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ABSTRACT Iris recognition refers to the automated process of recognizing individuals based on their
iris patterns. The seemingly stochastic nature of the iris stroma makes it a distinctive cue for biometric
recognition. The textural nuances of an individual’s iris pattern can be effectively extracted and encoded
by projecting them onto Gabor wavelets and transforming the ensuing phasor response into a binary code
- a technique pioneered by Daugman. This textural descriptor has been observed to be a robust feature
descriptor with very low false match rates and low computational complexity. However, recent advancements
in deep learning and computer vision indicate that generic descriptors extracted using convolutional neural
networks (CNNs) are able to represent complex image characteristics. Given the superior performance of
CNNs on the ImageNet large scale visual recognition challenge and a large number of other computer vision
tasks, in this paper, we explore the performance of state-of-the-art pre-trained CNNs on iris recognition.
We show that the off-the-shelf CNN features, while originally trained for classifying generic objects,
are also extremely good at representing iris images, effectively extracting discriminative visual features
and achieving promising recognition results on two iris datasets: ND-CrossSensor-2013 and CASIA-Iris-
Thousand.We also discuss the challenges and future research directions in leveraging deep learning methods
for the problem of iris recognition.

INDEX TERMS Iris recognition, biometrics, deep learning, convolutional neural network.

I. INTRODUCTION
Iris recognition refers to the automated process of recogniz-
ing individuals based on their iris patterns. Iris recognition
algorithms have demonstrated very low false match rates and
very high matching efficiency in large databases. This is not
entirely surprising given the (a) complex textural pattern of
the iris stroma that varies significantly across individuals,
(b) the perceived permanence of its distinguishing attributes,
and (c) its limited genetic penetrance [1]–[5]. A large-scale
evaluation conducted by the National Institute of Science and
Technology (NIST) has further highlighted the impressive
recognition accuracy of iris recognition in operational sce-
narios [6], [7]. According to a report from 2014 [8], over one
billion people worldwide have had their iris images electron-
ically enrolled in various databases across the world. This
includes about 1 billion people in the Unique IDentification
Authority of India (UIDAI) program, 160million people from
the national ID program of Indonesia, and 10 million people
from the US Department of Defense program. Thus, the iris

is likely to play a critical role in next generation large-scale
identification systems.

A. STATE-OF-THE-ART LITERATURE
The success of iris recognition - besides its attractive physical
characteristics - is rooted in the development of efficient
feature descriptors, especially the Gabor phase-quadrant fea-
ture descriptor introduced in Daugman’s pioneering work [3],
[5], [9]. This Gabor phase-quadrant feature descriptor (often
referred to as the iriscode) has dominated the iris recognition
field, exhibiting very low false match rates and high matching
efficiency. Researchers have also proposed a wide range of
other descriptors for iris based onDiscrete Cosine Transforms
(DCT) [10], Discrete Fourier Transforms (DFT) [11], ordinal
measures [12], class-specific weight maps [13], compressive
sensing and sparse coding [14], hierarchical visual code-
books [15], multi-scale Taylor expansion [16], [17], etc.
Readers are referred to [18]–[21] for an extensive list of
methods that have been appropriated for iris recognition.
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B. GAP
Given the widespread use of classical texture descriptors for
iris recognition, including the Gabor phase-quadrant feature
descriptor, it is instructive to take a step back and answer the
following question: how do we know that these hand-crafted
feature descriptors proposed in the literature are actually the
best representations for the iris? Furthermore, can we achieve
better performance (compared to the Gabor-based approach)
by designing a novel feature representation scheme that can
perhaps attain the upper bound on iris recognition accuracy
with low computational complexity?

C. POTENTIAL SOLUTION
One possible solution is to leverage the recent advances in
Deep Learning to discover a feature representation scheme
that is primarily data-driven. By automatically learning the
feature representation from the iris data, an optimal rep-
resentation scheme can potentially be deduced, leading to
high recognition results for the iris recognition task. Deep
learning techniques often use hierarchical multi-layer net-
works to elicit feature maps that optimize performance on
the training data [22]. These networks allow for the feature
representation scheme to be learned and discovered directly
from data, and avoid some of the pitfalls in developing hand-
crafted features. Deep learning has completely transformed
the performance of many computer vision tasks [23], [24].
Therefore, we hypothesize that deep learning techniques,
as embodied by Convolutional Neural Networks (CNNs), can
be used to design alternate feature descriptors for the problem
of iris recognition.

D. WHY ARE DEEP IRIS METHODS NOT WIDELY
USED AS YET?
There have been a few attempts to appropriate the
principles of deep learning to the task of iris
recognition [25], [26]. The limited application of deep learn-
ing methods to the problem of iris recognition is due to the
fact that deep learning requires a huge amount of training
data, which is not available to most iris researchers at this
time. In addition, deep learning is also very computation-
ally expensive and requires the power of multiple Graph-
ical Processing Units (GPUs). This is a deterrent to the
physical implementation of such deep learning approaches.
Most importantly, to date, there has been no insight into
why deep learning should work for iris recognition, and no
systematic analysis has been conducted to ascertain how
best to capitalize on modern deep approaches to design
an optimal architecture of deep networks to achieve high
accuracy and low computational complexity. Simply stacking
multiple layers to design a CNN for iris recognition without
intuitive insights would be infeasible (due to the lack of large-
scale iris datasets in the public domain), non-optimal (due
to ad hoc choices for CNN architecture, number of layers,
configuration of layers...) and inefficient (due to redundant
layers).

We argue that rather than designing and training newCNNs
for iris recognition, using CNNs whose architectures have
been proven to be successful in large-scale computer vision
challenges should yield good performance without the time-
consuming architecture design step. A major source of state-
of-the-art CNNs is from the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [27] organized annually
to evaluate state-of-the-art algorithms for large-scale object
detection and image classification. The networks developed
as part of this challenge are generally made available in
the public domain for extracting deep features from images.
Researchers have shown that these off-the-shelf CNN fea-
tures are extremely effective for various computer vision
tasks, such as facial expression classification, action recog-
nition and visual instance retrieval, and are not restricted to
just the object detection and image classification tasks for
which they were designed [28]. In this paper, we will investi-
gate the performance of those CNNs that won the ILSVRC
challenge since 2012 (before 2012, the winners were non-
CNN methods that did not perform as well as CNN-based
approaches).

The main contributions of this paper are as follows:
• First, we analyze the deep architectures which have been
proposed in the literature for iris recognition.

• Second, we appropriate off-the-shelf CNNs to the prob-
lem of iris recognition and present our preliminary
results using them.

• Third, we discuss the challenges and the future of deep
learning for iris recognition.

The remainder of the paper is organized as follows:
Section II briefly introduces CNNs: Section II-A discusses
related work in general CNNs, while Section II-B discusses
CNNs that have been proposed for iris recognition. Section III
describes the off-the-shelf CNNs that were used in this work,
and our proposed framework for investigating the perfor-
mance of these CNNs. Section IV presents the experimental
results. Section V concludes the paper with a discussion on
future work.

II. RELATED WORK
A. CNNs - CONVOLUTIONAL NEURAL NETWORKS
Deep learning methods, especially convolutional neural net-
works (CNNs), have recently led to breakthroughs in many
computer vision tasks such as object detection and recog-
nition, and image segmentation and captioning [22]–[24].
By attempting to mimic the structure and operation of the
neurons in the human visual cortex through the use of
hierarchical multi-layer networks, deep learning has been
shown to be extremely effective in automating the process
of learning feature-representation schemes from the training
data, thereby eliminating the laborious feature engineering
task. CNNs belong to a specific category of deep learning
methods designed to process images and videos. By using
repetitive blocks of neurons in the form of a convolution
layer that is applied hierarchically across images, CNNs
have not only been able to automatically learn image feature
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FIGURE 1. The evolution of the winning entries on the ImageNet Large
Scale Visual Recognition Challenge from 2010 to 2015. Since 2012, CNNs
have outperformed hand-crafted descriptors and shallow networks by a
large margin. Image re-printed with permission [36].

representations, but they have also outperformed many con-
ventional hand-crafted feature techniques [29].

In the 1960s, Hubel and Wiesel [30] found that cells in
the animal visual cortex were responsible for detecting light
in receptive fields and constructing an image. Further, they
demonstrated that this visual field could be represented using
a topographic map. Later, Fukushima and Miyake [31] pro-
posed the NeoCognitron, which could be regarded as the
predecessor of the CNN. The seminal modern CNN was
introduced by Yan Lecun et al. [32] in the 1990s for Hand-
written Digit Recognition with an architecture called LeNet.
Many features of modern deep networks are derived from
the LeNet, where convolutional connections were introduced
and a backpropagation algorithm was used to train the net-
work. CNNs became exceptionally popular in 2012 when
Krizhesky et al. introduced a CNN called AlexNet, which sig-
nificantly outperformed previous methods on the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) [33].
The AlexNet is simply a scaled version of the LeNet with a
deeper structure, but is trained on a much larger dataset (Ima-
geNet with 14 million images) with a much more powerful
computational resource (GPUs).

Since then, many novel architectures and efficient learn-
ing techniques have been introduced to make CNNs deeper
and more powerful [34]–[37], achieving revolutionary per-
formance in a wide range of computer vision applica-
tions. The annual ILSVRC event has become an important
venue to recognize the performance of new CNN architec-
tures, especially with the participation of technology giants
like Google, Microsoft and Facebook. The depth of the
‘‘winning’’ CNNs has progressively increased from 8 lay-
ers in 2012 to 152 layers in 2015, while the recognition
error rate has significantly dropped from 16.4% in 2012 to
3.57% in 2015. This phenomenal progress is illustrated
in Figure 1.

Pre-trained CNNs have been open-sourced and widely
used in other applications and show very promising
performance [28].

B. CNNs FOR IRIS RECOGNITION IN THE LITERATURE
A number of deep networks have been proposed for improv-
ing the performance of iris recognition. Liu et al. proposed
a DeepIris network of 9 layers consisting of one pairwise
filter layer, one convolutional layer, two pooling layers,
two normalization layers, two local layers and one fully-
connected layer [38]. This deep network achieved a very
promising recognition rate on both the Q-FIRE [39] and
CASIA [40] datasets. Gangwar and Joshi [25] employed
more advanced layers to create two DeepIrisNets for the iris
recognition task [25]. The first network, DeepIrisNet-A, con-
tained 8 convolutional layers (each followed by a batch nor-
malization layer), 4 pooling layers, 3 fully connected layers
and two drop-out layers. The second network, DeepIrisNet-
B, added two inception layers to increase the modeling capa-
bility. These two networks exhibited superior performance
on the ND-IRIS-0405 [41] and ND-CrossSensor-Iris-2013
[41] datasets. It is worth mentioning that CNNs have also
been used in the iris biometrics community for iris seg-
mentation [42], [43], spoof detection [44], [45] and gen-
der classification [46]. While self-designed CNNs such as
DeepIris [38] and DeepIrisNet [25] have shown promising
results, their major limit lies in the design of the network
since the choice on the number of layers is limited by the
number of training samples. The largest public dataset that
is currently available is the ND-CrossSensor-2013 dataset
which contains only 116,564 iris images. This number is far
from themillions of parameters that embody any substantially
deep neural network.

To deal with the absence of a large iris dataset, transfer
learning can be used. Here, CNNs that have been trained
on other large datasets such as ImageNet [27], can be
appropriated directly to the iris recognition domain. In fact,
CNN models pre-trained on ImageNet, have been suc-
cessfully transferred to many computer vision tasks [28].
Minaee et al. [26] showed that the VGG model, even though
pre-trained on ImageNet to classify objects from different cat-
egories, works reasonably well for the task of iris recognition.
However, since the release of the VGG model in 2014, many
other advanced architectures have been proposed in the liter-
ature. In this paper, we will harness such CNN architectures -
primarily those that have won the ImageNet challenge - for
the iris recognition task.

III. METHODS - OFF-THE-SHELF CNN FEATURES
FOR IRIS RECOGNITION
Considering the dominance of CNNs in the computer vision
field and inspired by recent research [28] which has shown
that Off-the-Shelf CNN Features work very well for multiple
classification and recognition tasks, we investigate the perfor-
mance of state-of-the-art CNNs pre-trained on the ImageNet
dataset for the iris recognition task. We first review some
popular CNN architectures and then present our framework
for iris recognition using these CNN Features.
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A. CNNs IN USE
We will now analyze each architecture in detail and highlight
their notable properties.

1) ALEXNET
ILSVRC 2012 winner: In 2012, Krizhevsky et al. [33]
achieved a breakthrough in the large-scale ILSVRC chal-
lenge, by utilizing a deep CNN that significantly outper-
formed other hand-crafted features resulting in a top-5 error
rate of 16.4%. AlexNet is actually a scaled version of the
conventional LeNet, and takes advantage of a large-scale
training dataset (ImageNet) and more computational power
(GPUs that allow for 10x speed-up in training). Tuning the
hyperparameters of AlexNet was observed to result in better
performance, subsequently winning the ILSVCR 2013 chal-
lenge [47]. The detailed architecture of AlexNet is presented
in the Appendix. In this paper, we extract the outputs of all
convolutional layers (5) and all fully connected layers (2) to
generate the CNN Features for the iris recognition task.

2) VGG
ILSVRC 2014 runner-up: In 2014, Simonyan and Zisserman
from Oxford showed that using smaller filters (3 × 3) in
each convolutional layer leads to improved performance. The
intuition is that multiple small filters in sequence can emulate
the effects of larger ones. The simplicity of using small
sized filters throughout the network leads to very good gen-
eralization performance. Based on these observations, they
introduced a network called VGG which is still widely used
today due to its simplicity and good generalization perfor-
mance [34]. Multiple versions of VGG has been introduced,
but the two most popular ones are VGG-16 and VGG-19 that
contain 16 and 19 layers, respectively. The detailed archi-
tecture of VGG is presented in the Appendix. In this paper,
we extract the outputs of all convolutional layers (16) and all
fully connected layers (2) to generate the CNN Features for
the iris recognition task.

3) GoogLeNet AND INCEPTION
ILSVRC 2014 winner: In 2014, Szegedy et al. from Google
introduced the Inception v1 architecture that was imple-
mented in the winning ILSVRC 2014 submission called
GoogLeNet with a top-5 error rate of 6.7%. The main inno-
vation is the introduction of an inception module, which
functions as a small network inside a bigger network [35].
The new insight was the use of 1 × 1 convolutional blocks
to aggregate and reduce the number of features before invok-
ing the expensive parallel blocks. This helps in combining
convolutional features in a better way that is not possible by
simply stacking more convolutional layers. Later, the authors
introduced some improvements in terms of batch normaliza-
tion, and re-designed the filter arrangement in the inception
module to create Inception v2 and v3 [48]. Most recently,
they added residual connections to improve the gradient flows
in Inception v4 [49]. The detailed architecture of Inception

v3 is presented in the Appendix. In this paper, we extract the
outputs of all convolutional layers (5) and all inception lay-
ers (12) to generate the CNN Features for the iris recognition
task.

4) RESNET
ILSVRC 2015 winner: In 2015, He et al. from Microsoft
introduced the notion of residual connection or skip con-
nection which feeds the output of two successive convolu-
tional layers and bypasses the input to the next layer [36].
This residual connection improves the gradient flow in the
network, allowing the network to become very deep with
152 layers. This network won the ILSVRC 2015 challenge
with a top-5 error rate of 3.57%. The detailed architecture
of ResNet-152 is presented in the Appendix. In this paper,
we extract the outputs of all convolutional layers (1) and all
bottleneck layers (17) to generate the CNN Features for the
iris recognition task.

5) DENSENET
In 2016, Huang et al. [37] from Facebook proposed
DenseNet, which connects each layer of a CNN to every
other layer in a feed-forward fashion. Using densely con-
nected architectures leads to several advantages as pointed out
by the authors: ‘‘alleviating the vanishing-gradient problem,
strengthening feature propagation, encouraging feature reuse,
and substantially reducing the number of parameters’’. The
detailed architecture of DenseNet-201 is presented in the
Appendix. In this paper, we extract the outputs of a selected
number of dense layers (15) to generate the CNN Features for
the iris recognition task.

It is worth noting that there are several other powerful CNN
architectures in the literature [29], [50]. However, we have
only chosen the above architectures for illustrating the per-
formance of pre-trained CNNs on the iris recognition task.

B. IRIS RECOGNITION FRAMEWORK USING CNN
FEATURES
The framework we employ to investigate the performance of
off-the-shelf CNNFeatures for iris recognition is summarized
in Figure 2.

1) SEGMENTATION
The iris is first localized by extracting two circular contours
pertaining to the inner and outer boundaries of the iris region.
The integro-differential operator, one of the most commonly
used circle detectors, can be mathematically expressed as,

maxr,x0,y0
∣∣Gσ (r) ∗ ∂

∂r

∮
r,x0,y0

I (x, y)
2πr

ds
∣∣, (1)

where I (x, y) and Gσ denote the input image and a Gaussian
blurring filter, respectively. The symbol ∗ denotes a convo-
lution operation and r represents the radius of the circular
arc ds, centered at the location (x0, y0). The described oper-
ation detects circular edges by iteratively searching for the
maximum responses of a contour defined by the parameters
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FIGURE 2. The framework for iris recognition using Off-the-shelf CNN Features. The iris image is segmented using two circular contours and then
geometrically normalized using a pseudo-polar transformation resulting in a fixed rectangular image. Features are next extracted using
off-the-shelf CNNs, and then classified using an SVM.

(x0, y0, r). In most cases, the iris region can be obscured by
the upper and lower eyelids and eyelashes. In such images,
the eyelids can be localized using the above operator with
the path of contour integration changed from a circle to an
arc. Noise masks distinguish the iris-pixels from the non-
iris pixels (e.g., eyelashes, eyelids, etc.) in a given image.
Such noise masks, corresponding to each input image, are
generated during the segmentation stage and used in the
subsequent steps.

2) NORMALIZATION
The area enclosed by the inner and outer boundaries of an iris
can vary due to the dilation and contraction of the pupil. The
effect of such variations need to beminimized before compar-
ing different iris images. To this end, the segmented iris region
is typically mapped to a region of fixed dimension. Daugman
proposed the usage of a rubber-sheet model to transform the
segmented iris to a fixed rectangular region. This process is
carried out by re-mapping the iris region, I (x, y), from the
raw Cartesian coordinates (x, y) to the dimensionless polar
coordinates (r, θ), and can be mathematically expressed as,

I (x(r, θ), y(r, θ))→ I (r, θ), (2)

where r is in the unit interval [0,1], and θ is an angle in
the range of [0,2π ]. x(r, θ) and y(r, θ) are defined as the
linear combination of both pupillary (xp(θ ), yp(θ )) and limbic
boundary points (xs(θ ), ys(θ )) as,

x(r, θ) = (1− r)xp(θ )+ rxs(θ ), (3)

y(r, θ) = (1− r)yp(θ )+ rys(θ ). (4)

An additional benefit of normalization is that the rotations of
the eye (e.g., due to the movement of the head) are reduced
to simple translations during matching. The corresponding
noise mask is also normalized to facilitate easier matching
in the later stages.

3) CNN FEATURE EXTRACTION
The normalized iris image is then fed into the CNN feature
extraction module. As discussed earlier, five state-of-the-art
and off-the-shelf CNNs (AlexNet, VGG, Google Inception,
ResNet and DenseNet) are used in this work to extract fea-
tures from the normalized iris images. Note that there are

multiple layers in each CNN. Every layer models different
levels of visual content in the image, with later layers encod-
ing finer and more abstract information, and earlier layers
retaining coarser information. One of the key reasons why
CNNs work very well on computer vision tasks is that these
deep networks with tens or hundreds of layers and millions
of parameters are extremely good at capturing and encoding
complex features of the images, leading to superior perfor-
mance. To investigate the representation capability of each
layer for the iris recognition task, we employ the output of
each layer as a feature descriptor and report the corresponding
recognition accuracy.

4) SVM CLASSIFICATION
The extracted CNN feature vector is then fed into the classi-
fication module. We use a simple multi-class Support Vector
Machine (SVM) [51] due to its popularity and efficiency in
image classification. The multi-class SVM for N classes is
implemented as a one-against-all strategy, which is equivalent
to combining N binary SVM classifiers, with every classifier
discriminating a single class against all other classes. The test
sample is assigned to the class with the largest margin [51].

IV. EXPERIMENTAL RESULTS
A. DATASETS
We conducted our experiments on two large iris datasets:
1) LG2200 dataset: ND-CrossSensor-Iris-2013 is the largest
public iris dataset in the literature in terms of the number
of images [41]. The ND-CrossSensor-2013 dataset contains
116,564 iris images captured by the LG2200 iris camera
from 676 subjects. 2) CASIA-Iris-Thousand: This contains
20,000 iris images from 1,000 subjects, which were collected
using the IKEMB-100 camera from IrisKing [40]. Some sam-
ples images from the two datasets are depicted in Figure 3.

B. PERFORMANCE METRIC AND BASELINE METHOD
To report the performance, we rely on the Recognition Rate.
Recognition Rate is calculated as the proportion of cor-
rectly classified samples at a pre-defined False Acceptance
Rate (FAR). In this work, we choose to report Recognition
Rate at FAR = 0.1%.

The baseline feature descriptor we used for compari-
son is the Gabor phase-quadrant feature [3]. The popular
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FIGURE 3. Sample images from the LG2200 (first row) and
CASIA-Iris-Thousand (second row) datasets.

matching operator coupled with this descriptor is the
Hamming distance [3]. This baseline achieved recognition
accuracies of 91.1% and 90.7% on the LG2200 and
CASIA-Iris-Thousand datasets, respectively.

C. EXPERIMENTAL SETUP
The left and right iris images of every subject are
treated as two different classes. Thus, the LG2200 dataset
has 1,352 classes and the CASIA-Iris-Thousand has
2,000 classes. We randomly choose 70% of the data corre-
sponding to each class for training and the rest (30%) for
testing. It must be noted that the training images were used
only to train the multi-class SVMs; the pre-trained CNNs
were not modified at all using the training data. This is one
of the main advantage of using pre-trained CNNs.

For iris segmentation and normalization, we used an
open-source software, USIT v2.2, from the University of
Salzburg [52]. This software takes each iris image as an input,
segments it using inner and outer circles, and normalizes the
segmented region into a rectangle of size 64× 256 pixels.

For CNN feature extraction, we implemented our
approach using PyTorch [53]. PyTorch is a recently
released deep learning framework by Facebook combin-
ing the advantages of both Torch and Python. The two
most advanced features of this framework are dynamic
graph computation and imperative programming, which
make deep network coding more flexible and power-
ful [53]. With regards to our experiments, PyTorch sup-
plies a wide range of pre-trained off-the-shelf CNNs,

making our feature extraction task that much more
convenient.

For classification, we used the LIBSVM library [54] with
a Python wrapper implemented in the scikit-learn library [55]
which allows for ease of integration with the feature extrac-
tion step.

D. PERFORMANCE ANALYSIS
As stated earlier, different layers encode different levels of
visual content. To investigate the performance due to each
layer, we estimate the recognition accuracy after using the
output from each layer as a feature vector to represent the
iris. The recognition accuracies are illustrated in Figure 4 for
the two datasets: LG2200 and CASIA-Iris-Thousand.

Interestingly, the recognition accuracy peaks in some mid-
dle layers for all CNNs. On the LG2200 dataset: layer 10 for
VGG, layer 10 for Inception, layer 11 for ResNet and layer
6 for DenseNet. On the CASIA-Iris-Thousand dataset: layer
9 for VGG, layer 10 for Inception, layer 12 for ResNet and
layer 5 for DenseNet. The difference in the ‘‘peak layers’’
can be explained by the properties of each CNN. Since
Inception uses intricate inception layers (actually each layer
is a network inside a larger network), it quickly converges
to the peak than others. In contrast, ResNet with its skip
connections is very good at allowing the gradient to flow
through the network, making the network perform well at a
deeper depth, leading to a later peak in the iris recognition
accuracy. DenseNet, with its rich dense connections, allows
neurons to interact easily, leading to the best recognition
accuracy among all CNNs for the iris recognition task.

As can be seen, peak results do not occur toward the later
layers of the CNNs. This can be explained by the fact that the
normalized iris image is not as complex as the images in the
ImageNet dataset where large structural variations are present
in a wide range of objects. Hence, it is not necessary to have
a large number of layers to encode the normalized iris. Thus,
peak accuracies are achieved in the middle layers.

Among all five CNNs, DenseNet achieves the high-
est peak recognition accuracy of 98.7% at layer 6 on
the LG2200 dataset and 98.8% at layer 5 on the

FIGURE 4. Recognition accuracy of different layers in the CNNs on the two datasets: (a) LG2200 and (b) CASIA-Iris-Thousand.

VOLUME 6, 2018 18853



K. Nguyen et al.: Iris Recognition With Off-the-Shelf CNN Features

CASIA-Iris-Thousand dataset. ResNet and Inception achieve
similar peak recognition accuracies of 98.0% and 98.2%
at layers 11 and 10, respectively, on the LG2200 dataset;
and 98.5% and 98.3% at layers 12 and 10, respectively,
on the CASIA-Iris-Thousand dataset. VGG, with its simple
architecture, only achieves 92.7% and 93.1% recognition
accuracy, both at layer 9, on the LG2200 and CASIA-Iris-
Thousand datasets, respectively. The continually increasing
recognition accuracy of AlexNet indicates that the number of
layers considered in its architecture may not fully capture the
discriminative visual features in iris images.

V. DISCUSSIONS AND CONCLUSION
In this paper, we have approached the task of iris
recognition from a deep learning point of view. Our exper-
iments have shown that off-the-shelf pre-trained CNN fea-
tures, even though originally trained for the problem of
object recognition, can be appropriated to the iris recognition
task. By harnessing state-of-the-art CNNs from the ILSVRC
challenge and applying them on the iris recognition task,
we achieve state-of-the-art recognition accuracy in two large
iris datasets, viz., ND-CrossSensor-2013 and CASIA-Iris-
Thousand. These preliminary results show that off-the-shelf
CNN features can be successfully transferred to the iris recog-
nition problem, thereby effectively extracting discriminative
visual features in iris images and eliminating the laborious
feature-engineering task. The benefit of CNNs in automated
feature-engineering is critical in learning new iris encoding
schemes that can benefit large scale applications.

A. OPEN PROBLEMS
This work, together with previous work on DeepIris [38] and
DeepIrisNet [25], indicates that CNNs are effective in encod-
ing discriminative features for iris recognition. Notwithstand-
ing this observation, there are several challenges and open
questions when applying deep learning to the problem of iris
recognition.
• Computational complexity: The computational com-
plexity of CNNs during the training phase is very high
due to the millions of parameters used in the network.
In fact, powerful GPUs are needed to accomplish train-
ing. This compares unfavorably with hand-crafted iris
features, especially Daugman’s Gabor features, where
thousands of iriscodes can be extracted and compared on
a general purpose CPU within a second. Model reduc-
tion techniques such as pruning and compressing may,
therefore, be needed to eliminate redundant neurons and
layers, and to reduce the size of the network.

• Domain adaptation andfine-tuning: Another approach
to use off-the-shelf CNNs is by fine-tuning, whichwould
entail freezing the early layers and only re-training a few
selected later layers to adapt the representation capabil-
ity of the CNNs to iris images. Fine-tuning is expected
to learn and encode iris-specific features, as opposed to
generic image features. In addition, domain adaptation
can be used to transform the representation from the
ImageNet domain to the iris image domain.

• Few-shot learning: If the network for iris recognition
has to be designed and trained from scratch, the problem
of limited number of training images can be partially
solved with a technique called few-shot learning, which
would allow the network to perform well after seeing
very few samples from each class.

• Architecture evolution: Recent advances in Evolution
Theory and Deep Reinforcement Learning allow the
network to change itself and generate better instances
for the problem at hand. Such an approach can be used to
evolve off-the-shelf CNNs in order to generate powerful
networks that are more suited for iris recognition.

• Other architectures: In the field of deep learning,
there are other architectures such as unsupervised Deep
Belief Network (DBN), Stacked Auto-Encoder (SAE)
and Recurrent Neural Network (RNN). These architec-
tures have their own advantages and can be used to
extract features for iris images. They can be used either
separately or in combination with classical CNNs to
improve the representation capacity of iris templates.
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