse representation, an algorithm
that differentiates from the above methods in encoding and
codebook generation. Lastly we discuss about a quantizer and
encoder that utilize a tree-like graph in Section III-E.
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FIGURE 2. Example encoder based on codebook generated by K-means
and GMM. (a) Hard partitioning. (b) Soft assignment.

A. ENCODERS BASED ON CODEBOOKS
Encoders based on codebooks can be split to a training phase,
where we learn a codebook, and an encoding phase, where
the dictionary is used to extract features from new inputs.
Expectation Maximization (EM) algorithm is an iterative
method for finding maximum likelihood and is commonly
used for codebook generation. One can form learned feature
vectors based on these codebooks. There are two formsmodel
for doing this: the discriminative model, which is based on
hard partitioning, and the generative one, which soft assign
labels according to probability affinity. An extremely pop-
ular hard version of EM algorithm is K-means algorithm,
which locates cluster centers by finding centers of Voronoi
cells. This method of representing features via cluster centers
resembles lossy compression methods and is often named
vector quantization (VQ): a mapping from the original fea-
ture space to a finite set of codebooks (representative vec-
tors). As for soft EM, Gaussian Mixture Model (GMM)
is a codebook learning algorithm obtained by probability
assignment. With generated codebooks, encoding procedures
ensue. In practice, we could use K-means as an initialization,
followed by EM algorithm for GMM training. Figure 2 is an
illustration of an encoder for K-mean and GMM codebooks.
Figure 2 is the core idea of Vector of Locally Aggregated
Descriptors (VLAD), which is a learned feature computed
by summing the residuals of local feature and each cluster
centers found by K-means. Figure 2, in contrast, illustrates
the formulation of Fisher Vector (FV), which consists of
the summed first and second order statistics regarding local
features and each GMM centers. FV formulation is more of
a probabilistic approximation. Its intuitive is: the gradient of
the log-likelihood describes the direction in which parameters
should be modified to best fit the data [125]. We would
discuss encoder based on K-means and GMM, and lastly
Sparse Representation would be introduced for local features
as a special form of encoder, where codebooks and their
corresponding coefficients are found to reconstruct the image
under sparsity constraints.

A generalization of vector quantization discussed above
is the tree-based encoder. Two commonly used tree-based
encoding frameworks are: decision tree and projection tree.
A decision tree can be viewed as a tree-like graph or model
of decisions and their possible consequences as a predictive

model. It can form classification trees by mapping observa-
tions about an item to conclusions about the item’s target
variable, which can take a finite set of values (their respective
labels). Projection tree, on the other hand, hierarchically par-
tition the source space into pieces in a manner that is provably
sensitive to low-dimensional structure. It can be viewed as
a novel method of VQ and variant of the k-d tree that is
manifold-adaptive [126].

B. ENCODERS BASED ON K-MEANS
Awidely used K-means form in texture analysis scenario is to
convolve an image with N different filters, whose response at
a certain pixel forms an N -dimensional vector. A collection
of such vectors is clustered with certain algorithms to form
a codebook. Then a histogram is built with each position
of the image is labeled with nearest cluster center and the
histogram of the image is used as a descriptor [11], [34],
[36], [45], [107], [127]. These works clustered various local
features: projected filter responses, LBP histograms, LTP
histograms, etc. Of course, K-means could be used directly
on image patches to obtain ‘textons’ for each face block, and
features are labeled according to the textons to generate a
histogram for face recognition [16], [22], [128]. There are
some variations of this idea: using weighted histograms to
signify the importance of face componenets [127]; dividing
images into groups and K-means is performed twice: firstly
within each group and then on its resulted centers [22].

K-means can be used to generate codebooks for con-
ventional VLAD [129] model, which is done in Euclidean
spaces with centers of Voronoi cells obtained via K-means.
Assume we would like to encode an image with local fea-
tures extracted as X = {xt , t = 1, ...,T }, VLAD captures
deviations of the distribution of local descriptors assigned to
a cluster center, each local descriptor xt is associated with its
nearest visual word µk in the codebook, and all local descrip-
tors associated withµk are aggregated as vk =

∑T
t=1 xt−µk .

VLAD has a final representation size of KD, with K the
number of cluster centers and D feature dimension. There
are practices that apply various local descriptors (SIFT and
SURF) encoded by VLAD to face recognition field [69].
Contrary to conventional VLAD, Faraki et al. [130] extracted
LBP locally and extended VLAD to an extensive space
of curved Riemannian manifolds. Extension to Riemannian
manifolds exploited geodesic distance to determine the clos-
est descriptor to each codeword. Given the metric, the code-
bookwas trained using an EM-based approach similar to stan-
dard K-means. Hard assignment K-means can also be used to
facilitate computation efficiency of GMM models [70], [82].

C. ENCODERS BASED ON GMM
Contrast to hard assignment with K-means, generative
clustering models with GMM are observed in some other
researches. For example, Sharma et al. [37] modeled differ-
ential vectors with GMM instead of predefined hard quan-
tization procedure, and image representation was based on
Fisher score. The use of GMM to derive soft probabilistic
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quantization on differential vectors could be seen as a gen-
eralization to LBP, as LBP can be viewed as a discretization
of differential space into two bins per coordinate.

Probabilistic Elastic Part (PEP) is a representation by
concatenating local descriptors of facial parts obtained
through performing GMM on spatial-appearance features,
the densely-sampled multi-scale local features augmented
by the descriptors spatial location coordinate. Each Gaus-
sian component stands for patches of a semantic meaning
(e.g. eye, mouth). A testing image is represented in bag-of-
words manner where the feature pair that induces the highest
probability on each Gaussian component is found. In detail,
to encode an image, local descriptors are extracted and each
one of the K Gaussian components commits one descriptor
with the highest probability, and PEP is formed by concate-
nation of such chosen descriptors, forming the representation
of the face. In this method, GMM act as a bridge to establish
the semantic correspondence between two images. One detail
is that Gaussians in GMM is restricted to be spherical to
enforce more localized Gaussian components. This method
is present in three papers. Li et al. [71] used Universal Back-
ground Model and GMM to model image patches. Video
face recognition system of Li et al. [72] represented features
as the mean of PEP across all video frames to naturally
suppress appearance variations. This representation is fol-
lowed by PCA and joint Bayesian classifier. Li and Hua [73]
applied PEP model hierarchically to present a deep model.
Face image was hierarchically decomposed into face parts
of different levels, exploiting fine-grained structures of face
parts and capturing pose-invariant sub-structures. The model
located face parts and sub-parts in a top-down manner and
then construct representation with SIFT from bottom-up
either supervisedly or unsupervisedly.

FV is also an important model for face recognition. The
central idea of FV encoding is to aggregate higher order
statistics of each codebook learned into a high dimen-
sional vector. More specifically, a GMM is trained as the
visual codebook. Then, averaged first-order and second-order
distance statistics with respect to each Gaussian compo-
nent is concatenated to form the final feature representa-
tion. For local descriptors of an image X = {xt , t =
1, ...,T } and GMM p, parameters of p is denoted as θ =
{wk , µk , 6k , i = 1, ...,K }, which denote prior, mean vector
and covariance matrix of the k-th Gaussian, respectively.
The gradient ∇θ log p(X |θ ) is the average higher-order statis-
tics between a D-dimensional image descriptor and a cen-
ter of GMM. The likelihood that xt is generated by the
GMM is p(xt |θ ) =

∑K
k=1 wkpk (xt |θ ), in which pk (xt |θ ) =

exp{−(x−µk )′6
−1
k (x−µk )/2}

(2π)D/2|6k |1/2
and

∑K
k=1 wk = 1. We denote the

probability for feature xt to have been generated by the k-
th Gaussian as γt (k) =

wkpk (xt |θ )∑N
j=1 logwjpj(xt |θ )

. We calculate the

gradient of xt with respect to GMM center and covariance as:
G X
µk
=

1
√
wk

∑
t γt (k)

xt−µk
σk

, G X
σk
=

1
√
2wk

∑
t γt (k)[

(xt−µk )2

σ 2k
−

1], and they are 1st and 2nd order statistics, respectively.

Concatenation of the two and we obtain 2DK -dimensional
FV. Simonyan et al. [68] first used FV to represent dense
SIFT features augmented by normalized descriptor location.
To construct a more compact and discriminative face rep-
resentation, they proposed an efficient dimension reduction
method for high-dimensional FV. Recently, Li et al. [131]
proposed a selective encoding framework that injected
foreground/background probability into each cluster of a
descriptor codebook. An additional selector component also
discarded distractive image patches and improved spatial
robustness. The scheme was applied to FV features to allevi-
ate inaccurate face localization in unconstrained face recog-
nition problems. FV could also encode RDF [74]. RDF can
be seen as a generalization of GMM that create different
partitions of the feature space. The split used at each node of
each tree is determined by a random sampling process. Given
a set of input SIFT descriptors, authors randomly generated
a fixed number of candidate splits and selected the best split
parameter for each node by maximizing an information gain
function. This paper originated from the major drawback of
the enormous size of the final image descriptor, and it offered
a tradeoff between dimensionality and precision.

Encoders based on GMMmay be disadvantageous to cover
complex datasets in that the number of Gaussians need to be
specified manually. A discriminative feature extractor named
GaussianFace [132] used multi-task learning based Discrim-
inative Gaussian Process Latent Variable Model (DGPLVM)
that based on the non-parametric Gaussian Process Latent
Variable Model [133]. DGPLVM mapped a high dimen-
sional data representation to lower-dimensional latent space
using a discriminative prior on latent variables to encour-
age latent positions of the same class to be close and dif-
ferent class to be far while maximizing the likelihood of
the latent variables in the Gaussian process framework. The
resulting covariance matrix could be used to group latent
data points automatically. After latent representation of the
data, the following steps were similar to classical feature
extractor: first-order and second-order statistics to the cen-
ters were computed; Gaussian process binary classifier was
employed to obtain corresponding probability and variance;
statistics and variance were concatenated and represented
as high-dimensional facial features. Further, to alleviate the
complexity of DGPLVM, they introduced approximation and
a computationally more efficient equivalent form of Ker-
nel Fisher Discriminant Analysis to DGPLVM to simplify
calculations.

D. SPARSE CODING
Since each patch only captures subtle facial textons, many
patches are visually similar to each other. Directly using the
intensity feature for face recognition may not be favorable,
because even a tiny perturbation like expressions or noises
might induce a considerable change on the distances between
two patches. To improve the robustness and enhance the
discriminability, many papers employ sparse representation
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to generate powerful representations from low dimensional
error-prone patches to high dimensional sparse coefficient
space.

The underlying idea of sparse representation is to represent
a query patch as a sparse linear combination of a dictio-
nary, assuming that each subject has sufficient samples in
the dictionary to span over possible subspaces. Therefore,
each probe image patch can be considered to be represented
by a sparse code α that is comprised of coefficients that
linearly reconstruct the patch via the dictionary A. Sparse
representation can be seen as a special form of soft assign-
ment with codebooks learned. Sparse coding relies on the
sparsity assumption, and the assumption holds when each
class in the gallery has sufficient samples and the query lies
on the subspace spanned by the gallery of the same class.
Only those atoms in the dictionary that truly match the class
query sample contribute to the sparse code. In practice, sparse
representation with `1-minimization approach that solves an
optimization problem based on reconstruction error is often
implemented. It reconstructs a given patch as a linear combi-
nation of dictionary atoms. This section majorly deals with
sparse representation used as feature generation for each
image blocks, and sparse representation used to generate a
global feature would be discussed in Section V-D.
In 2009, Wright et al. [134] systematically formulate an

approach for Sparse Representation-based Face Classifica-
tion. Given a test sample from one of the classes in the training
set, sparse representation was computed and assignment to
a specific class was done according to non-zero entries in
the sparse coefficients α. Considering the presence of noise
and variations, they assign the image to which resulting least
residual using coefficients associatedwith that class. To reject
invalid test images, authors devised a validation test proce-
dure by defining a sparsity concentration index that quantify
concentration (or spread) of sparse coefficients for different
classes. They tested some holistic feature extraction method
(Eigenface, Laplacian face, downsampled image and random
projection) and argued that it is beneficial to reduce data
dimension before sparse representation. They also tackled
occlusion by introducing a novel Occlusion Dictionary whose
basis matrix could be an identity matrix, given occlusion was
rather local. The algorithm would seek the sparse solution
on both the original dictionary and the Occlusion Dictionary.
They focused on the sparse representation of the whole image
and partial face features (eyes, nose, mouth, and chin), but
found in the experiment that reconstructing with sparse cod-
ing independently for each image blocks achieved a better
result.

As sparse representation linearly reconstruct a probe image
by all the training images under sparsity regularization, its
performance relies heavily on dictionaries, or codebooks.
While K-means clustering is one possible choice of codebook
generator [135], there are models that more commonly used
and we list them below:
• K-SVD: K-SVD is a generalization of K-means, and
is observed as a mean to learn over-complete visual

dictionaries for residual-based face recognition. K-SVD
algorithm could be used for densely sampled image
patches [136], DCT features [83], or patches extracted
at particular landmarks [137].

• FSC: Yang et al. [138] presented a supervised dictionary
learning method based on FSC. The model exploited
discriminative information in not only the represen-
tation residual but also the representation coefficients
to classify query image. Dictionary atoms had corre-
spondences to class labels, and FSC was enforced to
sparse representation coefficients, thus good reconstruc-
tion was enforced to same class training samples and
poor reconstruction was enforced to other classes.

• Intra-class dictionaries: Introduced by Deng et al. [139]
(to be discussed in Section V-D), intra-class dictionar-
ies expanded the training set and gained robustness,
especially in Single Sample Per Person (SSPP) case.
Zhu et al. [140] observed that different importances of
facial parts contributed to the problem. They adopted a
local representation approach: each patch of the query
sample was represented by the local gallery dictionary
and an intra-class variation dictionary at the correspond-
ing location, and they aimed to minimize total residual.
Gao et al. [141] also adopted intra-class variance dictio-
nary to represent variances in illumination, expression,
occlusion. In addition to intra-class variance dictionar-
ies, they formed an optimization procedure consider-
ing 3 facets: non-zero coefficients only appeared at the
places which corresponding to the person these patches
belong to (by enforcing group sparsity constraint); each
patch coefficients associated with intra-class variance
dictionary should be sparse; reconstruction error should
be small.

• Random dictionaries: Shen and Shen [135] experi-
mented dictionaries generated by K-means, K-SVD
or randomly of different sizes and sources to find that
the choice of dictionary learning methods might not
be important and learning multiple dictionaries using
different low-level image features often improved the
final classification accuracy. The paper also showed that
spatial pyramid with max-pooling was beneficial and
soft threshold encoding could achieve results on par with
sparse representation and with less computation time.

We analyze several sparse coding examples. Min and
Dugelay [142] divided face into 3 levels (2 × 2, 4 × 4 and
8 × 8 blocks each) like a pyramid. In each division
level, sparse codes of LBP histograms were elementary-
wise summed together, rather than concatenated. Similarly,
we could select meaningful features from high-dimensional
overcomplete LBPs via sparse representation [143].
In another sparse system, only non-negative codes are
retained within each block: the nonnegative constraint on the
code allowed direct sum a set of codes without considering
their negative values [144].

Correlation of sparse codes could also be a useful mea-
sure of image similarity. Guo et al. [145] proposed a face
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verification framework by extracting several local features,
using correlation and dissimilarity of the sparse codes of
the image feature pair to form similarity score, and per-
formed score level fusion. On the other hand, Liu et al. [146]
partitioned each face into a set of overlapped blocks and
classify each block, then aggregated the classification results
by voting to make the final decision. To generate classi-
fication result for each block, blocks were further divided
into overlapped patches. By assuming image patches lie in
a linear subspace, the central patch of the test block could
be approximately represented by a linear combination of
the patches in the corresponding block from the same class.
This core assumption reflected local structure relationship
of overlapped patches and makes sparse coding feasible for
SSPP problem. Finally, they integrated all the classification
results by voting. Theodorakopoulos et al. [147] observed
that: in the sparse representation of patches corresponding
to the same facial location of different pictures taken from
the same individual, the majority of the atoms used would be
the same, despite illumination changes or small expression
variations. Thus, the Hamming distance between the sparse
coefficient vectors derived from sparse coding procedure of
the two patches would be an efficient local dissimilarity
measure between the two facial images. Therefore, they uti-
lized block-based sparse coding and Hamming distance to
express pairwise similarities between faces. The authors also
elaborated a new criterion for the rejection of person not
registered in the database by estimating the ratio between the
overall maximum similarity value and the maximum value
achieved ignoring the values corresponding to the person that
is matched with.

Collaborative Representation was initiated by relaxing
sparsity constraint in sparse coding from `1 norm to `2 norm
and solve by least square [148], [149]. It represented
query sample with non-sparse `2-regularization rather than
`1-regularization. Liu et al. [146] extended their SSPP sparse
correlation coding scheme to collaborative representation
for face recognition. To improve the performance of col-
laborative representation for small sample size problems,
Zhu et al. [150] put forward Patch-based Collaborative Rep-
resentation, where the representation was conducted on
patches of different scales and classification was done by
combining recognition output of all the overlapped patches.
Ensemble learning was utilized to fuse information at differ-
ent scales optimally. In [151], a locality-constrained version
was adopted, in which the objective function coded the train-
ing data and its nearest neighborhood to produce minimal
reconstruction errors simultaneously.

As a specific example, Wong et al. [83] showed a typ-
ical sparse-based face feature extraction procedure. Facial
images were divided into blocks and transformed via local
transformation like DCT. For each block, the sparse vector
was generated by the sparse encoder using a learned dic-
tionary. While sparse coding was employed as the encoder,
they tackled an `1 minimization problem with dictionaries
obtained by K-SVD. Each region was then described by a

TABLE 2. Various sparse coding approaches.

sparse code by average pooling strategy. The framework is
extremely similar to [136], where aligned and geometrically
normalized image was firstly filtered with DoG to get rid of
illumination variations and noise. Next, with a handcrafted
sampler, an intensity vector was obtained at each pixel. Then
the vector was sparsely encoded to a non-negative code vector
with an overcomplete dictionary learned offline byK-SVDon
face patches. Sparse code vectors within a pre-defined block
were summed together to form a descriptor of that block,
and descriptors were concatenated to form the face descriptor.
Compared with histogram based methods, the summation of
sparse coefficients was similar to soft clustering and was
more robust to variation in image appearance. Finally authors
applied PCA to reduce dimension.

As a summary, Table 2 shows some of the typical spase
coding approaches.

E. TREE-BASED ENCODER
Here we list decision trees and projection trees which perform
as a quantizer and encoder that transform local descriptor
input and generate quantized code output.

A primitive study of the decision tree (DT) in face verifica-
tion appeared in a paper of Nowak and Jurie [153], who used
extremely randomized decision trees according to theoretical
studies of [154]. In the scenario, only same or different labels
were known. The paper extracted SIFT feature and quantized
them using randomized trees for similarity measurement.
Several pairs of corresponding local patches were sampled
from a pair of images, with each patch pair assigned to
several clusters with an ensemble of extremely randomized
decision trees. The cluster memberships were combined with
pre-determined optimized weights to make a global decision
about the pair of images. Randomized trees saved training and
testing time and also gave good properties when dealing with
high-dimensional features. A variant of the random decision
tree, Random Density Forest, is an unsupervised method
to minimize the Gaussian differential entropy of each split
that appeared in [74] as an alternative to GMM to create
different partitions of the feature space as well as to create
discriminative visual vocabularies. In the paper, FVs were
built over the RDF (refer to Section III-C). Another approach
by Maturana et al. [155] learned discriminative features by
a supervised DT, forming DT-LBP. Rather than comparing
pixel with all its neighbors, DT-LBP chose the most infor-
mative pixel comparison based on entropy impurity. The
obtained LBPs were adaptive and discriminative in that: they
were constructed by decision tree and randomized tree con-
struction algorithms that had been shown to be very effective
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in computer vision applications; constructing different tree
for each region enabled different discriminative patterns for
different face image regions;much larger neighborhood could
be used and the algorithm could decide relevant neighbors.
Authors had found that for their problem single trees were
more effective than random trees. A hierarchical DT was
built in [156] using a bottom-up approach by recursively
clustering and merging classes at each level. This DT was
used for feature selection from a set of potentially discrim-
inative HOG features: for each branch of the tree a list of
HOG features was built using the log-likelihood maps to
favor locations that are expected to be more discriminative.
Recently, Gong et al. [157] utilized DT followed by a new
probabilistic matching framework. The encoder was such
trained with face images that the frequency of output codes
distributes as evenly as possible and discriminative ability
in terms of maximum entropy is maximized. This could be
seen as a robust and discriminative generalization of LBP
algorithm.

Projection trees partition a feature space into cells in a
recursive manner, splitting the data along one projection
direction at a time. A binary tree whose leaves are individual
cells was thus built with the succession of splits. The code
of each test sample is assigned according to the cell (the leaf
node) it belongs to. Wright and Hua [158] used random pro-
jection tree to quantize discriminative local descriptors. The
resulting trees were only weakly data-dependent and exhibit
good generalization in practice even across very different
datasets. Cao et al. [45] encoded image via K-means, PCA
tree and Random Projection (RP) tree for comparison and
RP tree outperformed other methods. Zhang et al. [44] first
extracted features with their LBP-like descriptor, then they
put forward coupled information-theoretic encoding, which
adopted Mutual Information Maximization between photos
and sketches and achieved coupled encoding by coupled
information-theoretic projection tree.

IV. SPATIAL POOLING
Previous sections focus on filters, quantization, and encod-
ing. In this section, we discuss measures to obtain a global
representation with the tool of spatial pooling, where many
papers observed the facial image structure (with face parts
like eye, nose, and mouth) as a prior and made divisions
accordingly. Various feature poolingmethods can be regarded
as an enhancement to feature encoding.

Spatial pyramid [66] (as mentioned in Section III-D) is a
systematical framework that can be seen as a generalization
of a basic form of spatial pooling–block division. This is
equivalent to applying descriptors in each separate blocks
independently and respectively. Then, aggregate or concate-
nate all the representation vectors for each division to form
a global one. This simple strategy is fast as well as effi-
cient, thus is applied widely to face recognition experiments,
and it inspired countless visual models including Multiple
Spatial Pooling that describe the spatial structure with mul-
tiple Gaussian distributions with respect to local features’

locations in the image space and setting the centers of blocks
as Gaussian pooling clusters [159]. As block divisions of
the spatial pyramid are done hierarchically to capture fea-
tures of various scales. Therefore, descriptors of multiple
scales and multi-descriptor fusion could be beneficial as
well. We would discuss block division in Section IV-A and
multiscale features in SectionIV-B, respectively. We would
discuss a direct way to fuse features via concatenation in
Section IV-C.

A. BLOCK DIVISION
Face is rather structural, if histogram is computed within
the whole image domain, spatial facts of each feature would
be lost. Therefore provided that face alignment was done,
it is beneficial to define facial image blocks for us to extract
descriptors from within separately, hence two descriptor will
match only if it is extracted from the same block location.
Through this way, important geometric information of face
could be encoded within our descriptor. A direct approach
done in most papers extract features on square, manu-
ally selected, non-overlapping blocks of same size respec-
tively, normalize and concatenate them together, as done
by [40], [59], [60], [80], [108], [109], [116], [147], [155],
and [160]–[165]. Some papers provide details of their
blocks, [117], [166] divided the image into 8 × 8
blocks, [97], [36], [44], [167], [110], [168] partitioned the
image into 10 × 10, 7 × 7, 7 × 5, 5 × 5, 4 × 2, 3 × 3
blocks respectively. Lei et al. [22] divided the image into
7 × 8 regions. Meng et al. [128] showed relation between
block number and accuracy in a table. Some works improved
the simple divisions above, for example: practicing several
partition schemes and fused them in a metric learning frame-
work [144]; manually weighting facial blocks according to
their significances [21], [32], [34], [89]; appending spatial
coordinates of patch center to SIFT features to form an
augmented local descriptor [68], [131]. Apart from non-
overlapping blocks, overlapping block partition was adopted
in [140] and [151]. Chan et al. [169] composed block-wise
histograms with or without overlapping to form final fea-
tures, and suggested that non-overlapping blocks are suitable
for face images. Yuan et al. [170] explored several partition
schemes (10×10, 5×5, 4×4, 2×2). Zhong and Zhang [98]
utilized a 10 × 10 scheme for PIE database, and 8 × 8 for
YALE. Chowdhury et al. [171] utilized non-overlapping sub-
images and the whole image as well. Finally, contrast to
regular square division, several papers proposed non-square
division based on fitting 3D face models [172]–[174].

Data-adaptive learning approaches are made to obtain
optimal block division. FSC is a relatively popular way of
optimizing block weight to achieve discriminative recogni-
tion. Jiang et al. [175] used FSC for block weight optimiza-
tion to achieved discriminant classification. Two experiments
on FERET database [20], [21] utilized non-overlapping
8 × 8 blocks and weighted them by FSC. Lei et al. [22]
and Zhang et al. [21] weighed LGT histograms and HGPP
respectively based on FSC.
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Another approach includes: Quad-tree was used in [101] to
select best (overlapping and non-overlapping) block division.
Authors went down the quad-tree stopping at the level beyond
which no improvement in recognition rate is observed. It is
also worthwhile to note that in the testing phase, each patch
from the test image casted a vote towards image classes, and
the class with maximum votes won.

Landmarks can be detected to give us a prior for choosing
proper regions to extract locations, and many works extracted
blocks surrounding each landmark specified only [45], [79],
[152], [176]; or based their features on Elastic Bunch Graph
Matching of landmarks [78]. A recent architecture [177]
combined multiple features on multiple landmark patches
together and normalized it to form a final feature for clas-
sification.

Inspired by spatial pyramid, many works applied hierar-
chical block division. Sanderson and Lovell [82] put forward
the hierarchical Multi-Region Histogram (MRH) scheme by
divide face into 2 × 2 regions, where each region was fur-
ther divided into small overlapping patches. For each patch,
descriptive features were placed into a vector. This ‘visual
word’-inspired overlapping MRH was used as a representa-
tion of 2D DCT features. Wong et al. [83] employed sparse
codingwithin theMRH framework to form a novel descriptor.
Each region inMRHwas described by average pooling sparse
codes within the region. Uzun-Per and Gokmen [84] divided
the image into non-overlapping blocks and overlapping sub-
regions in each block. To overcome the problem of uninten-
tionally dividing meaningful parts into different subregions,
the authors made shifting at the starting point and make two
partitions. In a similar manner, Liu et al. [146] took a hier-
archical division by partitioning the image into overlapping
blocks and blocks into overlapping patches. The partition was
aggregated by plurality voting, and the scheme was capable
of multi-scale operation, though the paper experimented only
the single-scale version. Sandereson et al. [178] later devised
a multi-layer feature extraction procedure, in which overlap-
ping, weighted blocks, and descriptors were pooled. Features
were extracted separately and they devised a boosting-based
method to learn salient region along with optimal mixing
weight. Pairwise distance of training images for each region
was combined to determine the most useful ones.

Rather than concatenating features within blocks,
we observed some works analyzed feature interdependencies
among blocks. Yao et al. [91] projected face image blocks
onto an undirected connected graph and interdependencies
between local regions were encoded, which lead to a new
facial feature descriptor called Spatial Feature Interdepen-
dence Matrices. Lu et al. [28] observed the distributions of
face images for one person may have different densities,
shapes and proposed to measure similarity among patches
by constructing networks based on random path (RP) mea-
sure for face recognition. RP measure includes all paths of
different lengths in the network and could capture robust
discriminative information. They divided faces into multiple
overlapping patches of the same size and modeled them

by constructing two face patch networks: the in-face net-
work and the out-face network. The in-face network was
constructed for one pair of faces: at each patch location,
two corresponding patch pairs and their eight neighboring
patches were used to form a graph, and patch similarity
according to RP was calculated and integrated. The out-face
network was constructed rather globally over the training
space: for each patch, a search was conducted over the whole
database of face patches and they found similar patches in
the same location neighbors of the patch to form the patch
pair network. The similarity of the two networks could be
optimally combined to form a similarity vector for SVM
classification. Kumar et al. [179] extended the naive block-
based weighted plurality voting classification approach. They
divided the image into 8 × 8 pixels blocks, classified each
block with a classifier, took higher order relationships among
blocks into account using kernels, then aggregated blocks by
weighted plurality voting.

Block-wise concatenation of descriptors would lead to
extremely high dimensional vectors. To alleviate this effect,
discriminative features are needed. Common practices are
feature transform and feature selection. PCA, an unsu-
pervised feature transform method, can remove noises by
discarding eigenvectors corresponding to small eigenval-
ues and was adopted in [29] and [92]. However, PCA is
easily affected by high-frequency visual words with large
eigenvalues. Especially, for face images, smooth facial
areas like cheek and forehead area may lead to recur-
rence of same visual words. These high-frequent visual
words contribute strong responses for the corresponding
eigenvectors and eigenvalues when using PCA. A better
way is to use Whitened PCA (WPCA) which suppresses
the responses from larger eigenvalues. WPCA is observed
in [144] and [180]. Xie et al. [111] introduced a block-based
Fisher’s linear discriminant (FLD) on LGBP and LGXP to
reduce dimension while enhancing their discriminative pow-
ers. The basic idea of block-based FLD is to first blockwise
divide local descriptor into multiple feature segments, apply
LDA to each segment and combine the decisions of all block-
wise features. BFLD was also utilized in [84] and [181].
Shen and Shen [135] applied ZCA and local contrast nor-
malization to each patch. PCA could also be viewed as
a filtering process. Chan et al. [169] utilized a cascade of
PCA filter banks to form ‘PCANet’ features. It is followed
by simple binarization, indexing, and pooling with respect
to block-wise histograms to form the final sparse feature.
Inspired by PCANet, Lei et al. [182] generalized their DFD
descriptor [36] to a stacked image descriptor (SID). SID
was optimized in a forward layer-wise way, thus could
be seen as the pre-training result for Convolutional Neural
Network (CNN). Four implementations including PCA-SID,
Discriminant Tensor Analysis-SID (DTA-SID) and DFD-
SID were introduced. Contrary to PCANet which views
the response of different PCA channels as different sam-
ples, responses of deeper levels of PCA-SID were com-
bined by different projective weights that were learned.
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Moreover, integrating higher-order information for discrim-
inant learning was possible via DTD-SID, and discriminant
convolutional filter with optimal sampling was possible via
DFD-SID.

Besides feature transform, there are discriminative feature
selectors. Jones and Viola [99] selected important features
using Adaboost. Adaboost is based on the following fact:
using a single feature to classify can result in slightly bet-
ter than random performance, so it can be used as a weak
classifier. Adaboost learns the classification by selecting only
those individual features that can best discriminate among
classes. Zhai et al. [183] selected discriminating patch subset
by jointly considering points, descriptor and similarity in
a patch-descriptor-similarity space. Zini et al. [143] selected
meaningful and sparse features simultaneously via Group
LASSO. Group LASSO directly modeled multi-class prob-
lems and allows feature group selection (select the whole
group or discard all features belonging to it) simultaneously
discriminating among all the identities. Taking the com-
putational expense of straightforward Group LASSO into
consideration, Huang et al. [180] proposed a two-step met-
ric learning method to enforce sparsity, to avoid features
with little discriminability and to improve computational effi-
ciency. The paper firstly selected groups of features with a
Mahalanobis matrix, and then another Mahalanobis matrix
was learned to exploit the correlations between the selected
feature groups in the lower-dimensional subspace.

B. MULTI-SCALE LOCAL FEATURE GENERATION
Face feature matchings are often performed at different
scale level. To accommodate objects of various scales,
multi-scale block division is observed in many papers. Ref-
erence [14], [21], [22], [103], [104], [123], [124], and [164]
extracted multi-scale Gabor features for non-overlapping
blocks and concatenate them. Particularly, the number
of scale of Gabor features in [14], [21], [22], [123], [164],
and [124] were 5 and 3 respectively. Yang and Zhang [18]
extracted local Gabor features of 5 scales and 8 orientations
and performed sparse coding on these features. Some parti-
tions involve weighting different blocks: [16], [103], [123]
extracted multiple scales of Gabor features and calculates
block weight according to FSC; Jeong and Kim [122] pro-
posed a four-step weighting scheme of 6 × 5 blocks based
on their inner variations. Meyers and Wolf [23] operated on
image filtered by Gabor of various sizes, performed max-
pooling, concatenated features of different scales and orien-
tations and weighted them.

Spatial pyramid, a coarse-to-fine spatial division scheme,
is also a popular choice for multiscale features [166], [184].
Galoogahi and Sim [185] applied spatial pyramid of 5 levels.
Shen et al. [186] densely extracted multi-scale patches via
spatial pyramid, built a multi-level pyramid and adopted
multi-level spatial pooling. The spatial pyramid could also be
combined with sparse coding frameworks [66], [67], [135].

LBP features can be also extracted in multiple scales
by varying its parameter R [60], [88], [187]–[191], and

multi-scale LBP (M-LBP) performed better than single
scale LBP. Experiments in [192] had shown M-LBP on
non-overlapped block division performed better than its
overlapped version. Liao et al. [193] made an alternation
of M-LBP, where the average sum of multi-scale blocks
was thresholded. Lu and Tang [132] extracted M-LBP on
overlapped patches surrounding accurate landmarks only.
Gong et al. [157] divided images into overlapping patches
and put forward a generalization of LBP matching based
on maximum entropy and identity factor analysis. Still,
recognition accuracy was improved with M-LBP on vari-
ous scales integrated. A variant of M-LBP is Hierarchical
M-LBP (HM-LBP) which extracted information from non-
uniform LBP patterns without extra training [95], [194],
[195], and the former two works extracted HM-LBP on
3 scales.

Apart from Gabor and LBP features which are direct
ways to attain multi-resolution, other features appeared
as well. For example: Ouamane et al. [32] attained LPQ
of different scales with various window and filter sizes;
Berg and Belhumeur [79] used two scales of grid for HOG
feature; Ding et al. [56] extracted 3 scales of DCP fea-
ture. Lei et al. [196] had done experiments comparing Local
Phase Quantization (LPQ) based on a 9-scale Short-term
Fourier Transform with non-overlapped blocks and over-
lapped blocks and found the latter option better. Multi-
scale patch extraction surrounding landmarks was seen
in [29] and [137], where the former used 5-scale patch extrac-
tion on 27 accurate landmarks, and the latter 2-scale on
26 landmarks. Zhu et al. [150] classified query samples with
collaborative representation by combining recognition out-
puts of 7-scale overlapping blocks. Similarly, Nan et al. [197]
utilized collaborative representation for non-overlapping
multi-resolution blocks and aggregated them by weight
fusion.

Other innovations are mainly inspired by image pyramid.
In [158], multi-scale dense patches all across the image
were extracted from a Gaussian pyramid of 3 sizes.
Jun and Kim [41] set up an image pyramid for face detec-
tion. Multi-scale block was also achieved by Bing et al. [198]
with block division and image pyramid, whose weights were
learned via Fisher criterion. Li et al. [71]–[73] combined
image pyramid, overlapping patches and location augmen-
tation to form spatial-appearance features. Struc et al. [199]
had face image cropped tightly, normally and broadly accord-
ing to landmarks to achieve a 3-scale presentation. In a similar
fashion, Hwang et al. [81] formed 3 face models by cropping
face to 3 levels: fine, middle and coarse. Huang et al. [180]
enumerated rectangular regions of varying sizes from 8 ×
8 to 96 × 144 within the 110 × 150 region. In a simi-
lar manner, Min and Dugelay [142] applied multiple block-
division schemes, which resulted in blocks of multiple scales,
and extracted LBP histograms for sparse representation and
classification.

We selectively list methods that integrate spatial informa-
tion and their respective characteristics in Table 3.
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TABLE 3. Various block division approach.

C. FEATURE-LEVEL FUSION
Fusion of different descriptors is a way to gain robust
descriptors and it appeared in many works. The fusion of
different modalities is generally performed at two levels:
feature level and decision level. In the feature level fusion,
the features extracted are first concatenated into a single
feature vector and then sent to a classifier. Its advantage
mainly lies in the simplicity of training (as only one learn-
ing phase on the combined feature vector is required) and
the exploitability of correlation between multiple features
at an early stage. However, it is required that features to
be fused are represented in the same format before fusion.
Some practices are: [201] combined variants of LBP to form
a joint histogram; in [178], local LBP features and holis-
tic Laplacianface features were extracted; in [202] several
local descriptors including pixel coordinates, intensity and
derivatives were used. Other examples are: LBP+LPQ [170],
LBP+Gabor [203],LBP+LTP [167], LBP+pixels [135],
LBP+grayscale and gradient images [46], LBP+SIFT [71],
POEM+POD [119]. Some tricks are essential to guarantee
a rational feature combination. Please note that PCA and
normalization was performed in [203].

Hwang et al. [81] made use of three types of Fourier
features extracted: concatenated real and imaginary compo-
nents, Fourier spectrums and phase angles. To obtain more
salient features, they adopted three different frequency bands
designed for each individual feature, as well as three face
models based on image scale. These features were concate-
nated, and subspace methods were used to alleviate increased
dimensionality.

Our aforementioned practices are typical examples of
feature-level fusion, a simple practice by concatenating fea-
tures. Decision level and other types of fusion would be
mentioned in Section V-C.

V. HOLISTIC ENCODING
This section discusses holistic encoding, which deals with the
final feature vector for the whole image that learned from
local features discussed in previous sections. In Section IV,
descriptors obtained from various localities are aggregated to
form global features.

Initiated in [64] and [204], computing SIFT over dense
grids in the whole image domain, rather than finding
several points of interest, is often preferred in experi-
mental evaluations. Our observation shows that features
in many experiments were multiple densely extract fea-
tures concatenated together. Extracting patterns from huge
amounts of multi-dimensional data can be overwhelming,
and matching concatenated descriptors is time-consuming.
Though some papers utilized block-wise dimension reduc-
tion or apply models like VLAD and FV to aggregate descrip-
tors, the resulting descriptor can be still huge. Thus various
kinds of transformations are often applied to reduce dimen-
sion, which can be observed in many papers. And here in
Section V-A and V-B we discuss about some commonly
used procedures to deal with the final feature. In Section V-C
the discussion of fusing multiple features continues. Dif-
ferentiated from Section IV-C that deals with feature level
fusion, in this section we discuss decision level fusion and
its variants. Lastly, Section V-D aggregates studies about the
holistic encoding that still prevails nowadays: Global Sparse
Representation.

A. FEATURE TRANSFORMATIONS
Subspace approaches are frequently applied to fea-
tures or histograms to remove unreliable dimensions and
to derive a compact representation. PCA is commonly
found in papers to reduce feature (histograms) dimen-
sion by the nature of data distribution, as can be seen
in [10], [17], [45], [80], [90], [162], [199], and [205]. Some
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variations of PCA are observed: The employment of 2D
PCA [206] maintained the spatial relationship between the
pixels in the training images while allowed compact rep-
resentation of the images which yielded excellent recogni-
tion speed and storage requirements. Inspired by 2D PCA,
Abedelwahab et al. [77] introduced a 2D HOG representa-
tion and used 2D PCA to reduce the dimension of their 2D
HOG representation. Ren et al. [207] applied Asymmetric
PCA (APCA) to remove unreliable dimensions in feature
space, as the number of inter-class sample pairs was much
larger than the number of intra-class pairs in that problem.
Some papers [65], [84], [208] utilized WPCA to histograms
to increase its discriminative power and robustness.

LDA is a supervised feature transformation procedure that
maximizes the ratio of between class scatter and within class
scatter. Many works applied LDA to transform features into
subspaces [10], [59], [60], [164], [171], [196]. With high
dimensional weighted histogram features, Lei et al. [108]
utilized Conditional Mutual Information (CMI) for feature
selection and then LDA for feature transformation. CMI
selected effective and uncorrelated feature set and LDA was
adopted to learn discriminative feature space to improve effi-
ciency and effectiveness.

The combination of PCA and LDA (PCA+LDA) is a
simple yet powerful combination and is widely used in face
recognition field. The method was proposed in [209] and it
consists of two steps: first facial descriptors are projected to a
subspace by PCA, second LDA is used to obtain a linear clas-
sifier. The rationale could be: given fewer data points than the
dimension of data, within class scatter turns out to be a singu-
lar matrix and LDA could not be performed directly; further,
matrix inversion is sensitive in high-dimensions, thus LDA
tends to overfit the data. PCA constructs a task-specific sub-
space so that generalization ability of LDA is improved when
only a few samples in each class are available for training.
This combination was used in [44], [81], [123], and [163] for
feature compression. To achieve age-invariant face recogni-
tion, Gong et al. [157] applied PCA+LDA to feature vec-
tor before feeding it to Identity Factor Analysis (IFA) for
classification. IFA first decomposed features with respect
to mean, identity-related component, age-related component,
and noise and then estimated the probability that the two faces
had the same underlying identity.

Variants of PCA and LDA is observed in a number of
papers to cater for specific tasks.
• Tan and Triggs [203] offered a kernelized variant of LDA
called Kernel Discriminative Common Vector (KDCV)
to seek optimal discriminant subspace of fused features.
KDCV used a nonlinear kernel mapping to implicitly
transform input data to high dimensional feature space,
then it selected and projected out an optimal set of dis-
criminant vectors in the space, using the kernel trick to
express resulting computation in terms of kernel values
in the input space.

• Arashloo and Kittler [33] proposed a nonlinear binary
Class-Specific Kernel Discriminant Analysis Classifier

(CS-KDA) based on spectral regression kernel dis-
criminant analysis. By using spectral regression, eigen-
analysis computation in PCA and LDA was avoided.
With CS-KDA, a regional discriminative face image
representation was established with multi-scale local
features.

• Enhanced Fisher Linear Discriminant Model (EFM)
was introduced in [210] to improves the generalization
capability of LDA by decomposing the LDA proce-
dure into a simultaneous diagonalization of the two
within- and between-class scatter matrices. EFM was
preceded by PCA in [161] to reduce feature dimensions.
Liu and Liu [96] used EFM for dimensional reduction
of MLBP and as a classifier to obtain similarity score as
well. Liu and Wechsler [14] applied EFM to augmented
Gabor feature to derive low-dimensional features with
enhanced discriminant power.

• Chakraborti and Chatterjee [27] extended Gravitational
Search Algorithm (GSA), an LDA-like metaheuristic
optimization algorithm, to a binarized version to com-
press LBP and LGP binary codes. The paper introduced
a novel dynamic adaptation of weight features for GSA
to tackle binary decision making problem in feature
selection.

• Kumar et al. [101] recovered a Volterra kernel by mini-
mizing the ratio between intra-class distances and inter-
class distances, which was essentially the same to LDA.

• Several subspace representations (PCA, Unsupervised
Discriminant Projection, Kernel Class-dependence Fea-
ture Analysis, Kernel Discriminant Analysis) was
employed on Discrete Transform encoded LBP features
for periocular matching application in [120].

Other feature transformation methods are:

• To tackle poor results combining Relevant Component
Analysis (RCA) [211] with dimensionality reduction,
Meyers and Wolf [23] invented a kernelized and regu-
larized version of RCA to weigh local features as well
as compress the high-dimensional concatenated feature,
then they did normalization and square rooting.

• Zhou et al. [115] used locality preservation projec-
tion (LPP), which was modeled by a nearest neighbor
graph that preserved image space local structure. LPP
resulted in a face subspace for each individual and each
face image was mapped into a low-dimensional face
subspace, which was characterized by a set of feature
images named Laplacianfaces.

• Simonyan et al. [68] proposed a linear feature transform
based on discriminative metric learning. The low-rank
linear projection of descriptors minimized the distance
between images with of the same face and maximized
it otherwise. Based on the above projection, Parkhi
et al. [70] further decreased the number of bits required
to encode face tracks with binary compression.

• Schwartz et al. [212] weighed the large combination
of low-level multi-scale LBP and multi-scale Gabor

6018 VOLUME 6, 2018



H. Wang et al.: Face Feature Extraction: A Complete Review

by tree-based partial least squares (PLS). Using PLS
regression to weigh a combination of a large number
of feature descriptors was proved to be robust in the
unbalanced one-against-all classification scheme with
highly biased class distributionswith a single or very few
samples in the positive class, and the application of a tree
structure was efficient in reducing the computational
cost of matching procedure.

• Two face recognition models were built with Gaus-
sian covariance matrix on low-level descriptors:
Chen et al. [213] utilized low-level LBP and measured
similarity between image pairs with multivariate Gaus-
sian covariance matrix. Similarity was calculated based
on joint distribution of image pairs. Based on the
paper, Cao et al. [214] used transfer Bayesian learning
to train parameters on a big source-domain and added
KL-divergence between the source and target domains to
optimization objective. Both papers solved optimization
via EM algorithm.

Sometimes preprocessing and postprocessing is applied
before and after the transformation. Ren et al. [207] reduced
the task to a two-class classification problem by perform-
ing CST before APCA. LBP deviated from Gaussian distri-
bution for its non-negativity and simplex constraints while
subspace transformation achieved optimal only under Gaus-
sian assumption. CST was applied to LBP histograms to
alleviate its non-Gaussian characteristics. Lei and Li [196]
selected from relatively abundant features the most discrim-
inative and suitable features for LDA by Adaboost and
regression. The integration of regression into Adaboost was
beneficial in that: the objective of regression was more con-
sistent with subspace learning, and the solution could be
obtained more efficiently by avoiding eigenvalue decomposi-
tion. Barkan et al. [191] down-regulated within-class covari-
ance by Within Class Covariance Normalization (WCCN)
metric learning after dimension reduction (WPCA, DM,
PCA+LDA or DM+LDA). Rather than explicitly discard-
ing dimensions, WCCN reduced the effect of within class
directions by employing a normalization transform, and it
could be done in either supervised or unsupervised way. Like-
wise, Ouamane et al. [32] applied Exponential Discriminant
Analysis (EDA), a discriminative subspacemethod to address
the small-sample-size problem ignored in LDA, followed by
WCCN to downgrade the effect of direction of high intervari-
ablility and enhance discrimination.

B. FEATURE SELECTION
Boosting is a frequently adopted supervised learning method
that can be used for discriminative feature selection. We list
some instances:

• Adaboost: Shan and Gritti [215] observed that in an arbi-
trary block division scheme, LBP-histogram (LBPH)
bins contained useful information for expression recog-
nition. Thus they proposed to learn discriminative LBP-
histogram at bin level with Adaboost. For eachAdaboost

learner, the images of one expression were positive sam-
ples, while the images of all other expressions were
negative samples. The weak classifier was designed to
select the single LBPH bin which best separates the
positive and negative examples. The selected LBPH
bins reflected the significance of different facial regions,
forming an informative compact facial representation.
In a latter paper [189], the method was used for gen-
der classification. As already seen in Section V-A,
Lei and Li [196] preprocessed feature with Adaboost
and regression. Liao et al. [193] applied Adaboost using
the absolute difference between the same bin of two his-
tograms as dissimilarity measure to select most effective
from overcomplete uniform LBP features and construct
face classifiers. Mendez-Vazquez et al. [216] selected
processing configurations for input for face recogni-
tion in videos with AdaBoost based on χ2 distances.
Adaboost was also used to update the weight of each
training sample such that misclassified instances were
given a higher weight in the subsequent iteration [41].

• Boosting+Multi-Task Learning (MTL): In a face
verification context, often a small number of train-
ing examples for each person are available for learn-
ing. If individual classifiers are learned for each
celebrity, overfitting is inevitable. To overcome this
issue, Wang et al. [217] presented Boosted MTL frame-
work that jointly learned classifiers for multiple persons
to overcome potential overfitting issues caused by lack
of data.

• Boosting+Multiple Instance Learning (MIL): In multi-
pose facial expression recognition context, proper patch
with the default position should be located combined
with rotation invariant features together to mitigate the
misalignment problem. Hu et al. [166] used a boosting-
based MIL approach to learn discriminative patterns on
image patches and to alleviate the influence of image
transformations due to misalignment.

• Boosting for ranking problems: Yao et al. [124] adopted
RankBoost to select the most discriminative LGBP his-
tograms. The algorithm combined the design of weak
rankers and the selection of learner’s parameters to min-
imize ranking loss, therefore more consistent with the
objective of ranking. In the comparison of similarities
of two images, the paper introduced constraints to force
blocks corresponding to large similarities to have large
outputs.

• Assembled boosting classifiers: Berg and Belhumeur’s
paper [218] was based on a set of images with face part
locations and labels. After a specific identity-preserving
alignment procedure, SIFT was extracted at manually
located blocks and Adaboost was used to train linear
classifiers for face verification. Classifiers were finally
assembled.

Besides boosting, other discriminative histogram extrac-
tion methods based on various theories. We categorize them
below.
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• CMI-based: As have been discussed in Section V-A,
Lei et al. [108] utilized CMI+LDA for global feature
processing. The rationale behind CMI-based feature
selection is: given selected features, the next feature
should be selected to maximize the CMI.

• Multi-layer discriminant dominant feature selection:
Guo et al. [219] invented a 3-layer model to estimate
optimal pattern subset by considering robustness (L1),
discriminability (L2) and representation capability (L3)
across different classes simultaneously. L1 chose a sub-
set of most frequently occurred patterns of a histogram,
whereas L2 removed outlier within each class and fed to
L3 for aggregation for all classes. L2 and L3 essentially
equate FSC to represent patterns discriminately among
training images belonging to the same class and across
different classes, respectively.

• Random Forest (RF): Ghosal et al. [15] presented a
framework that use RF to classify faces represented
using Gabor wavelets. RF is an ensemble learning pro-
cess which generates many classifiers and aggregates
their results, which can be used to produce a measure
of the importance of the variables. In a similar sce-
nario with high-dimensional redundant LBP features,
Connor and Roy [220] applied this RF framework to
select important LBP features from extracted feature
sequence to reduce the original feature space and speed
up the classification process. Unlike the standard trees
in which each node is created using the best split among
all the variables, RFs split each node using the best
among a subset of predictors chosen randomly at the
node. This strategy seems to be contradictory. However,
it performed relatively well compared to other classifica-
tion techniques, including discriminant analysis, support
vector machines (SVM), and neural networks, and is
robust to overfitting.

• Mutual information maximization: To make LBP com-
pact without redundancy, Jun et al. [221] proposedmax-
imization ofmutual information between LBP codes and
class labels to select LBP code that retained discrimina-
tive information with reduced dimension. This approach
to code selection iteratively selected the LBP codes
whichmaximized themutual informationwith respect to
the class label, conditioned to codes previously selected.

• Similarity-based selection: Tran et al. [40], [167] extr-
acted histograms based on similarity represented as
mean vector and variance vector. The algorithm selected
a subset of the extracted features that cause the smallest
classification error.

• Kernel-based nonlinear discriminant analysis:
Zhao et al. [222] proposed LBP based Kernel Fisher
Discriminant Analysis (KFDA) by integrating LBP and
KFDA method for face classifier. KFDA combined
the merit of kernel based method and FLD: The non-
linear kernel method was adopted first to project the
input data into an implicit feature space, and then
FLD was performed in that space to produce nonlinear

discriminant features of the input data. Kernel function
was introduced by using Chi-square static distance and
RBF as the inner product for KFDA classifier. KFDA
was also employed in GaussianFace [132] to simplify
the reformulation of DGPLVM, as already discussed in
Section III-C.

• part-based/attribute-based: Inspired by their previous
work [218], Berg and Belhumeur [79] learned two
10000-dimensional vectors for each face image pair,
each component was the result of SVM classifier trained
on base feature (gradhist, HOG, color histogram) for
a particular part (image block). The workflow was
more automatic compared to their early work: 16 face
parts were located with landmark detection, and multi-
scale weighted part blocks were generated automatically
rather than manually. Kumar et al. [223] learned visual
attributes and picked the best set of local features based
on the attributes (gender, age, jaw shape, etc.) learned.

• Associate-Prediction model: Facial images in [224]
were under significantly different settings. The paper
offered a two-step scheme: first they block divided the
faces into components and associated one input facewith
alike identities from the generic identity data set; then
they predicted the appearance of one input face under
the setting of another input face.

C. FEATURE FUSION METHODS
Rather than direct concatenation, fusion can be done on
other levels. In the decision level fusion approach, sepa-
rate classifiers are utilized to obtain scores based on local
individual features, local decisions are then combined to
obtain a final decision. It has certain advantages over feature-
level fusion as features of different modalities may have
various representation forms, and the fusion of decisions
may be easier than the combination of features in a sensible
way.

Decision level fusion is often a combination of output
scores from classifiers. Fusion of LBP, Gabor and pixels
scores were done in [199], and normalization was done
as a postprocessing step. Taigman et al. [225] utilized the
same local descriptors, fusing multiple LDA-based One-Shot
Similarity scores. Similarly, Wolf et al. [226] applied local
descriptors above plus Gabor features, they used a com-
bination of Hellinger distance, one-shot distance, two-shot
distance and ranking-based distances to gain high classifi-
cation rate. Hu et al. [65] used Dense SIFT, LBP and multi-
scale SIFT features and trained a deep neural network for
metric learning; finally multiple features were fused at score
level. Ding et al. [56] extracted facial textures from unoc-
cluded blocks, and each block learned certain transforma-
tion dictionary for discriminative space projection. Cosine
measure was utilized to calculate the similarity of each
block pair and similarity scores of all blocks were fused
by the sum rule. Local distances which were calculated by
chi-square nearest neighbor classifiers regarding LBP and
LPQ were fused in [192]. These scores were followed by
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decision level fusion: a weighted combination of the results
of the two, whose weights were employed based on mutual
information.

Liu and Liu [96] had done multiple levels of fusion for
different color components. DCT features extracted from
multiscale Gabor representation for R image was fused via
similarity score (determined by EFM) fusion.Multiscale LBP
feature on Cr image was dimensionally reduced and con-
catenated. 3 component and multi-mask DCT extracted on Q
image were fused by similarity score (determined via EFM).
Finally, the representations in RCrQ hybrid color space were
fused at decision level using an empirically weighted sum
rule.

Besides feature level concatenation and decision level
fusion. Multiple-kernel Learning (MKL) lies somewhere
between the two levels by estimating optimal convex com-
bination of multiple kernels to train SVM. MKL appeared
in [80] to combine LBP and HOG features for facial
expression recognition, where `p-norm MKL algorithm was
extended to a multiclass classification problem: rather than
learning a joint kernel weight vector, respective kernel weight
vector was learned for each binary classifier in the multiclass-
SVM. In a similar manner, Chan et al. [227] combined ker-
nels by direct addition without weight involved. Given LBP
and LPQ features, each kernel function produced a square
matrix inwhich each entry encoded a particular notion of sim-
ilarity of one face to another. Once kernels were combined,
Kernel Discriminant Analysis using Spectral Regression (SR-
KDA) was applied for feature selection. In a later paper,
Chan et al. [228] refined the system: LPQ was computed
regionally with a component-based framework to maximize
its insensitivity to misalignment; kernel fusion was compared
with many fusion combinations; two geometric normaliza-
tions were used to combine scores of various image scales.
Based on SR-KDA, Arashloo and Kittler [33] proposed CS-
KDA (as mentioned in Section V-A) for component-based
kernel fusion to construct a discriminative face descriptor
out of multi-scale LBP and LPQ representations. Contrast to
conventional approaches, CS-KDA recasted a multi-class
classification problem into a set of two-class classification
problems and its representation involving multiple shared
kernel Fisher faces had only one class-specific kernel fisher
face per class. Pinto et al. [24] blended 8 V1-like representa-
tion by the optimal combination of 6 kernels (element-wise
squared difference, absolute-value difference, square-root
absolute-value difference on cropped and original images
respectively), resulting 48 kernels. The combination coeffi-
cients of kernels for classification were supervisedly tuned to
optimal using the semi-infinite linear problem solver.

Finally, we would like to mention Hierarchical Ensemble
Classifier (HEC) proposed by Su et al. [181]. In the paper,
global feature was extracted from the whole face image
by keeping low-frequency coefficients of Fourier transform,
which encoded the holistic facial information, such as facial
contour. Real and imaginary components were concatenated
to form Global Fourier Feature Vector (GFFV). For local

feature extraction, Gabor wavelets were exploited at every
position and were spatially grouped into a number of feature
vectors considering their biological relevance. This resulted
in Local Gabor Feature Vector (LGFV). After dimensional
reduction, GFFV and multiple LGFVs were used to train
multiple component classifiers respectively. Finally, authors
combined classifiers into one ensemble classifier by weight-
ing. The proposed hierarchical ensemble method consisted of
two layers of ensembles: the ensemble of all N local compo-
nent classifiers (layer 1), and the ensemble of local classifier
and global classifier (layer 2). Weights for layer 1 were
trained with (interpersonal and intrapersonal) face pairs. For
each image pair, a similarity vector could be obtained, with
each similarity vector could be considered as a sample in
the space of N dimensions. These similarity pairs were fed
into FLD to get an optimal linear projection, resulting in the
weight of LGFVs. Weights for layer-2 were trained similarly
by the method.

A framework for combining multiple features by
Struc [199] is a quite general illustration to the fusion
pipeline. In detail, the first step used manually marked eye
locations to normalize each color facial image. Then images
were cropped based on bounding boxes of 3 sizes. Cropped
images were then represented in the YCbCr color space, and
luminance component was subject to a photometric normal-
ization procedure to form a normalized version image. Color
components of this image formed the basis for feature extrac-
tion, then Gabor and LBP features were computed and are
subject to PCA. Finally, all feature vectors of the test image
were matched against feature vectors in the gallery set to
produce similarity scores. Scores were normalized and were
combined using linear logistic regression (LLR). The basic
framework is relatively clear: image patches of different color
spaces, scales and local features were extracted; extracted
features had gone under proper dimensional reduction and
normalization before they were combined at score level based
on LLR. A similar framework is observed in [203], though it
applied feature-level fusion.

D. GLOBAL SPARSE CODING
This section is about spase coding face recognition model
done directly on the whole face without block divi-
sion. Many sparse face representation ideas are ini-
tially carried out globally without block division scheme,
and there are still new ideas in global sparse cod-
ing. Therefore it is beneficial to summarize some basic
practices.

Sparse coding is often combined with various machine
learning theories to form a more robust reconstruction pro-
cess. The kernel trick maps non-linear separable features
into high dimensional feature space, in which features of
the same type are easier grouped together and linear sep-
arable. In this case, the sparse representation for the sig-
nals are easily found, and the reconstruction error may be
reduced as well. Motivated by this fact, Gao et al. [67], [229]
proposed kernel sparse representation (KSR), a sparse rep-
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resentation technique in a high dimensional feature space
mapped by an implicit mapping function. KSR was also
incorporated with spatial pyramid matching to achieve
better performance. He et al. [230] developed fast face recog-
nition based on sparse coding combined with Extreme Learn-
ing Machine (ELM). The paper extracted basis function
from non-facial images, and then established single hid-
den layer feed-forward network to simulate sparse codes by
ELM. The paper demonstrated the rationale of this common
feature hypothesis. They obtained sparse coefficients from
the universal image patches instead of directly from face
image patches and then further processed them by means of
ELM learning in single hidden layer feedforward networks
trained with face images. Qian and Yang [231] introduced
prior or statistical information learned from training data
offline. The prior information matrices regarding reconstruc-
tion errors and representation coefficients formed a so-called
General Regression and Representation Model (GRR) and
were learned by using the generalized Tikhonov regulariza-
tion, leave-one-out strategy in conjunction with K nearest
neighbor algorithm. To make GRR robust to illumination,
expression, and pose, authors extended the model to combine
prior and specific information to give a weight to each image
pixel with an iteratively reweighted method. To extend the
single feature based SR model, Yuan et al. [232] generalized
multi-task learning to a multi-task joint sparse representa-
tion model to combine pixel values and LBP feature for
recognition. Each feature was then represented as a linear
combination of the corresponding training features in a joint
sparse way across all of the features. Finally, the classification
decision was achieved according to the overall reconstruc-
tion error of the individual class. Zhang et al. [233] observed
that multiple sparse representation vectors share sparsity
patterns at class-level but not necessarily at atom-level.
The paper collected facial images from various view-points
and applied sparse coding with atom-level dictionaries: dif-
ferent images of the same person were jointly used to
represent the person, with correlations among all views
exploited and combined for discrimination. The proposed
method allowed a flexible dictionary atom selection with-
out requiring pose estimation. Wagner et al. [234] demon-
strated that misalignment can be handled within the sparse
coding framework. They sought the best transformation of
the test image by minimizing alignment residuals, and they
rejected invalid images according to sparsity concentration
score.

There are approaches that applied supervision to dictio-
nary learning scheme, and works below were inspired by the
fact that traditional sparse overcomplete features extracted
might not always be optimal in terms of discriminative
power relative to the set of classifiers being considered.
Pham and Venkatesh [235] formulated an optimization prob-
lem that combined the objective function of classification
with representation error constrained by sparsity, forming
a supervised joint representation and classification frame-
work that sought for most discriminative sparse overcomplete

encoding and optimal classifier parameters. K-SVD trained
dictionary was further iteratively updated based on the out-
come of a linear classifier, hence obtaining a dictionary that
might be also suitable for classification in addition to hav-
ing the representational power. Similarly, Zhang and Li [236]
combined classification error into the objective function and
incorporated labels directly (as opposed to iterative dictionary
update procedure using feedback for the classification stage
in [235]) in the K-SVD dictionary-learning stage to form
Discriminative K-SVD. This dictionary-learning procedure
found the globally optimal solution for the dictionary, its
coefficients and classifier parameters based on label infor-
mation simultaneously, thus had the potential of avoiding
the local minima and its complexity was bounded by that of
the K-SVD. A recent study called Supervised within-Class-
similar Discriminative Dictionary Learning [237] combined
the classification error term and the within-class similarity in
the objective function of dictionary learning scheme for face
recognition. The method was further extended by [238] to a
multiple kernel fusion framework.

Like the initiative of collaborative representation, some
papers focused on the optimizer itself.
Timofte and Van Gool [239] proposed a classifier based on
collaborative representation and regularized least squares.
Differing from the original approach, authors observed that
there was a difference in how helpful each training sample
was in classification. Moreover, the features that described
samples could discriminate among each other. Thus, two
matrices were introduced to weigh each dimension of fea-
ture vectors and each training sample respectively. Then
weights were considered for classification confidence to form
Weighted Collaborative Representation Classifier (WCRC)
to describe useful features. Wu et al. [240] extended WCRC
to Learned Collaborative Representation Classifier by opti-
mizing weights rather than intuitively determining them.
Contrast to the former approach, Yang et al. [241] re-
examined the sparse constraint to find its `1 optimizer offered
not only sparsity but also closeness, where nonzero represen-
tation coefficients concentrated on the training samples with
the same class label as the given test sample. `1 optimizer
was more informative, as its objective function selected the
support training samples to represent a given test sample with
the minimal representation cost. By introducing the theory
of global neighborliness and local neighborliness of quo-
tient polytope associated with a dictionary, authors analyzed
equivalence and rationale between `1 and `0 optimizers.
Based on the closeness prior, the authors proposed two class
`1 optimizer classifiers based on closeness and Lasso rule
respectively. Peng et al. [242] advocated Locality-Constraint
CR (LCCR) by introducing a novel objective function to code
the training data and its nearest neighborhood to produce
minimal reconstruction errors simultaneously, enforcing sim-
ilar inputs to produce similar codes. LCCR aims to obtain a
representation that could reconstruct the input with the mini-
mal residual and simultaneously reconstruct the input and its
neighborhood such that the codes are as similar as possible.
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One notable merit of LCCR is that its objective function
has an analytic solution and does not involve local minima.
From a statistical viewpoint, Yang et al. [243] critiqued that
fidelity term with `1- or `2-norm actually assumed that the
coding residual follows Gaussian or Laplacian distribution,
which might not hold with the occurrence of occlusions,
corruptions and expression variations. Instead, they intro-
duced an underlying distribution function and reformulated
the problem into a sparsity-constrainedMaximumLikelihood
Estimation (MLE) problem and put forwards Robust Sparse
Coding (RSC) scheme. Rather than determined the distribu-
tion explicitly, authors transformed the optimization problem
into an iteratively reweighted sparse coding problem, and
by iteratively computing the weights, the MLE solution of
RSC could be solved efficiently. Results showed that RSC is
robust to outliers. Later, Yang et al. [244] learned dictionary
with the objective in the form of sparse coding combined
with FSC-like terms; the dictionary was updated iteratively
and the procedure was named Fisher Discrimination Dictio-
nary Learning (FDDL). A first term enforced representation
fidelity: each sub-dictionary had been represented well to
samples from the corresponding class, but poorly to samples
from other classes. A second term enforced discriminativ-
ity by minimizing within-class scatter while maximizing
between-class scatter.

Codebook learning is crucial for reconstruction, thus is dis-
cussed in several papers. Jiang et al. [245] put forward Label
Consistent K-SVD (LC-KSVD) by associating label informa-
tion with each dictionary item and combining classification
error in the objective function. LC-KSVD is a supervised
algorithm that explicitly incorporates a discriminative sparse
coding error criterion and an optimal classification perfor-
mance criterion into the objective function and optimize it
using the K-SVD algorithm. Discriminability is enforced in
sparse codes during the dictionary learning process, as the
learned dictionary is then both reconstructive and discrim-
inative. To handle undersampled face recognition problems
with only one or few non-occluded training images are avail-
able for each subject of interest, Deng et al. [139] proposed
Extended SRC (ESRC) that built an intraclass dictionary
with images collected from an external dataset that contained
subjects not of interest to handle image variants. Then a
given probe image could be reconstructed by using the single
training sample which had the same class label with the query
and the intra-class variance dictionary. Precisely, denote the
SSPP training set as A = [A1, ...,An], intra-class dictionary
asD, then ESRC reconstructs test sample as y = Aα+Dβ+e,
where α and β are formulated as an optimization problem
similar to SRC: minα,β ‖α‖1+‖β‖1, s.t.‖y−Aα−Dβ‖2 ≤ ε
Later they proposed a ‘‘prototype plus variation’’ representa-
tion model [246], in which the dictionary was assembled by
class centroids and sample-to-centroid differences. Authors
showed that a sparse coding variant that represented test
sample as a sparse linear combination of the class centroid
and the differences to the class centroid, and this lead to high
performance and robustness in uncontrolled environments.

Unlike ESRC, Wei and Wang [247] advocated an optimiza-
tion algorithm that jointly solved auxiliary dictionary learning
and sparse representation. Similarly, Yang et al. [248] pro-
posed to learn a compact dictionary with powerful varia-
tion representation ability jointly with an adaptive projection
from the generic training set to the gallery set. By extract-
ing from the generic training set a reference subset and a
variation subset, the adaptive projection learning aimed to
exploit the correlation between the reference subset and the
gallery set, while the variation dictionary learning aimed to
learn a compact dictionary with sparse bases from a big
variation matrix (the projection of the intra-class variation
of generic training set over the learned projection matrix).
However, in a recent paper, Wei and Wang [249] observed
limitations of the two papers: [247] viewed occlusion as
the intra-class variation and demanded the information on
occlusion of test images for learning intra-class dictionaries,
while [248] treated occlusion as sparse errors and might be
insufficient to represent the occlusion presented in real-world
face images. Instead, they jointly solved the tasks of auxiliary
dictionary learning and robust sparse coding in a unified opti-
mization framework that learned intraclass dictionarywithout
prior knowledge of occlusion by automatically disregarding
unseen occlusions to make robust recognition. There are
other approaches to perform face recognition across varying
illumination and pose based on learning small sized class
specific dictionaries. Patel et al. [250] presented a simulta-
neous sparse approximation: Given dictionaries learned with
K-SVD for each class under sparsity constraint, test images
were projected onto the span of atoms in each learned dic-
tionary and the resulting residual vectors were used for clas-
sification. To recognize face under varying illumination and
pose, image relighting based on pose-robust albedo esti-
mation was used to generate frontal images under various
lighting. Further, to reject nonface outliers, authors defined
a rule based on the ratio between the norms of residual
vectors of the first and second candidate. Ma et al. [251]
proposed a discriminative low-rank dictionary learning for
sparse coding, during which an objective function with
sparse coefficients, class discrimination, and rank minimiza-
tion was optimized. The integration of rank minimization
into sparse representation for dictionary learning separated
the sparse noises from the signals while simultaneously
optimized the dictionary atoms to reconstruct the denoised
signals. Thus, sparse noises in the training samples were
corrected and the dictionary could be robustly optimized with
an explicit discriminative goal, making the proposed model
suitable for recognition. There are also approaches to address
face recognition problems by considering non-Euclidean
geometry. With the face described by LBP histogram,
Harandi et al. [252] explored sparse dictionary learning over
Grassmann manifolds. A method for learning a Grassmann
dictionary extrinsically was introduced and Grassmann man-
ifolds were embedded into the space of symmetric matrices
by a diffeomorphism that preserved Grassmann projection
distance.
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VI. SUMMARY AND EXAMPLES OF FACE
FEATURE EXTRACTION
Here we made a summary of face feature extraction based on
local features and filters, codebook and encoder, and holistic
encoding. We selectively list some of the feature extraction
procedures in Table 4.

We give two typical examples to further illustrate the idea
of face feature extraction. One framework is the learning-
based encoder adopted by Cao et al. [45]. The major novelty
of the approach lies in the encoder design: different sampling
method and an RP-tree to quantize the feature vector to
discrete codes. Image patches were extracted on DoG filtered
image, next an LBP-like sampling procedure was used, then
machine learning approach was used to encode features, and
finally the coded image was split and concatenated. Proper
dimensional reduction and normalization were used between
building blocks. Please note that [44] adopted an extremely
similar framework, though the CITP tree was used for cou-
pled encoding photo and sketch simultaneously.

Another illustration would be the DFD-based face repre-
sentation of Lei et al. [36]. It is essentially the same as that
of [45]: learned DFD for each face region was concatenated
to form a histogram. However, unlike the previous approach,
initiative of learning procedure of [36] is quite different.
It operated on Patch Difference Matrix (PDM) as local fea-
tures, and then extracted discriminant features for clustering
and representation basis. Images were projected to a subspace
determined by image filter vectors and soft sampling vectors.
Both vectors were learned through optimization according
to FSC: they minimized within-class scatter and maximized
between-class to learn discriminative filters to extract local
features as well as to find optimal weights for the contribution
of neighboring pixels in computing the descriptor. Finally,
image pixels were finally labeled according to the dominant
patterns found in the K-means clustering phase. A similar
framework is observed in [22] and [38], where the latter pro-
jected image by a learned filter and then encoded the filtered
image via LBP.

VII. DEEP LEARNING (DL)
Face recognition on regular databases with co-operating
individuals in a constrained environment is challenged as
our applications progress to unconstrained scenarios with
uncooperative subjects, like forensic investigations of video
surveillance. Persons to be identified may be under various
settings and the extraction of discriminative patterns would
fail because of the unpredictability.

In this sense, face recognition tasks are rather like a
complex learning problem without much prior knowledge
and common patterns, and according to [253], that is what
deep learning algorithms are for. The paper stated that prior
knowledge is rather important in generalizing a pattern for a
database. Without proper prior, a huge database is required
in order to obtain generalization. We wish to find an efficient
algorithm with minimum requirement for prior, labeled train-
ing data and human interference. Traditional non-parametric

methods (e.g. kernel methods), given their ability to use
convex optimization, suffer inefficiency in representing a
family of functions in high dimension. Comparatively, deep
architectures outperform shallow ones in that they offer better
scaling properties. Furthermore, given our ignorance of pri-
ors, we would unavoidably seek non-convex loss functions.

Traditional methods lack trade-off between ‘breadth’ and
‘depth’. Their outputs tend to be very local (in feature space),
thus is dominated by patterns of the nearest neighbor. This
result in the curse of dimensionality. If we use hyperplanes
to encode our representation for classification, a number of
subregions obtained is exponential to the number of hyper-
planes used. Traditional non-parametric methods like kernel
methods, nearest neighbors, and mixture models made a very
weak assumption on the function to be learned, so the repre-
sentation power grew with training data. It is proved in [253]
that for kernel methods, we have to obtain at least exponential
amount of training data. For our recognition problems, facial
image transforms like shifting or rotation, tend to result in a
non-linear manifold with high curvature.

We seek non-local learning approaches. Some non-local
models like polynomial fitting generalize poorly at unseen
places. Deep learning, however, learns non-locally by a series
of nonlinear transformation. We can base each layer of our
deep model on kernel methods, and by multi-layer architec-
ture, high-level structural features like eyes and nose can be
generalized. This procedure is fully automatic without human
intervention. Once we fall short of labeled data, we could
utilize unsupervised pre-training techniques to learn high-
level representation, and apply learned representation for
classification. Matching high-level features are efficient in
that we would need less labeled samples, as most information
is acquired in an unsupervised fashion. Thus the key to the
success of DL lies in its ability to learn better representations,
mostly from unlabeled data. Additionally, non-convex error
functions in high dimensional spaces tend to result in the
proliferation of saddle points [254], which alleviate local
minima convergence problem.

In previous sections, the core feature extraction procedure
is to extract features locally and do feature transformation to
project them to a subspace to form a global representation.
DL can be seen as a cascade of multi-layer convolution
and nonlinear transformations. Its parameters are obtained
by optimizing the loss function. This layer-wise formulation
learns multiple levels of abstraction from local to global, thus
forming a hierarchical feature representation. Discovering
intermediate representations can be beneficial to tasks like
domain adaptation [255], [256], as learning dependencies in
latent variable space is easier than the raw input. It could
also be beneficial to multitask learning, for instance in [257]
facial expression attributes help detection of landmarks and
pose. Those advanced and shareable features could also be
beneficial in transfer learning, as lower-layers are similar to
Gabor features and not specific to particular dataset or task.
In [258], it is found that initializing a networkwith transferred
features could improve generalization performance even after

6024 VOLUME 6, 2018



H. Wang et al.: Face Feature Extraction: A Complete Review

TABLE 4. Various feature extraction approach.

fine-tuning on a new task or dataset. This shareability enables
us to use deep networks trained for face identification to do
facial expression recognition. We will discover more con-
structive properties of DL in this section.

Many papers in the computer vision society are based on
a DL framework (or Deep Neural Network, DNN) ever since
the introduction of Alexnet [259]. It gains popularity due to
its stunning performance at image classification tasks, though
it receives notoriety due to its intricacies. We review papers
which utilize DL for face recognition. There are two major
frameworks for DL: the first is Deep Belief Networks (DBN),
which consist of Restricted Boltzmann Machines (RBM);
the second is Convolutional Neural Networks (CNN).

A. LOCAL FEATURES AND INTEGRATING SPATIAL AND
SCALE INFORMATION
Low-level features are used in several papers.
Huang et al. [260] used LBP as well as pixels as local

representation. They demonstrated by applying DL to LBP its
potential to capture complementary higher-order statistics of
hand-crafted descriptors. Yi et al. [261] first extracted Gabor
features at localized facial points, as Gabor features were
considered to have a strong discriminative ability and were
robust to variation. Liao et al. [262] extracted 3 kinds of
features for comparison: LBP, HOG, LBP+HOG of 31 scales,
and the paper provided PCA of different dimensions to local
features.

Non-overlapping block partition was observed in [263],
where features were aggregated by concatenation. In [260],
9 overlapping regions was operated on LFW database, and
to attain multi-scale features, the images were cropped to
patches of 3 different sizes. In some papers, manually selected
regions of different scales were used [264], [265]. Note
that in [265], 400 face blocks were used, but the number
was reduced to 25 with the help of a greedy algorithm to
select most effective and complementary feature vectors.
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In [266], 3-scale patches around landmarks and particular
patches of the global region was obtained. Fan et al. [267]
achieved multi-scale by elaborating Pyramid CNN. A recent
paper [268] proposed to extract the local adaptive convolution
features from the local regions of the face image motivated
by the success of local features and the deep convolution
features. Deep convolution features of most informative parts
of the face and densely sampled points were used to rep-
resent the face. Joint and collaborative representation of all
convolution features was introduced to exploit distinctiveness
and commonality of various local regions. Representation
coefficients of different regions were required to be similar
because these local regions came from the same query image
and proposed a joint collaborative representation model to
effectively fuse the local deep feature representations in dif-
ferent locations, and the paper specifically addressed SSPP
problem.

Pooling is a procedure for gaining spatial invariance and
it recurs in various DL papers. Max pooling is observed
in [257], [260], [265], [266], and [269]. HMAX (sum pool-
ing) was used in [262]. 2 level average pooling was adopted
in [264], which would be discussed later in VII-B. K-means
was used to learn codebooks to pool features in [263].
Roychowdhury et al. [270] put forward ‘score pooling’ and
‘feature pooling’, where max pooling was operated on SVM
scores and features respectively.

B. FRAMEWORK
DBN is a generative graphical model composed of multiple
layers of hidden variables with connection between layers.
In a heterogeneous facial recognition scheme [261], local
RBMs were trained with Gabor features, and finally PCA
was performed. In the network, the task of Gabor feature
extraction was to extract discriminant and robust features
for each modality, and RBM tried to build the relationship
between two modalities. Nair and Hinton [271] replaced
binary hidden units in RBM by noisy rectified linear units
(NReLUs), where the value of a hidden unit was given by
the rectified output of the activation with added Gaussian
noise. RBMs with NReLUs were pre-trained generatively,
and then trained discriminatively using backpropagation. The
network used for face feature extraction contained one hid-
den layer of NReLUs pre-trained as an RBM. Then cosine
distance between network output of two facial images was
computed. The network was translation equivariant and scale
equivariant.

Some multi-view face recognition frameworks were
inspired by auto-encoders. Zhang et al. [272] proposed face
verification procedure based on single-hidden-layer neural
network-based with sparse constraint. This shallow network
was guided by multiple random faces as target values for
multiple encoders. The rationale behind random faces as
target was our need for identity representation. Introducing
multiple random faces enabled learning of multiple encoders
which randomly encoded private or common attributes to the
identity feature and artificially producedmany random shared

structures between two identities, thus enhanced discrimi-
native power of proposed identity feature. By enforcing the
target values to be unique for input faces over different poses,
the learned high-level feature that was represented by the neu-
rons in the hidden layer was pose free and was only relevant
to the identity information. Wang et al. [273] put forward
Deeply Coupled Auto-encoder Networks (DCAN) to tackle
cross-view face recognition problem. DCAN was based on
two DNN (one for each view) coupled with each other
in every corresponding layer. The two different non-linear
DNN avoided potential inadequate representation capacity
of simpler models. Each DCAN structure was developed
by stacking locally consistent and discriminative coupled
auto-encoders (trained with maximum margin criterion as
a single layer component), resulting in a narrowing gap
between two views and gradually improved shared features
in the common space. Kan et al. [274] built a Stacked Pro-
gressive auto-encoders (SPAE) model by stacking several
shallow auto-encoders to a DNN. To mitigate the highly
complex non-linear transform that directly transforms non-
frontal faces to frontal, authors decomposed the problem to
multiple tractable (less non-linear) phases by progressively
narrowing down pose variations to zero. Each auto-encoder
converted input face images at large poses to virtual views at
smaller poses as well as keeping smaller poses unchanged.

CNN is popular in the computer vision field. Usually,
it consists of a various combination of convolutional lay-
ers with Rectified Linear Units (ReLU) activation function,
pooling layers and fully connected layers (FC). Since FCs
contains most of the parameters and prone to overfitting,
dropout method is introduced to prevent overfitting. Finally,
the loss layer is where a form of the loss function is applied
for a specified task.

Cox and Pinto [275] combined multiple complementary
representations via kernel fusion. Firstly, they offered two
multi-layer feature extraction frameworks that closely resem-
bled a hierarchy of 2 (HT-L2) and hierarchy of 3 (HT-
L3) CNN respectively. Each layer included: a linear filter
which initiated randomly and learned supervisedly; activation
function that consisted of threshold and saturation function;
pooling layer that did spatially downsampling; normalization
process. They later blended the one layer V1-like features
along with multilayer HT-L2 and HT-L3 with kernel fusion.
Sun et al. [266] built multi-scale CNN to learn a set of high-
level features with image patches as input, and its final
representation (Deep-ID layer) was the hidden layer before
softmax. Deep-ID layer was directly and fully connected with
the third and fourth convolutional layers (after maxpooling)
of the network so that it saw multi-scale features. Authors
argued that this was critical to robust feature generation
due to the successive down-sampling along the cascade that
caused fourth convolutional layer contained too few neurons
and becomes the bottleneck for information propagation.
Zhou et al. [276] explored traditional sophisticated methods
(Joint Bayesian, clustering, etc.) and observed that as training
data increased, little gain was obtained by these methods.
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Instead, they simply established a ten layer naive CNN net-
work, whose last layer was softmax layer for supervised
learning. Like [266], the final representation was the hidden
layer before softmax followed by PCA model. The similarity
between two images was measured through a simple `2 norm.
Taigman et al. [269] demonstrated that coupling a 3Dmodel-
based alignment with large capacity feedforward models
images was beneficial to effective representation. In their
work, images were aligned with 3D face and then repre-
sented with CNN. Recognition accuracies against various tra-
ditional methods demonstrated model effectiveness. Contrast
to [269], Zhu et al. [277] trained CNN to recover canonical
view of face without 3D information. Authors devised a facial
measurement for frontal view face images by combining the
rank and symmetry of matrix. The framework used such
terms to select frontal face image for each person, and CNN
learned the regression from various view to canonical view.
Then, image patches extracted according to 5 landmarks
from frontal face image were used to train another CNN.
Features (outputs) of the network followed by PCA was used
for verification. Bilinear CNN (BCNN) was applied to face
identification in [270]. BCNN consisted of two CNNs whose
outputs are multiplied at each location of the image. Advan-
tages of BCNN model are: it can be trained using only image
labels without requiring ground-truth part-annotations; direct
end-to-end training is applicable, which allows initializing
generic networks with pre-trained networks (like ImageNet)
and then fine-tune them on face images. Multi-scale feature
sharing representation was put forward in Fan et al. [267] and
was named Pyramid CNN. Its motivation was to accelerate
the training of deep neural networks and to take advantage of
the multi-scale structure of the face. Pyramid CNN consists
of multiple levels of networks. These networks have different
depths and input sizes, and they share some of the layers. The
first layer is shared across all levels, while the second layer
is shared by networks from the second level. This sharing
scheme is repeated and thus the size of the network that is
actually trained does not grow as the level increases. Further,
in contrast to train the deep network directly, the procedure
can be decomposed into training several small networks.
Hierarchical feature representation was the core of [263].
For each layer, authors firstly jointly unsupervisedly learned
multiple yet related feature projection matrices for different
face regions simultaneously and neighborhood blocks sparse
share codebooks. By saying joint, authors learned feature
projection (or weighting) matrices W from different face
regions jointly, as regions, though separated, usually share
some related information in feature representation. Secondly,
features of each patch were then projected with W and then
converted to discrete codes with dictionaries generated by
K-means. This joint feature learning model was stacked into
a deep architecture to exploit position-specific discrimina-
tive information for face representation. WPCA was used
within layer: output feature of layer 1 was WPCAed and then
fed to layer 2. The network harvested decent performance
in hierarchically extracting position-specific discriminative

information and jointly learned multiple related features for
different face regions.

Similar to canonical-view face recovery with CNN [277],
some authors altered CNN to tackle various problems like
landmark detection and pose generation. Within the frame-
work of CNN, Zhang et al. [257] investigated optimizing
facial landmark detection with related auxiliary tasks: head
pose estimation, gender classification, age estimation, facial
expression recognition and facial attribute inference. The
proposed Tasks-Constrained Deep Convolutional Network,
a 5 layer CNN with MTL optimization objective, allowed
errors of subtly related tasks to be back-propagated in deep
hidden layers for constructing a shared representation to be
relevant to the main task. Thus it did not only estimate land-
marks but poses and attributes as well. Liao et al. [262] elab-
orated a detection, alignment, recognition pipeline by storing
templates (transformations of training images), and fed into
a feedforward hierarchical network (like HMAX hierarchical
computational model of the visual cortex). The hierarchical
architecture consisted of a repeated biologically-plausible
V1-inspired modules. At the first layer they obtained low-
level features; the second layer extracted dense overlapped
windows and templates for convolution and pooling; the
third layer computed dot product for person identification.
To alleviate the computational bottleneck in the second layer,
the system was approximated by local sensitive hashing-
based voting for templates and windows. Jung et al. [278]
proposed a new DNN based on multi-task learning that
rotated an arbitrary pose face to a target pose while preserving
identity. This DNN took a face image as well as a Remote
Code, which represented the target pose code corresponding
to the output image. This DNN bore similar structure with
CNN, however, in the first part it did not share filter weights
due to the presence of Remote Code and in the second part,
fully connected layers were applied within each layer to
contain pose information into features while preserving iden-
tity. To further improve identity-preserving ability, authors
introduced an auxiliary DNN and an auxiliary task: pose-
robust features were required not only to reconstruct face
image under target pose but also to recover original input
image. Recognition rates for various poses were reported.
Ding et al. [279] proposed a composition of a set of CNNs
and stacked auto-encoder to jointly learn face representa-
tion using several cropped facial blocks. CNNs extracted
complementary facial features frommultimodal facial blocks
and they were then concatenated to form a high-dimensional
feature vector, whose dimension is compressed by sparse
auto-encoder. Following [279], a set of DCNNs are used to
perform data fusion on complementary facial features and
multimodal data extracted [280], [281].

The idea of deep feature learning guided by both identifica-
tion and verification signalswere initiated in Sun et al. [265],
who utilized the two supervisory signals in the 3rd and
4th convolutional layer. Feature output (DeepID2) was
160 dimension for each of the 25 face blocks and output of
image blocks was concatenated and applied PCA to reduce
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dimension. Identification signal classified each face image
into one of the identities and was achieved with a softmax
layer. Face verification signal encouraged features extracted
from faces of the same identity to be similar and it directly
regularized the feature vector and could effectively reduce
the intra-personal variations. The network was trained to
minimize the cross-entropy loss regarding identification sig-
nals, and `1-norm or `2-norm or cosine measure regarding
verification signals.Methods to balance the identification and
verification signals is also discussed in the paper. In a later
paper [282], larger DeepID2+ features of 512 dimensionwere
learned. The network was larger with more training data and
supervisory signal was used in each layer. Please note that in
this system, neural activations were moderately sparse (about
half of the neurons are activated), highly selective to identities
and identity-related attributes (gender, race, age, hair color,
etc.) and much more robust to occlusions.

A novel system called FaceNet was introduced in [283]
that directly learned a mapping from face images to compact
Euclidean spaces. Distances were directly a measure of face
similarity. In the system, CNNwas followed by normalization
and triplet loss layer. The method trained CNN with triplets
of face patches directly to optimize the embedding without
intermediate representation layer, which might be a bottle-
neck for performance and required processing like PCA. The
network strived to seek for an embedding from an image
into a feature space, such that the squared distance was small
between all faces of the same identity while large between
a pair of different identities. Triplet loss enforced a margin
between each pair of faces from one person to all other faces
and experiments showed the system has high representation
efficiency with only 128-bytes per face.

VGGnet [284] and GoogLeNet [285] are results of design-
ing a really deep network. These Network-in-Network (NIN)
[286] based approaches are powerful in learning robust
patch representation to capture the structure, and experiments
proved its power. In light of these, Sun et al. built two
DeepID3 networks [287] (with 10+ layers). They trained one
network with inception layers used in GoogLeNet architec-
ture and another one with stacked convolution layers. Finally,
outputs from two networks were concatenated. Inherited
from [282], the network included unshared weights in the
last few feature extraction layers and supervisory signals are
added to early layers in a similar manner.

Even though particular convolution layers have been used
to reduce CNN parameters, problems still arise as these really
deep networks could be hard to train: it cost a huge amount
of time, space and its convergence is a challenge. A recent
study [288] alleviated this issue by put forward a lightened
CNN framework. Authors substituted ReLU-based activa-
tion function with Max-Feature-Map (MFM), a maximum
between two convolution feature map candidate nodes. MFM
can be seen as sparse connections between layers to achieve
variable selection dimension reduction, thus compact rep-
resentation was obtained. The paper provided two different
architectures. Model A was consists of 4 convolution layers,

TABLE 5. Various DL framework.

4 max-pooling layers and 2 FCs. Model B was based on
5 convolution layers, 4 NIN layers, 4 max-pooling layers
and 2 FCs. Training time for Model A and B was merely
1/8 compared to VGGnet and parameter storage space was
about 1/18, whereas its face recognition performance on LFW
and Youtube Face dataset outperformed VGGnet.

Finally, Convolutional RBM (CRBM) is a hierarchical
generative model that scales to full-sized images. In CRBM,
local weights are shared among all locations like CNN
does, which makes it possible to use high-resolution images
as input. CRBM also introduces probabilistic max-pooling,
allowing higher-layer units to cover larger areas of input
probabilistically. Thus CRBM could have local translation
invariance and still allows top-down and bottom-up inference
in the model. Huang et al. [260] built convolutional DBN by
self-taught learning to learn complementary representations
of LBP and two layers of CRBMs were stacked to form
a DBN. The model had used an alter energy function to
form local CRBM, and PCA was computed on the repre-
sented feature. Finally, score level fusion of raw pixels and
LBP features was done using a linear SVM. Alternatively,
Zhu et al. [289] supervisedly learned local CRBM, the output
of final layer formed face-identity preserving (FIP) feature.
Firstly, input images were encoded through feature extraction
layers, which had three locally connected layers and two
pooling layers stacked alternately, and each layer captured
face features at a different scale. Each locally connected
layer output 32 feature maps, where each map had responses
inside and outside of the face region to capture face structures
and pose information respectively. Secondly, the FIP features
recovered the face image in the canonical view using a fully-
connected reconstruction layer. To train the parameters of the
network, authors proposed to firstly initialize the parameters
based on the least square dictionary learning and then updated
them by back-propagating the summed squared reconstruc-
tion error between the reconstructed image and the ground
truth. Experiments showed that the network was robust to
illumination and pose and could reconstruct face to canonical
view. Contrast to approaches in previous sections, in this
paper recovering canonical-view face images did not either
rely on a 3D face model nor depend on prior information on
pose or lighting condition. This further proves that deep rep-
resentation could model multiple complex transformations as
well as disentangle hidden factors through feature extraction
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TABLE 6. Verification performance on LFW.

over multiple layers.Moreover, Zhu et al. [290], [291] gener-
alized [289] to multi-view perceptron (MVP) to learn 3D face
models from 2D images, where identity and view information
were encoded by different sets of deterministic and random
neurons. These features were combined with pose selective
neurons to generate reconstruction feature, which synthesized
faces under unobserved viewpoints. This could be beneficial
when two persons looked similar in frontal view, but could
be better distinguished in other views. MVP could learn rich
view representation and better identity features compared
with [289].

Supervised hybrid CNN-RBM network for image pairs
was built in [264]. It jointly extracted local relational visual
features from two face images with hybrid ConvNet RBM.
The lower part consisted of 12 groups of 5-layered CNNs,
each covered a particular part of face. Then, the outputs
were averaged in two layers. First pooling resulted in 5× 12
neurons by averaging eight predictions of CNN, and second
pooling resulted in 12 neurons by averaging the 5 neurons in
the first layer associated with the same group. This hierar-
chical pooling greatly reduced prediction variance. Finally,
a classification RBM was trained with gradient descent to
validate whether the pair is of the same class or not. CNNs
and RBM were first trained separately, and then the whole
network was jointly fine tuned by backpropagating errors
from the top (RBM) to bottom layers (CNNs).

As DL networks extract useful data-adaptive representa-
tion without human intervention, proper training strategies
should be applied to prevent overfitting. Taigman et al. [269]
used common practices to avoid overfitting: ReLU as acti-
vation functions and dropout on first FC. The network
was trained on a large Social Face Classification (SFC)
dataset with 4.4 million labeled faces, and no overfitting
was observed. Huang et al. [260] applied self-taught learning
to utilize a large amount of unlabeled Kyoto natural image
dataset and learned representations for the new task via trans-
fer learning. Sun et al. [264] selected the model that provided

lowest validation error on a separate validation dataset to
avoid overfitting. Zhu et al. [289] used the deep model to
fully reconstruct face in the canonical view, arguing the strong
regularization was effective to avoid overfitting.

We categorize DL framework and summarize their features
in Table 5.

Deep-ID [266] gave a typical CNN structure for face
classification. It operated directly on image pixels and had
4 convolutional layers. Number of filters in the four layers
were 20, 40, 60 and 80 respectively. First three layers were
max-pooled. The final feature DeepIDwas of 160 dimensions
and could be used to classify via softmax function. A pecu-
liarity of the network is the direct connection of DeepID with
the output of the third layer and fourth layer. Deep feature
learning based on CNN shared similar framework, though
variations such as including supervisory signals [265], [282]
could be seen.

VIII. PERFORMANCE ON LFW AND FERET
We selectively list reported performances of proposed recog-
nition algorithms for face identification and verification
tasks. For a fair comparison, we make efforts in integrating
details of algorithms including preprocessing techniques, fea-
ture dimension, dimensional reduction methods and classify-
ing algorithms into our tables.

A. EVALUATION ON LFW
Labeled Face in the Wild (LFW) is a set that contains
13233 training images of 5749 people and is considered as
a standard benchmark for face verification. LFW is rather
an unconstrained database, in which the only constraint
on images is that faces could be detected by the Voila-
Jones face detector. Thus LFW contains significant varia-
tions in pose, illumination, expression, and occlusion. The
evaluation procedure is to divide predefined image pairs
into 10 folds of 300 face pairs and for each fold verify
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whether the image pair is of the same person. Table 6 lists
accuracies of LFW under different protocols. We enu-
merate protocols used in LFW evaluation procedure as
follows: Unsupervised (U), Image-Restricted, No Outside
Data (IRNO), Unrestricted, No Outside Data (URNO),
Image-Restricted, Label-Free Outside Data (IRLF), Unre-
stricted, Label-Free Outside Data (URLF), Unrestricted With
Labeled Outside Data (URWL). Details of protocols can be
seen in [292].It should be noted that [36] does not follow
protocols above, in that it uses FERET database for training,
but training is done in an unsupervised way (Unsupervised
with Label-Free Outside data, ULF).

We note some cases that utilize outside data for LFW veri-
fication task. Yi et al. [17] utilized outside data for alignment.
Detection and alignment of [218] were based on images col-
lected from Yahoo News. In order to learn sparse projection
matrix to map extremely high-dimensional feature to low-
dimensional ones, [29], [213], [214] trained on WDRef and
tested on LFW evaluating under URWL protocol. Deep archi-
tectures are prone to overfitting so larger outside databases
are often used in the training phase. Taigman et al. [269]
trained on Social Face Classification (SFC) dataset and
tested on LFW. Zhu et al. [277] trained on CelebFaces
dataset. Sun et al. [266] trained DeepID on CelebFace+,
while Sun et al. [265] trained DeepID2 on two complemen-
tary subset of CelebFace+. Sun et al. [282], [287] enlarged
training data by merging CelebFaces+ with WDRef dataset.
Zhou et al. [276] collected and label many celebrities from
Internet to build Megvii Face Classification database that has
5 million labeled faces with approximate 20000 individuals.

We give trivia that does not integrate into Table 6.
Sharma et al. [37] aligned the images with manually labeled
images that do not intersect with LFW, then they learned
GMM on randomly sampled 3 × 3 pixel differential vec-
tors and computed higher-order Fisher score. Lei et al. [108]
applied Efficient Gabor Volume LBP on 40 Gabor magnitude
images; trails of different statistical uniform patterns were
done and the number was finally set to 8. Sun et al. [266]
compared results of CNN with Joint Bayesian Classifier (JB)
and Neural Networks Classifier (NN) and found out JB out-
performsNN. Sun et al. [265], [266] trained from a particular
patch and its horizontally flipped counterpart, thus forming
two DeepID/DeepID2 vectors.

B. EVALUATION ON FERET
The FERET database is an SSPP gallery composed
of 14051 facial images. The set contains a gallery set
of 1196 individuals, and four testing set with variations on
lighting, facial expressions, pose, and age. Accuracies and
details of face identification procedure are given in Table 7.

IX. CONCLUSION
In this paper, we reviewed over 200 works regarding feature
extraction for facial images. Extraction of proper features
are the core bridging the gap of local features and discrim-
inative representation of faces. We categorize these works

into: filtering and local features, feature encoding, spatial
pooling and holistic feature processing. We see deep learn-
ing as an automatic and multi-layer version of the shallow
ones. By analyzing the characteristics of facial structures we
further summarize motives and common practices in prepro-
cessing, integrating local feature position and scales, fusing
multiple features, discriminant feature extraction and other
alternations to the framework and its building blocks. Finally,
we give examples of the closely linked systems that out-
put robust feature representation and show their experiment
results and settings.
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