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ABSTRACT For moving targets localization, incorporating frequency-difference-of-arrival (FDOA) mea-
surements in the commonly used time-difference-of-arrival (TDOA) positioning systems will improve
performance. Such an approach still has unresolved technical challenges. The commonly used maximum
likelihood estimator (MLE) is nonconvex and highly nonlinear, and the parameters to be estimated are
mutually coupled in the positioning process. The goal of this paper is to develop an effective iterative
method that resolves these challenges for moving target localization using TDOA and FDOA. Specifically,
a semidefinite programming (SDP) method is proposed to transform the MLE problem into a convex
optimization problem. To improve the performance further, we develop an iterative method that uses the
position and velocity estimates obtained using the SDP method as the initial values. This iterative method
includes two steps: update of the velocity by using a weighted least squares method and update of the position
by using SDP. The major advantage of the proposed scheme is that it significantly outperforms existing
methods at moderate to high noise levels, which is validated via extensive numerical results.

INDEX TERMS Moving target localization, time-difference-of-arrival (TDOA), frequency-difference-of-
arrival (FDOA), semidefinite programming (SDP).

I. INTRODUCTION
Location information has been widely applied in a num-
ber of applications such as radar, sonar, wireless sensor
networks (WSNs), and wireless communications [1]–[6].
For stationary sources, a commonly used localization tech-
nique is to measure the time-difference-of-arrival (TDOA) of
the source’s signal to spatially separated receivers [7]–[9].
When the receivers are moving and the source is stationary,
frequency-difference-of-arrival (FDOA) measurements can
be used to improve localization performance and reduce
the minimum number of receivers needed [10]. When the
receivers and source are all moving, both TDOA and FDOA
measurements can be used to determine the position and
velocity [11]–[15]. The challenges of localizing a moving
source using TDOA and FDOA measurements lie in the
high nonlinearity and nonconvexity of the maximum like-
lihood estimation (MLE) problem as well as the mutual

coupling among the to-be-estimated parameters [11],
[16]–[18]. Exhaustive search in the solution space is straight-
forward, but is computationally very expensive and inef-
ficient, making real-time processing difficult [19]. The
Taylor-series method [20] needs an initial estimate. Besides,
it cannot guarantee convergence to the global optimum
solution. In [19], Ho and Xu proposed an algebraic solu-
tion, which is a two-step weighted least-squares (2SWLS)
method. This method first transforms the TDOA and FDOA
equations into a set of linear equations by introducing two
nuisance parameters. Then, it applies the linear weighted
least-squares (WLS) to determine the source position, veloc-
ity, and the two nuisance parameters introduced. Finally, the
nuisance parameters are eliminated through another linear
WLS minimization to improve the accuracy of the estimates.
It is shown that the accuracies of the source position and
velocity estimates with the 2SWLS method could approach
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the Cramér-Rao lower bound (CRLB) for Gaussian TDOA
and FDOA noises at a moderate noise level. In [21],
Wei et al. proposed a multidimensional scaling (MDS)
method, which was shown to perform better than the 2SWLS
method. In [17], Wang et al. proposed a semidefinite relax-
ation (SDR) method to approximately solve the MLE prob-
lem. This scheme somewhat resembles the 2SWLS method:
first, it also transforms the TDOA and FDOA equations into
a set of linear equations by introducing two nuisance param-
eters; then, it uses an SDR method to convert the noncon-
vex constraints existing in nuisance parameters into convex
constraints. The methods discussed in [17], [19], and [21]
apply linear approximations to the nonlinear localization
problem; as a result, their performances degrade rapidly as
the measurement noise level increases.

Semidefinite programming (SDP) has also been applied in
localization systems recently [8], [10], [22]. The method by
Yang et al. [10] first relaxes the MLE problem to obtain a
convex SDP problem. An assumption made is that the source
is stationary. When the source is moving, to the best of the
authors’ knowledge, the method by Wang et al. [17] is the
only SDP solution for both position and velocity estimation.
As the noise level increases, the performance of this approach
degrades rapidly. The goal of this paper is to develop an effec-
tive SDP-based iterative method for localization using TDOA
and FDOA measurements assuming both the sensors and the
target are moving. The main difference between [17] and the
algorithm proposed here is that the former approach relaxes
the WLS problem, which is an approximate to the MLE
problem, while the proposed scheme in the current paper
directly relaxes the MLE problem. The proposed scheme also
resolves the non-convexity issue of theMLE. Additionally, as
the noise level increases, it outperforms existingmethods, and
the gain is substantial when the noise level is high.

The TDOA and FDOA measurement model will be
described in Sec. II, together with the formulation of MLE
problem. Sec. III presents the main contribution of this paper:
an SDP technique to convert the nonlinear and nonconvex
MLE problem into a convex problem and an iterative method
to estimate both velocity and position. Simulation results of
location and velocity estimates with the proposed scheme are
presented in Sec. IV and compared with the existing methods,
followed by concluding remarks in Sec. V.
Notation: The following notations are used throughout

the paper. Bold uppercase and bold lowercase letters denote
matrices and vectors, respectively. Im is the m × m identity
matrix and 1m is an m× 1 vector whose elements are all 1’s.
0m,n is anm×n zero matrix. E(·) denotes expectation and ‖·‖
is the l2 norm. A(:, i) denotes the ith column of A, and A(i, j)
denotes the (i, j)th element of A. A � B means that A− B is
positive semidefinite.

II. MEASUREMENT MODEL AND PROBLEM
FORMULATION
Consider a network with M moving sensors and one moving
source in a three-dimensional (3-D) space. The position and

velocity of the mth moving sensor are known and denoted by
si and ṡi, respectively. The position and velocity of the source
are unknown and denoted by u and u̇, respectively. The range-
difference measurements and their rates are, respectively,
given by [17]

ri1 = ‖u− si‖ − ‖u− s1‖ + ni1,

= di − d1 + ni1, i = 2, · · · ,M . (1)

and

ṙi1 =
(u̇− ṡi)T (u− si)
‖u− si‖

−
(u̇− ṡ1)T (u− s1)
‖u− s1‖

+ ṅi1,

= ḋi − ḋ1 + ṅi1, i = 2, · · · ,M (2)

where

di = ‖u− si‖ , ḋi =
(u̇− ṡi)T (u− si)
‖u− si‖

, i = 1, · · · ,M ,

and ni1 and ṅi1 are the range-difference measurement noise
and range-difference-rate measurement noise, respectively.
The TDOA and FDOA measurements are expressed as [17]

ti1 = ri1/c, fi1 = f0ṙi1/c, i = 2, · · · ,M (3)

where c is the signal propagation speed and f0 is the carrier
frequency.

We derive the proposed method by using the range-
difference measurements and their rates in (1) and (2).
Assume that ni1 and ṅi1 are independent zero-mean Gaus-
sian random variables, and let n = [n21, . . . , nM1]T ,
ṅ = [ṅ21, . . . , ṅM1]T , Q = E(nnT ), and Q̇ = E(ṅṅT ).
Further define the following notations:

r = [r21, . . . , rM1]T , ṙ = [ṙ21, . . . , ṙM1]T ,

d = [d1, . . . , dM ]T , ḋ = [ḋ1, . . . , ḋM ]T . (4)

The ML estimation of u and u̇ is expressed as

min
u,u̇,di,ḋi

(r− Ad)TQ−1(r− Ad)+ (ṙ− Aḋ)T Q̇−1(ṙ− Aḋ)

(5a)

s.t. di = ‖u− si‖ , (5b)

ḋi =
(u̇− ṡi)T (u− si)
‖u− si‖

, i = 1, · · · ,M (5c)

where A = [−1M−1 IM−1].

III. LOCALIZATION ALGORITHM
A. SDP FOR INITIAL POSITION AND VELOCITY ESTIMATES
The nonconvex MLE problem is very difficult to solve
directly. An SDP solution that transforms the nonconvex
MLE problem into a convex problem is developed here to
solve problem (5), which will generate the initial position and
velocity estimates. Define h = [dT ḋT ]T , A1 = A[IM 0M ,M ]
and A2 = A[0M ,M IM ]. The problem given in (5) can be
written as

min
u,u̇,h

(r−A1h)TQ−1(r− A1h)+(ṙ− A2h)T Q̇−1(ṙ− A2h)

(6a)
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s.t. hi = ‖u− si‖ , (6b)

hM+i =
(u̇− ṡi)T (u− si)
‖u− si‖

, i = 1, · · · ,M . (6c)

Rewrite the objective function in (6) for minimization as

tr[(AT
1Q
−1A1 + AT

2 Q̇
−1A2)H]−2hT (AT

1Q
−1r+ AT

2 Q̇
−1ṙ)

(7)

whereH = hhT and tr(·) represents the trace of a matrix. The
two constant terms in (7) can be discarded without affecting
the results. Note that the above objective function is a linear
function of H and h, but the constraints in (6) are noncon-
vex. Next the nonconvex constraints are relaxed into convex
constraints that remain tightly connected with the original
constraints. Let X = [u u̇] and Y = XTX. The constraint
hi = ‖u− si‖ , i = 1, · · · ,M , can be written as

Hi,i = h2i = Y (1, 1)− 2X(:, 1)T si + sTi si, i = 1, · · · ,M .

(8)

Similar to the approach used in [23], applying the Cauchy-
Schwartz inequality yields

Hi,j ≥ |Y (1, 1)− X(:, 1)T (si + sj)+ sTi sj|, 1 ≤ i < j ≤ M .

(9)

The constraint in (6c) can be written as

hihM+i = (u̇− ṡi)T (u− si), i = 1, · · · ,M . (10)

Also, the above nonconvex constraint can be expressed as

Hi,M+i = Y (1, 2)− X(:, 2)T si − X(:, 1)T ṡi + sTi ṡi. (11)

Further applying the Cauchy-Schwartz inequality to (6c)
yields

|hM+i| ≤ ‖u̇− ṡi‖ . (12)

Squaring both sides of (12) results in the following relation-
ship:

HM+i,M+i ≤ Y (2, 2)− 2X(:, 2)T ṡi + ṡTi ṡi. (13)

At this point, two nonconvex constraints remain: H = hhT

and Y = XTX. By using the SDR method [24], these two
constraints can be relaxed into convex inequalities H � hhT

and Y � XTX, which can be expressed as linear matrix
inequalities (LMI):[

1 hT

h H

]
� 0,

[
I3 X
XT Y

]
� 0. (14)

It is easy to prove that the rank of (AT
1Q
−1A1+AT

2 Q̇
−1A2) is

equal to 2M − 2. Here, similar to the technique used in [25],
two penalty terms, η1tr(H(1 : M , 1 : M )) and η2tr(H(M+1 :
2M ,M + 1 : 2M )), where η1 > 0, η2 > 0, are introduced
into the objective function. The second-order cone (SOC)
constraints are expressed as

‖X(:, 1)− si‖ ≤ hi, i = 1, · · · ,M . (15)

Algorithm 1 Proposed algorithm for moving target localiza-
tion using TDOA and FDOA.
Require:

TDOA/FDOA measurements: ri1, ˙ri1;
Sensor positions and velocities: si, ṡi;
Covariance matrix of TDOA/FDOA measurement
noises: Q, Q̇;
Number of iterations: L;

Ensure:
Target position and velocity estimates: ûn and ˆ̇un;

1: Solving the SDP problem (16) without the two penalty
terms and the SOC constraints, then using the estimates
(u and u̇) to calculate (17) and (18);

2: Solving the SDP problem (16) with the above calculated
η1 and η2, obtaining the initial estimates: û0 and ˆ̇u0;

3: Using û0 and ˆ̇u0 to update η1 and η2;
4: For n ≤ L;
5: Solving the WLS problem (19), obtaining the new veloc-

ity estimate: ˆ̇un;
6: Solving the SDP problem (23), obtaining the new posi-

tion estimate: ûn;
7: Using ûn and ˆ̇un to update η1 and η2;
8: End;

TABLE 1. Positions and velocities of the sensors.

TABLE 2. The average running time [s] of the algorithms compared.
CPU: Intel Core 3 2.4 GHz.

The two penalty terms and the SOC constraints ensure that all
constraints are tight for an improved localization accuracy.

The above discussions lead to the proposed SDP algorithm
as follows.

min
h,H,X,Y

tr[(AT
1Q
−1A1 + AT

2 Q̇
−1A2)H]−

2hT (AT
1Q
−1r+ AT

2 Q̇
−1ṙ)

+ η1tr(H(1 : M , 1 : M ))

+ η2tr(H(M + 1 : 2M ,M + 1 : 2M )) (16a)

s.t. Hi,j ≥ |Y (1, 1)− X(:, 1)T (si + sj)+ sTi si|,

1 ≤ i < j ≤ M , (16b)

Hi,M+i = Y (1, 2)− X(:, 2)T si − X(:, 1)T ṡi + sTi ṡi,

(16c)
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FIGURE 1. Position estimation comparison (u = [285,325,275]T m,
u̇ = [−20,15,40]T m/s): (a) RMSE, (b) Bias.

HM+i,M+i ≤ Y (2, 2)− 2X(:, 2)T ṡi + ṡTi ṡi, (16d)

Hi,i = Y (1, 1)− 2X(:, 1)T si + sTi si, (16e)

‖X(:, 1)− si‖ ≤ hi, i = 1, · · · ,M (16f)[
1 hT

h H

]
� 0 (16g)[

I3 X
XT Y

]
� 0 (16h)

A feasible approach for choosing the two positive parameters
η1 and η2 is given as:

η1 =
1∑M

i=1 ‖u− si‖2
(17)

and

η2 =
1∑M

i=1(
(u̇−ṡi)T (u−si)
‖u−si‖

)2
(18)

where u and u̇ are obtained by computing the proposed (16)
without the two penalty terms and the SOC constraints. Next,
computing (16) will result in the initial estimates û0 = X (:, 1)
and ˆ̇u0 = X (:, 2).

B. ITERATIVE ESTIMATION OF POSITION AND VELOCITY
Because the MLE is highly nonlinear and nonconvex, the
above proposed SDP method that builds upon the MLE is

FIGURE 2. Velocity estimation comparison (u = [285,325,275]T m,
u̇ = [−20,15,40]T m/s): (a) RMSE, (b) Bias.

inefficient. Besides, the position and velocity in FDOA mea-
surements are mutually coupled. To resolve these issues, we
propose an algorithm to estimate the position and velocity
separately using an iterative process next.

First, the initial values of the position and velocity esti-
mates are used to update the velocity. Let û0 be the initial
position estimate. The weighted least-squares (WLS) esti-
mate of the velocity is expressed as

ˆ̇u = (GTW−11 G)−1GTW−11 g (19)

where

G =


(û0 − s2)T∥∥û0 − s2

∥∥ − (û0 − s1)T∥∥û0 − s1
∥∥

...

(û0 − sM )T∥∥û0 − sM
∥∥ − (û0 − s1)T∥∥û0 − s1

∥∥

, (20)

g =


r21 +

(û0 − s2)T ṡ2∥∥û0 − s2
∥∥ − (û0 − s1)T ṡ1∥∥û0 − s1

∥∥
...

rM1 +
(û0 − sM )T ˙sM∥∥û0 − sM

∥∥ − (û0 − s1)T ṡ1∥∥û0 − s1
∥∥

, (21)

and W1 = Q̇ + F1QuFT1 . The details of W1 are given in
Appendix A.
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FIGURE 3. Position estimation comparison (u = [600,650,550]T m,
u̇ = [−20,15,40]T m/s: (a) RMSE, (b) Bias.

The next step is to use the velocity from (19) and the
position from (16) to update the position estimate. Using ˆ̇u,
instead of u̇ in (6), we have

min
u,h

(r−A1h)TQ−1(r−A1h)+(ṙ− A2h)TW−12 (ṙ−A2h)

(22a)

s.t. hi = ‖u− si‖ , (22b)

hM+i =
( ˆ̇u− ṡi)T (u− si)
‖u− si‖

, i = 1, · · · ,M (22c)

where W2 = Q̇ + F2Qu̇FT2 and the details for W2 are given
in Appendix B.

Similar to the previous relaxation method, the SDPmethod
for the position estimate is described as follows.

min
h,H,u,ys

tr[(AT
1Q
−1A1 + AT

2W
−1
2 A2)H]

− 2hT (AT
1Q
−1r+ AT

2W
−1
2 ṙ)

+ η1tr(H(1 : M , 1 : M ))

+ η2tr(H(M + 1 : 2M ,M + 1 : 2M )) (23a)

s.t. Hi,j ≥ |ys − uT (si + sj)+ sTi si|,

1 ≤ i < j ≤ M , (23b)

Hi,M+i = uT ˆ̇u− ˆ̇uT si − uT ṡi + sTi ṡi, (23c)

|hM+i| ≤
∥∥∥ ˆ̇u− ṡi

∥∥∥ , (23d)

FIGURE 4. Velocity estimation comparison (u = [600,650,550]T m,
u̇ = [−20,15,40]T m/s): (a) RMSE, (b) Bias.

Hi,i = ys − 2uT si + sTi si, (23e)

‖u− si‖ ≤ hi, i = 1, · · · ,M (23f)[
1 hT

h H

]
� 0 (23g)[

I3 u
uT ys

]
� 0. (23h)

The SDP method in (23) will generate the updated û. The
updated û and ˆ̇u could be used in (19) and (23) again for
improved accuracy. The proposed algorithm for moving tar-
get localization performances using TDOA and FDOA mea-
surements is summarized in Algorithm 1.

IV. SIMULATION RESULTS
A number of numerical simulations are obtained to assess
the performance of the proposed Algorithm 1. The proposed
algorithm (labeled as ‘Proposed’) is compared with the SDP
method by Wang et al. [17], 2SWLS [19], MDS [21], and
CRLB. The proposed algorithm and Wang’s SDP algorithm
are implemented by CVX toolbox [26] using SeDuMi as a
solver [27] with precision set to ‘best’, which is same to the
setting adopted in [17]. The performance metric adopted is
the root mean-squared error (RMSE), which is defined as

RMSE =
√

1
N

∑N
j=1

∥∥x̂j − x
∥∥2, where x is the true position

or velocity, x̂j is the estimated source position or velocity
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FIGURE 5. Position estimation comparison (u = [1000,1500,2000]T m,
u̇ = [−20,15,40]T m/s): (a) RMSE, (b) Bias.

in the jth run, and N is the number of Monte Carlo runs
(N = 1000 is chosen in the simulation next). The simulation
configuration is as follows. There are five moving sensors
and one moving source, the same configuration as adopted
in [17]. The positions and velocities of the sensors are listed
in Table 1. The TDOA and FDOA measurement noises are
assumed to be independent Gaussian random variables, and
their covariance matrices are Q = σ 26 and Q̇ = 0.1σ 26,
where σ 2 represents the measurement noise level, and the
diagonal elements of 6 equal 1 while its off-diagonal ele-
ments are equal to 0.5 [17]. The number of iteration is L = 2.

The results in Fig. 1 and Fig. 2 assume that the
source is located at [285, 325, 275]Tm with velocity
[−20, 15, 40]Tm/s. In this geometry, from the two figures,
we can see that: 2SWLS has a ‘threshold effect’; i.e., when
noise level is low, the algorithm can reach the CRLB; as
the noise level reaches a certain value, its performance starts
to degrade rapidly. The proposed algorithm, SDP and MDS
could reach the CRLB.

For Figs. 3 and 4, the source is assumed to be located at
[600, 650, 550]Tm with velocity [−20, 15, 40]Tm/s. In this
geometry, the two figures show that both 2SWLS, MDS
and SDP have a ‘threshold effect’, whereas SDP performs
better than MDS, and MDS is better than 2SWLS. This is as
expected since in [17], [19], and [21] linear approximations

FIGURE 6. Velocity estimation comparison (u = [1000,1500,2000]T m,
u̇ = [−20,15,40]T m/s): (a) RMSE, (b) Bias.

are made to the nonlinear localization problem. Hence, their
performance may degrade rapidly as the measurement noises
increase. An interesting result with the proposed algorithm is
that the RMSE of position is below the CRLB at high noise
levels. The reason is that the proposed algorithm is a biased
estimator, and the figures also show that.

In Figs. 5 and 6, the source is assumed to be located
at [1000, 1500, 2000]Tm with velocity [−20, 15, 40]Tm/s.
From the two figures, it is observed that both 2SWLS, MDS
and SDP have a ‘threshold effect’, and the proposed algorithm
still performs well when the noise level is high. Table II lists
the average running time of the algorithms considered. It is
observed that the proposed algorithm is more computation-
ally expensive than other algorithms compared. Nevertheless,
for applications for which performance is more critical than
computational complexity, the proposed algorithm can be
applied.

Fig. 7 shows the performances of various methods for a
deployment scenario where the four sensors are located at
positions 1, 2, 3, and 5 as shown in Table 1. The source is
assumed to be located at [285, 325, 275]Tm with velocity
[−20, 15, 40]Tm/s. It is observed that 2SWLS, MDS and
SDP do not work for this case because the number of mea-
surement equations are less than the variables required by
these methods. However, the proposed algorithm still has an
excellent performance (close to the CRLB).
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FIGURE 7. RMSE comparison (u = [285,325,275]T m, u̇ = [−20,15,
40]T m/s, with four sensor nodes): (a) Position, (b) Velocity.

V. CONCLUSIONS
Moving target localization using TDOA and FDOA mea-
surements is studied in this paper. We first develop an SDP
technique to transform the nonconvex MLE problem into a
convex problem. This SDP algorithm cannot provide a good
performance because it is built upon the highly nonlinear
and nonconvex MLE problem. We then propose an iterative
method that uses the solutions of the SDP method as initial
values to improve the accuracy of the velocity and position
estimates. Extensive simulation results show that, compared
with existing schemes, the proposed algorithm achieves a
significant performance gain as the measurement noise level
increases.

APPENDIX A
WEIGHTING MATRIX W1
The weighing matrixW1 is derived as follows. With the first-
order Talor series and substituting û into (2) yield

ṙi1 ≈ fi(û)+∇fi(û)T1u+ ṅi1, i = 2, · · · ,M , (24)

where

fi(û) =
(u̇− ṡi)T (û− si)∥∥û− si

∥∥ −
(u̇− ṡ1)T (û− s1)∥∥û− s1

∥∥ , (25)

∇fi(û) =
(u̇− ṡi)∥∥û− si

∥∥ − (û− si)(u̇− ṡi)T (û− si)∥∥û− si
∥∥3

−
(u̇− ṡ1)∥∥û− s1

∥∥ + (û− s1)(u̇− ṡ1)T (û− s1)∥∥û− s1
∥∥3 , (26)

1u = û− u. (27)

Note that in (26), the calculation of ∇fi(û) uses ˆ̇u, instead of
u̇. Let

εi = ∇fi(û)T1u+ ṅi1, (28)

ε = [ε2, · · · , εM ]T , (29)

and

F1 =

∇f2(û)
T

...

∇fM (û)T

. (30)

Then ε is written as

ε = F11u+ ṅ. (31)

The weighting matrix is obtained by

W1 = E(εεT ). (32)

Under the assumption that1u is uncorrelated with ṅ, we have

W1 = F1QuFT1 + Q̇ (33)

where

Qu = E(1u1uT ). (34)

Note thatQu is unknown. Nevertheless, if the estimator for u
is efficient, then the CRLB of u can be used, instead of Qu,
where û and ˆ̇u are used to replace u and u̇ for the calculation
of the CRLB of u.

APPENDIX B
WEIGHTING MATRIX W2
The weighing matrixW2 is derived as follows. With the first-
order Talor series and substituting ˆ̇u into (2) yield

ṙi1 ≈ qi( ˆ̇u)+∇qi( ˆ̇u)T1u̇+ ṅi1, i = 2, · · · ,M , (35)

where

qi( ˆ̇u) =
( ˆ̇u− ṡi)T (u− si)
‖u− si‖

−
( ˆ̇u− ṡ1)T (u− s1)
‖u− s1‖

, (36)

∇qi( ˆ̇u) =
u− si
‖u− si‖

−
u− s1
‖u− s1‖

, (37)

1u̇ = ˆ̇u− u̇. (38)

Note that in the calculation of ∇qi( ˆ̇u) with (37), u is replaced
by û. Let

θi = ∇qi( ˆ̇u)T1u̇+ ṅi1, (39)

θ = [θ2, · · · , θM ]T , (40)
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and

F2 =

∇q2( ˆ̇u)
T

...

∇qM ( ˆ̇u)T

. (41)

Then θ can be represented as

θ = F21u̇+ ṅ. (42)

The weighting matrix is obtained by

W2 = E(θθT ). (43)

Under the assumption that1u̇ is uncorrelated with ṅ, we have

W2 = F2Qu̇FT2 + Q̇. (44)

where

Qu̇ = E(1u̇1u̇T ). (45)

Note again thatQu̇ is unknown. Nevertheless, if the estimator
for u̇ is efficient, then the CRLB of u̇, instead of Qu̇, can
be used, where û and ˆ̇u are used, instead of u and u̇, for
calculating the CRLB of u̇.
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