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ABSTRACT We conceive and investigate the family of classical topological error correction codes (TECCs),
which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-
quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum
TECCs (QTECCs). Finally, we characterize the performance of QTECCs in the face of the quantum
depolarizing channel in terms of both the quantum-bit error rate (QBER) and fidelity. Specifically, from
our simulation results, the threshold probability of the QBER curves for the color codes, rotated-surface
codes, surface codes, and toric codes are given by 1.8 × 10−2, 1.3 × 10−2, 6.3 × 10−2, and 6.8 × 10−2,
respectively. Furthermore, we also demonstrate that we can achieve the benefit of fidelity improvement at the
minimum fidelity of 0.94, 0.97, and 0.99 by employing the 1/7-rate color code, the 1/9-rate rotated-surface
code, and 1/13-rate surface code, respectively.

INDEX TERMS Quantum error correction codes, quantum stabilizer codes, quantum topological codes,
lattice code, LDPC.

NOMENCLATURE
A. LIST OF ACRONYMS
BCH Bose-Chaudhuri-Hocquenghem
CNOT Controlled-NOT
CSS Calderbank-Shor-Steane
GV Gilbert-Varshamov
LDPC Low Density Parity Check
ML Maximum Likelihood
PCM Parity Check Matrix
QBCH Quantum Bose-Chaudhuri-Hocquenghem
QBER QuBit Error Rate
QECC Quantum Error Correction Code
QSC Quantum Stabilizer Code
QTECC Quantum Topological Error Correction Code
TECC Topological Error Correction Code

B. LIST OF SYMBOLS
d Minimum Distance
F Fidelity

Fth Threshold Fidelity
H (x) Binary Entropy of x
H Parity Check Matrix, Hadamard

Transformation
k Information Bit Length, Number of Logical

Qubits
n Codeword Length, Number of Physical Qubits
p Depolarizing Probability
pth Threshold Probability
r Classical Coding Rate
rQ Quantum Coding Rate
Si Stabilizer Operator
S Stabilizer Group
t Error Correction Capability
δ Normalized Minimum Distance
⊗ Kronecker Tensor Product
|ψ〉 Quantum State ψ
C(n, k, d) Classical Error Correction Codes Having

Parameter n, k and d
C[n, k, d] Quantum Stabilizer Codes Having

Parameter n, k and d
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I. INTRODUCTION
One of the essential prerequisites to build quantum com-
puters is the employment of quantum error correction
codes (QECCs) to ensure that the computers operate reliably
by mitigating the deleterious effects of quantum deco-
herence [1]–[3]. However, the law of quantum mechan-
ics prevent us from transplanting classical error correction
codes directly into the quantum domain. In order to cir-
cumvent the constraints imposed by the nature of quan-
tum physics, the notion of quantum stabilizer codes (QSCs)
emerged [4]–[6]. The invention of QECCs and specifically
the QSC formalism did not immediately eradicate all of
the obstacles of developing reliable quantum computers.
Employing the QSCs requires redundancy in the form of
auxiliary quantum bits (qubits) to encode the logical qubits
onto physical qubits. The redundant qubits are then utilized
to invoke the error correction. Hence, additional components
such as the quantum encoder and decoder circuits built from
quantum gates are required. Therefore, the employment of
a QSC itself has to be fault-tolerant to guarantee that the
QSC circuit does not introduce additional decoherence into
the quantum computers.

The notion of QSC trigerred numerous discoveries in the
domain of QECCs, which are inspired by classical error
corrrection codes. Essentially, QSCs represent the quantum
version of the classical syndrome decoding-based error cor-
rection codes. Since the concept of utilizing the syndrome
values for error correction is widely exploited in the clas-
sical domain, diverse classical error correction codes can
be conveniently ‘‘quantumized’’. Consequently, we can find
in the literature the quantum version of error correction
codes based on algebraic formalisms such as those of the
Bose-Chaudhuri-Hocquenghem (BCH) codes [7] and of
Reed-Solomon (RS) codes [8], quantum codes based on a
coventional trellis structure such as convolutional codes [9]
and turbo codes [10], [11], as well as quantum codes based
on bipartite graphs, such as low density parity check (LDPC)
codes [12]–[16]. Another approach that can be exploited to
develop both classical and quantum error correction codes
hinges on code constructions based on lattice or topological
structures. Unfortunately, this concept has not been widely
explored in the classical domain. By contrast, in the quantum
domain, having a code construction relying on the physi-
cal configuration of qubits is highly desirable for the low-
complexity high-reliability quantum computers.

The development of QECCs was inspired by Shor [17],
who proposed a 9-qubit code. The 9-qubit code, which
is also referred to as Shor’s code, can protect 9 physical
qubits from any type of quantum errors, namely bit-flips (X),
phase-flips (Z), as well as from simultaneous bit and phase-
flips (Y). Not long after the discovery of the first QECCs,
Steane invented the 7-qubit code, which was followed by
Laflamme’s perfect 5-qubit code [18], [19]. However, the
construction of these codes does not naturally exhibit inher-
ent fault-tolerance. The quantum circuit based implementa-
tion of these codes always involves a high number of qubit

interactions within the codeword of physical qubits. As a
consequence, an error caused by a faulty gate within either
the encoder, or within the stabilizer measurement, and/or in
the inverse encoder potentially propagates to other qubits
and instead of being eliminated, the deleterious effects of
quantum decoherence are actually further aggravated.

FIGURE 1. The qubit arrangement of IBM’s superconducting quantum
computers. The circles represent the qubits, while the arrows represent
the possible qubit interactions within the computers [20]. (a) 5 qubits
(ibmqx2). (b) 5 qubits (ibmqx4). (c) 16 qubits (ibmqx5).

The quantum version of the classical topological error cor-
rection codes (TECCs) [21], namely the quantum topological
error correction codes (QTECCs), constitute beneficial fault-
tolerant QSCs for improving quantum computer implemen-
tations. Firstly, they are capable of supporting the physical
implementation of quantum memory. For instance, this strat-
egy has been deployed for developing the IBM’s supercon-
ducting quantum computers, as shown in Fig. 1. From this
figure, we can see the qubit arrangement of the three pro-
totypes of IBM’s quantum computer - which can be viewed
online - namely the ibmqx2, ibmqx4, and ibmqx5 configu-
rations [20]. The first two of the quantum computers are the
5-qubit quantum computers, while the last one is a 16-qubit
quantum computer. The circles in Fig. 1 represent the qubits,
while the arrows represent all the possible two-qubit inter-
actions. It can be clearly seen that the existing architec-
tures impose a limitation, namely the two-qubit interactions
can be only performed between the neighbouring qubits.
Even though this particular limitation potentially imposes
additional challenges, when it comes to QSCs deployment,
the stabilizer effect can still be achieved by the corre-
sponding qubit arrangement by invoking the QTECCs. Sec-
ondly, the locality of stabilizer measurements minimizes the
requirements imposed on the corresponding quantum gates.
The interdependence of the qubits within the codeword are
inevitable. However, the interaction between the most distant
qubits should be avoided, which imposes challenges on the
realization. Another property that makes the QTECCs fault-
tolerant is their growing minimum distance as a function
of codeword length. More explicitly, the growing minimum
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FIGURE 2. Timeline of important milestones in the area of QTECCs. The code construction is highlighted with bold while the associated code type is
marked in italics.

distance ensures having an increasing error correction capa-
bility per codeword for the QTECCs upon increasing the
codeword length, albeit this does not necessarily increase the
per-bit normalized error correction capability. To elaborate a
little further, increasing the number of physical qubits1 also
increases the number of qubit interactions within the block.
Thus, the per-codeword error correction capability of the code
should grow fast enough to compensate for the potential error
propagation, which may further aggravate the effect of quan-
tum decoherence. The latter phenomenon is also related to
the problem experienced in the classical coding theory field,
associated with the trade-off between the coding rate and the
error correction capability of the error correction code. The
study of this particular trade-off in QSCs is a pivotal subject,
because we can simply decrease the coding rate further and
further to achieve a certain error correction capability without
considering the sheer amount of redundant resources wasted,
when aiming for achieving the target performance. There-
fore, a comprehensive investigation related to this particular
trade-off has to be conducted for characterizing the perfor-
mances versus code parameters. A timeline portraying the

1The terms ‘number of physical qubits’ is usually used to refer the
‘codeword length’ in quantum codes.

important milestones of the QTECCs’ development is
depicted in Fig. 2.2

Based on the aforementioned background, our novel con-
tributions are:

1) We conceive the construction of classical error correc-
tion codes based on topological or lattice structures.
Additionally, we demonstrate for a long codeword that
the resultant codes have a resemblance to the classical
LDPC codes exhibiting reasonable code parameters.

2) We present a tutorial on both classical and quan-
tum topological error correction codes as well as the
classical-to-quantum isomorphism along with the com-
parative study of code parameters.

3) We derive the upper bound QBER performance of the
QTECCs in the face of quantum depolarizing channel
and the formula to determine the threshold fidelity.

The structure of the paper is described in Fig. 3 and the rest
of this treatise is organized as follows. In Section II, we com-
mence with design examples of classical TECCs to pave the

2Shor’s, Steane’s and Laflamme’s codes do not belong to the QTECCs
family. However, we believe that it is still important to include the three
pioneeering contributions on QECCs in the timeline for the sake of
completeness.
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FIGURE 3. The structure of the paper.

way for delving into the quantum domain. In Section III, we
provide a tutorial on the fundamentals of QSCs by exploiting
its isomorphism with the classical syndrome-based decoding,
while in Section IV we detail our QSC design examples for
QTECCs. We continue by characterizing the performance
of QTECCs over the popular quantum depolarizing channel
in terms of QBER and fidelity in Section V. Finally, we
conclude our discussion in Section VI.

II. CLASSICAL ERROR CORRECTION CODES FROM
TOPOLOGICAL ORDER: DESIGN EXAMPLES
As we mentioned earlier in Section I, the classical error
correction codes can be developed relying on diverse
approaches [34]. We can find in the literature various family
of codes based on algebraic formalisms (such as BCH codes
and RS codes), codes based on conventional trellis structures
(such as convolutional codes and turbo codes) and also codes
based on bipartite graphs (such as LDPC codes). Another
approach that can be adopted to formulate a classical error
correction code is by exploiting the topological or lattice
structure. By assuming that we can arrange the bits of a code-
word on a lattice structure, it can inherently provide uswith an
error correction scheme [21]. For instance, let us assume that
a codeword of classical bits is arranged on the square lattice
given in Fig. 4. The black circles laying on the edges of the
lattice define the encoded information bits or the codeword.
The red squares laying on the vertices of the lattice define the
parity check matrix (PCM) of the codes, which also directly
defines the syndrome values of the received codeword. The
number of black circles is associated with the codeword
length of n bits and the number of red squares is associated
with the length of the syndrome vector or the number of rows
of the PCM, which is equal to (n− k) bits. For the particular
square lattice seen in Fig. 4, the codeword length n is equal to
13 bits and the length (n− k) of the syndrome vector is equal
to 6 bits. Hence, the number of information bits k is equal to 7
bits. Therefore, this code has 27 = 128 legitimate codewords
out of the 213 = 8192 possible received words. Based on the
above-mentioned construction, for example in classical BCH
codes, we would be able to distinguish 2(13−7) = 26 = 64

FIGURE 4. Example of a classical bit arrangement on a square lattice
structure. The black circles laying on the edges of the lattice denote the
bits of the codeword, while the vertices of the lattice denoted by red
squares define the parity check matrix and also the syndrome values.

distinct error patterns (including the error free scenario) and
correct a single bit error based on sphere packing bound.

The coding rate r is defined by the ratio between the num-
ber of information bits k to the codeword length n, yielding:

r =
k
n

(1)

Hence, the coding rate of the square lattice code of Fig. 4
is r = 7/13.
Now, let us delve deeper into how the error correction

works. Let us revisit the square lattice of Fig. 4. The k infor-
mation bits are encoded to n-bit codewords, where n > k .
Noise or decoherence imposed by the channel corrupts the
legitimate codeword. The syndrome computation is invoked
to generate the (n−k)-bit syndrome vector, which tells us both
the predicted number and the position of the errors. In Fig. 4,
the i-th red square indicates a syndrome bit of si. Hence, the
syndrome vector s is a 6-bit vector, which is given by

s = [s1 s2 s3 s4 s5 s6]. (2)

In the case of an error-free received codeword, the resultant
syndrome vector is s = [0 0 0 0 0 0]. By contrast, if an
error is imposed on the codeword, it triggers a syndrome
bit value of 1 at the adjacent syndrome bit positions. For
example, if an error occurs at the bit index 4 of Fig. 4, it
triggers the syndrome values of s1 = 1 and s3 = 1. The
rest of the syndrome values remain equal to 0. Therefore, an
error corrupting the bit index 4 generates a syndrome vector
of s = [1 0 1 0 0 0]. Hence, the decoder flips the value of bit
index 4. Similarly, if an error occurs at bit number 3, it only
triggers the syndrome value of s2 = 1. Hence, it generates the
syndrome vector of s = [0 1 0 0 0 0] and the error recovery
procedure proceeds accordingly.

Now let us consider the ocurrence of two bit errors in the
codeword. For instance, let us assume that errors occur at
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bit indices of 6 and 7 of Fig. 4. Note that both these errors
affect s3, therefore they cancel each other effect on s3 out,
hence generating a syndrome bit value of s3 = 0. However,
we still do not receive an all-zero syndrome vector, because
the bit index 7 results in a syndrome bit value of s4 = 1 of
Fig. 4. Therefore, the resultant syndrome vector due to a bit
error in both bit 6 and 7 is s = [0 0 0 1 0 0]. Since the
syndrome vector of s = [0 0 0 1 0 0] is also associatedwith the
error incident upon bit index 8, the error recovery procedure
decides to flip bit 8 instead, because a single error occurance
is more likely to happen than a double-error when the error
probability less than 1/2. This example is an illustration that
the occurence of two bit errors in the codeword is beyond
the error correction capability of the code given in Fig. 4. We
conclude that the code based on the square lattice illustrated
in Fig. 4 is capable of correcting only a single bit error.
The error correction capability of t bits for a given code
construction is defined by theminimumdistance d of the code
as formulated by

t =
⌊
d − 1
2

⌋
. (3)

Hence, a code that is only capable of correcting a single error
has a minimum distance of d = 3, as exemplified by the
square lattice code given in Fig. 4. Moreover, the minimum
distance of a square lattice code is defined by the dimen-
sion of the lattice. Therefore, to increase the error correction
capability of the code, we can simply increase the dimension
of the lattice, which directly translates into the increase of
the minimum distance. The square lattice considered in our
example can be generalized to a rectangular lattice structure
having a dimension of (l × h), where l is the length of the
lattice and h is the height of the lattice. In the case of a
rectangular structure, the minimum distance is defined by

d = min(l, h). (4)

The codeword length is also uniquely defined by the dimen-
sion of the lattice. More explicitly, for a rectangular lattice of
dimension (l×h), the codeword length is equal to the number
of the lattice edges, which is given by

n-edges = nsquare = 2lh− l − h+ 1. (5)

The number of rows in the PCM of a square lattice code is
defined by the number of faces or plaquettes of the rectangu-
lar lattice, which is formulated as follows:

n-vertices = nsquare − ksquare = h(l − 1). (6)

Hence, from Eq. (5) and (6), the number of information bits
k encoded by the rectangular lattice codes is

ksquare = nsquare − (nsquare − ksquare)

= lh− l + 1. (7)

Themost efficient code can be constructed by a square lattice,
where d = l = h. Therefore, the expression given in Eq. (5)
and (7) can be simplified to

nsquare = 2d2 − 2d + 1 (8)

ksquare = d2 − d + 1. (9)

Hence, the coding rate of square lattice based codes can be
formulated as follows:

rsquare =
ksquare
nsquare

=
d2 − d + 1

2d2 − 2d + 1
. (10)

TABLE 1. Constructing the PCM of the square lattice code of Fig. 4 with
minimum distance of d = 3. Each row is associated with the syndrome
operators denoted by red squares in Fig. 4.

The PCM can be readily constructed in a similar fashion.
Each red square of Fig. 4 represents the row of the PCM,
where the adjacent black circles denote the index of the
column containing a value of 1. For example, the first red
square is adjacent to the black circles numbered 1, 2, and 4.
Therefore, in the first row of the PCM, there are only three
elements containing a value of 1 and those are marked by
the index 1, 2, and 4. The remaining rows of the PCM are
generated using the same principle. Explicitly, each row of
the PCM of the square lattice code of Fig. 4 is portrayed in
Table 1. Finally, the PCMH of the square lattice code of Fig. 4
is given by

H =


h1
h2
h3
h4
h5
h6

. (11)

The code construction based on the general lattice structure
is not limited to a rectangular lattice. Let us consider, for
example the triangular lattice of Fig. 5. The black circles
laying on the vertex of the lattice define the codeword and
the red squares on the faces of the lattice define the syndrome
vector. The error correction principle of the triangular lattice
code is similar to that of its square counterpart. Hence, the
PCM of the triangular lattice code is readily derived using
the following equation:

H =

 h1
h2
h3

, (12)

where h1, h2, and h3 correspond to the syndrome bits given in
Table 2. It is important to point out that the resultant triangular
lattice code is one of the possible construction for the classical
C(7, 4, 3) Hamming code. Specifically, both codes have a
codeword length of n = 7 and number of information bits
of k = 4. Hence, the length of syndrome vector is 3 bits.
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FIGURE 5. Example of a classical bit arrangement constructed over a
triangular lattice structure. The black circles laying on the vertices of the
lattice represent the codeword bits, while the faces or the plaquettes of
the lattice denoted by red squares define the parity-check matrix and the
syndrome bits of the error correction code. This configuration is an
alternative representation for the C(7,4,3) classical Hamming code.

TABLE 2. Constructing the PCM of the triangular lattice code with
minimum distance of d = 3. Each row is associated with the
syndrome operators denoted by blue circles in Fig. 5.

Consequently, the codes have 24 legitimate codewords out of
the possile 27 received words. Based on the sphere packing
bound, the codes are capable of distinguishing 23 = 8 distinct
error patterns including the error-free scenario. Therefore,
both constructions are capable of correcting exactly a single
error with an identical coding rate of r = 4/7.
Similar to its rectangular counterpart, increasing the error

correction capability of a triangular lattice code is achieved
by expanding the underlying lattice configuration. However,
increasing the number of vertices of the triangular lattice
structure is not as straightforward as that of its rectangular
counterpart because it can be carried out in several differennt
ways. In this example, we use the construction proposed
in [25] and Fig. 6 illustrates how to increase the number of
encoded bits of the triangular lattice code of Fig. 5 by using
hexagonal tiles.

Following the pattern of Fig. 6, the codeword length, which
is also given by the number of vertices of the given lattices,
is explicitly formulated as follows:

n-vertices = ntriangular =
1
4
(3d2 + 1), (13)

where d is the minimum distance of the code. The number
of faces in the triangular lattice, which corresponds to the

FIGURE 6. Extending the length of the triangular lattice code, which
directly increases the numbers of error corrected.

number of rows of the PCM and also to the syndrome vector
length, can be encapsulated as

n-faces = ntriangular − ktriangular =
1
8
(3d2 − 3). (14)

Hence, the number of information bits can be expressed as

ktriangular = ntriangular − (n− k)triangular

=
1
8
(3d2 + 5). (15)

Finally, the coding rate of the triangular lattice codes of Fig. 6
is formulated as follows:

rtriangular =
ktriangular
ntriangular

=
3d2 + 5

2(3d2 + 1)
. (16)

Then, the normalized minimum distance, which directly cor-
responds to the error correction capability per-bit of a code
may be defined as:

δ =
d
n

(17)

For square lattice and triangular lattice codes, the normalized
minimum distances are given by

δsquare =
d

2d2 − 2d + 1

δtriangular =
4d

3d2 + 1
. (18)

In the rest of this treatise, we will consider the family of
error correction codes based on lattice structures as a promi-
nent representative of classical topological error correction
codes (TECC). The lattice structures given in Fig. 4 and 5 can
be transformed to Tanner graphs [35]. The dual representation
of TECCs in the rectangular lattice domain and in the Tanner
graph domain is given in Fig. 7 as exemplified by the square
lattice code. We can observe that TECCs based on square
lattices have a maximum row weight of ρmax = 4 and a
maximum column weight of γmax = 2. By contrast, the codes
based on triangular lattices have ρmax = 6 and γmax = 3. For
a very long codeword, these properties lead to sparse PCMs.
Hence, classical TECCs can be viewed as a specific family
of LDPC codes. The asymptotical limit of the coding rate for
LDPC codes based on TECCs can be directly derived from
Eq. (10) and (16). As the codeword length tends to infinity
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FIGURE 7. Example of how to represent the square lattice code. (a) The
representation in lattice structure. (b) The representation in Tanner or
bipartite graph.

(n → ∞), the minimum distance d is also expected to tend
to infinity. Hence, at the asymptotical limit we have

r∞square = lim
d→∞

d2 − d + 1
2d2 − 2d + 1

=
1
2
, (19)

r∞triangular = lim
d→∞

3d2 + 5
2(3d2 + 1)

=
1
2
. (20)

TABLE 3. Code parameters of classical Hamming code having a single
error correction capability, which is used in Fig. 8 and 9. The coding rate r
and normalized minimum distance δ are calculated using Eq. (1) and (17),
respectively.

Let us observe Fig. 8, where we plot the minimum dis-
tance (d) versus coding rate (r) of TECCs based on Eq. (10)
and (16). We also include the classical codes based on the
sphere packing concept, namely the Hamming codes and the
BCH codes, whose parameters are portrayed in Table 3 and 4,
respectively. We also include some labels for several codes
in the figure, in order to show how to convert the code
parameters into data points in the figure. More explicitly, let
us consider the specific triangular codes T1 and T2, where
T1 represents the triangular code having a minimum distance
of 3, which we have already used in the example in Fig. 5.
As it has been elaborated on earlier, the resultant code T1 is
C(7, 4, 3). Hence, the coding rate is r = 4/7 ≈ 0.57. Again,
the triangular code T1 has identical code parameters to the
Hamming code C(7, 4, 3), which is labeled H1. Hence, the
same point in Fig. 8 represents both T1 and H1. Next, the
code parameters of the triangular code T2 having a minimum
distance of d = 5 are obtained using Eq. (13) and (15)
for determining the codeword length n and the information
length k , respectively. Explicitly, by substituting d = 5 into
Eq. (13) and (15), we have n = 19 and k = 10. Finally, we
arrive at the coding rate of r = k/n = 10/19 ≈ 0.53 for the
triangular code T2. The rest of the code parameters for square

TABLE 4. Code parameters of classical BCH codes having codeword
length of n = 255, which is used in Fig. 8 and 9. The coding rate r and
normalized minimum distance δ are calculated using Eq. (1) and (17),
respectively.

codes, triangular codes, Hamming codes and BCH codes are
protrayed in the same way in Fig. 8.

In general, increasing the minimum distance of the codes
while mantaining the codeword length can be achieved at
the expense of reducing the coding rate. This penomenon is
perfectly reflected by the behaviour of classical BCH codes
in Fig. 8. Explicitly, in Fig. 8 we portray BCH codes having
a constant codeword length of n = 255, which are described
in Table 4. As seen, upon increasing the minimum distance
of BCH codes, the coding rate is gradually reduced. Next,
increasing the coding rate while maintaining the minimum
distance of the code can indeed be achieved by increasing
the codeword length. In this case, the Hamming codes, whose
code parameters are described in Table 3, reflect perfectly this
phenomenon. Observe in Fig. 8, that for the Hamming codes
exhibiting a constant minimum distance of d = 3, we can
see the gradual increase of coding rate upon increasing the
codeword length. However, the behaviour of the BCH and
Hamming codes is not reflected by the TECCs. Let us elabo-
rate on the TECCs behaviour in Fig. 8. The increase of mini-
mumdistance of TECCs upon increasing the codeword length
looks very impressive, since they do not seem to require
much sacrifice in terms of coding rate reduction. In fact,
the coding rate is saturated at approximately r = 1/2 for
long codewords. This is indeed a rather different behaviour
compared to that of the classical BCH codes. However, it is
of pivotal importance to mention again that the increasing
error correction capability per codeword does not necessarily
imply the improvement of error correction capability per
bit. Therefore, we have to normalize the performance to the
codeword length in order to portray a fair comparison.

Let us now observe Fig. 9, where we plot the normal-
ized minimum distance (δ) versus the coding rate (r) of
TECCs based on Eq. (18). We include both the BCH codes
as well as the Hamming codes for the sake of compari-
son. We also plot the classical Hamming bound [36] and
Gilbert-Varshamov (GV) [37] bound in this figure to portray

VOLUME 6, 2018 13735



D. Chandra et al.: QTECCs: The Classical-to-Quantum Isomorphism Perspective

FIGURE 8. The coding rate versus minimum distance of TECCs. For asymptotical limit, the TECCs may be
categorized into LPDC codes and the coding rates converge to r = 1

2 . We also include the BCH codes and
Hamming codes for the sake of comparison. The coding rate for the square lattice based codes and the
triangular lattice based codes are defined in Eq. (10) and (16), respectively. The code parameters for classical
Hamming and BCH codes are described in Table 3 and 4, respectively. We put labels only for several codes as
examples on how to convert the given code parameters into the figure.

the upper bound and lower bound of the normalizedminimum
distance, which correspond directly to the normalized error
correction capability, given the coding rate. The classical
Hamming bound is formulated as follows [36]:

k
n
≤ 1− H

(
d
2n

)
, (21)

where H (x) is the binary entropy of x defined by H (x) =
−x log2 x− (1−x) log2(1−x), while the classical GV bound
is expressed as [37]

k
n
≥ 1− H

(
d
n

)
. (22)

The classical Hamming bound and GV bound defined
in Eq. (21) and (22) are valid for asymptotical limit
where n→∞.

The classical Hamming codes constitute the so-called per-
fect codes for a finite-length, since they always achieve
the Hamming bound for finite-length codes.3 Therefore, the
Hamming codes also mark the upper bound of normalized
minimum distance, given the coding rate of finite-length

3The Hamming bound for finite length codes has a different formulation
from that of asymptotical limit. Therefore, we refer to [38] for further
explanations.

codewords. Secondly, the classical BCH codes having a code-
word length of n = 255 lay perfectly - as expected - between
the Hamming and GV bound in the asymptotical limit, as
shown in Fig. 9. However, we observe an unusual behaviour
for the family of TECCs, since the normalized minimum
distance drops to zero upon increasing the codeword length,
while the coding rate saturates at r = 1/2. We hypothesize
that since these codes were not designed using the sphere
packing concept - which the Hamming and BCH codes are
based on - the Hamming distance radius of the associated
decoding sphere in the TECCs codespace is most likely to
be non-identical for the different codewords. In addition,
the minimum distance of TECCs is only on the order of
O(
√
n), which implies that the codeword length of TECCs is

proportional to the factor of O(d2). By contrast, for clasical
BCH and Hamming codes the growth of the minimum dis-
tance is approximately linear, i.e. of order O(n). It is clearly
seen that even though the growth of minimum distance per
codeword of the TECCs appears to be impressive in Fig. 8,
it is not fast enough to compensate for the undesired effect
of the increasing codeword length. Hence, the TECC error
correction capability per bit tends to zero in the asymptotical
limit. Nevertheless, we leave the definitive answer for this
peculiar phenomenon open for future research, since our
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FIGURE 9. The coding rate versus normalized minimum distance of TECCs. For asymptotical limit, the TECCs may
be categorized into LPDC codes and the coding rates converge to r = 1

2 , while the normalized minimum
distances (δ) vanish to zero. In addition, we also include the classical Hamming and BCH codes, which
constructed based on sphere packing bound, for the sake of comparison. The code parameters for classical
Hamming and BCH codes are portrayed in Table 3 and 4, respectively. We put labels only for several codes as
examples on how to convert the given code parameters into the figure.

focus in this treatise is on finding the classical-to-quantum
isomorphism of TECCs.

Since the TECC associated with the asymptotical limit
of n → ∞ belongs to the family of LDPC codes, an
efficient LDPC decoder such as the belief propagation (BP)
technique [39] can be invoked for these code constructions.
However, the normalized minimum distance of the LDPC
codes based on topological order tends to zero, as the code-
word length increases. Nevertheless, TECC-based LDPC
codes exhibit several desirable code properties, such as an
attractive coding rate (r ≈ 1/2), structured construction
and unbounded minimum distance. However, another aspect
worth considering for TECC-based LDPC codes is the fact
that we can find numerous cycles of length 4 in triangular
constructions and cycles of length 6 in square constructions,
which potentially degrades the performances of the codes.
A brief summary of code parameters of TECC-based LDPC
codes is given in Table 5.

III. THE ROAD FROM CLASSICAL TO QUANTUM ERROR
CORRECTION CODES
In this section, we provide a brief review of quantum infor-
mation processing. This will be followed by a rudimentary

TABLE 5. The code parameters of TECC-based LDPC codes.

introduction of classical syndrome-based decoding and how
we can demonstrate the isomorphism towards quantum stabi-
lizer codes.

A. A BRIEF REVIEW OF QUANTUM INFORMATION
PROCESSING
In the classical domain the information is represented by a
series of binary digits (bits), whilst in the quantum domain the
information is conveyed by quantum bits (qubits). A classical
bit can only hold a value of either ‘0’ or ‘1’ at a time, while
the qubit can hold the value of ‘0’, ‘1’ and the superposition
of both values. More specifically, the state of a single qubit
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can be expressed mathematically as follows:

|ψ〉 = α0|0〉 + α1|1〉, α0, α1 ∈ C, (23)

where P0 = |α0|2 and P1 = |α1|2 are the probabil-
ity of obtaining the value of 0 and 1 upon measurement,
respectively. Hence, the unitary constraint of having |α0|2 +
|α1|

2
= 1 is applied. Representing the pure states of ‘0’ by

the notation |0〉 and the pure state of ‘1’ by the so-called
ket notation |1〉,4 as shown in Eq. (23), is referred to as the
Dirac notation [40]. The pure state of |0〉 and |1〉 can also be
represented as a 2-element vector in the Hilbert space H as
follows:

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
. (24)

Hence, substituting the vectors given in Eq. (24) into Eq. (23)
yields:

|ψ〉 =

(
α0
α1

)
, α0, α1 ∈ C. (25)

The state of a single qubit can be manipulated by using the
quantum unitary transformations. A unitary transformation
ofU may be realized by a quantum gate, which is the elemen-
tary building block of quantum computers. All of the quantum
domain unitary transformations are represented by unitary
matrices to ensure that the final probability of quantum states
remains 1, which can be explicitly formulated as

U†U = I, (26)

where I is an identity matrix. The Pauli gates or Pauli oper-
ators constitute a collection of unitary transformations repre-
senting the discrete set of errors that may be imposed on a
single qubit. The Pauli operators are defined using the Pauli
matrices, as follows:

I =
(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =
(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (27)

The Pauli matrices can be physically interpreted as a bit-
flip error, phase-flip error as well as both bit-flip and phase-
flip error for the Pauli matrix X, Z and Y, respectively. The
Pauli-I matrix is an identity matrix corresponding to the
absence of errors.

The error imposed onmulti-qubit systems can be described
using the Kronecker tensor product. Explicitly, for the matri-
ces P and Q having (a× b) elements and (x × y) elements,
respectively, the resultant Kronecker product is a matrix hav-
ing (ax × by) elements formulated by

P⊗Q =


p11Q · · · p1(b−1)Q p1bQ
p21Q · · · p2(b−1)Q p2bQ
...

. . .
...

...

p(a−1)1Q · · · p(a−1)(b−1)Q p(a−1)bQ
pa1Q · · · pa(b−1)Q pabQ

.
(28)

4The terminology ket comes from the bra-ket notation. The bra notation
refers to the 〈ψ | notation, while ket notation is used for |ψ〉 notation.

For instance, a two-qubit system is represented by the Kro-
necker product between a pair of two-element vectors given
in Eq. (24). More explicitly, let us consider the qubit having
the state of |ψ1〉 = α0|0〉 + α1|1〉 and another one in the
state of |ψ2〉 = β0|0〉 + β1|1〉. The superimposed state can
be described as follows:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 =

(
α0
α1

)
⊗

(
β0
β1

)
=


α0β0
α0β1
α1β0
α1β1


≡ α0β0|00〉 + α0β1|01〉 + α1β0|10〉 + α1β1|11〉, (29)

where α0, α1, β0, β1 ∈ C. It can be observed that a two-qubit
state is a superposition of all four possible states that can be
generated by two bits i.e. 00, 01, 10 and 11. Moreover, the
unitary condition of |α0β0|2+|α0β1|2+|α1β0|2+|α1β1|2 = 1
still holds. The Kronecker product of a pair of two-element
vectors yields a vector consisting of 22 elements. Hence, the
N -qubit systems yield all of the 2N possible states that can be
generated by an N -bit sequence. If i is the decimal represen-
tation of an N -bit sequence, the N -qubit superposition state
can be expressed by the Dirac notation as follows:

|ψ〉 =

2N−1∑
i=0

αi|i〉 where αi ∈ C and
2N−1∑
i=0

|αi|
2
= 1. (30)

Since the N -qubit state is represented by a 2N -element col-
umn vector, the unitary transformation of the N -qubit system
is defined by a (2N×2N ) elements unitary matrix. In quantum
communication, the quantum decoherence may impose a bit-
flip error, phase-flip error, as well as both bit-flip and phase-
flip error. For the sake of modeling the behaviour of quantum
information in the presence of quantum impairments, the
Pauli channel model is widely used [41]. To elaborate a little
further, the Pauli channel inflicts an error P ∈ Gn on the state
of an N -qubit system, where each qubit may independently
experience either a bit-flip error (X), a phase-flip error (Z),
or both bit-flip and phase-flip error (iXZ = Y). For an
N -qubit system, the general Pauli group Gn is represented by
an N -fold tensor product of G1, as described below:

Gn = {P1 ⊗ P2 · · · ⊗ Pn|Pj ∈ G1}, (31)

where the Pauli group G1 is constituted by the unitary trans-
formations applied to a single qubit state, which is closed
under multiplication and is explicitly defined as follows:

G1 = {eP : P ∈ {I,X,Y,Z}, e ∈ {±1,±i}}. (32)

The laws of quantum mechanics prevent us from directly
transplanting the classical error correction codes into the
quantum domain owing to the following obstacles:

1) No Cloning Theorem. In the classical domain, the
basic technique of protecting the information bits in
repetition coding is that of copying the same informa-
tion several times. By contrast, in the quantum domain,
this simple approach cannot be implemented, since no
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FIGURE 10. The basic model of classical error correction codes invoking syndrome-based decoding. The
operation G denotes the generator matrix, which maps the k information bits x to the n coded bits y. The
channel E inflicts an error vector e ∈ {0,1}n upon the codeword y, resulting in the corrupted received bits y.
The receiver calculates the syndrome vector s based on the PCM H and the received bits y to predict the
number and the position of errors contained in the received bits y. The error recovery R generates the error
recovery vector r, which is applied to the received bits y. This operation collapses the received bits y to one of
the legitimate codedword y, yielding the predicted codeword ŷ. Finally, we can readily determine the
predicted information bits x̂ from the predicted codeword ŷ.

unitary quantum transformation is capable of perform-
ing this specific task.

2) The quantum bit collapses into the correspond-
ing classical bit upon measurement. In the classical
domain, the error correction schemes are typically fed
by measuring the bits received at the output of the
demodulator. In the quantum domain, measuring the
qubits represented by the superposition of the classi-
cal states will collapse the superposition into a single
classical post-measurement state and consequently we
lose the original quantum information.

3) QECCs have to handle not only bit-flip errors, but
also phase-flip errors, as well as the simultaneous
bit-flip and phase-flip errors. By contrast, in the clas-
sical domain, we deal with a single type of error, which
is the bit-flip error. In quantum domain, the nature
of quantum decoherence is continuous and it can be
modeled as a linear combination of bit-flip errors (X),
phase-flip errors (Z), or both bit-flip and phase-flip
errors (iXZ = Y). However, thanks to the beneficial
effect of the stabilizer measurement, the continuous
nature of quantum decoherence can be treated as a dis-
crete set of independent errors imposed on the physical
qubits.

Albeit all of the aforementioned obstacles hindering the
development of QECC schemes, the invention of QSC for-
mulation succeeded in circumventing these problems.

B. A BRIEF REVIEW OF CLASSICAL SYNDROME-BASED
DECODING
As mentioned earlier, the problems revolving around the
QECCs are effectively circumvented by QSCs, which essen-
tially constitute the syndrome-based decoding version of

QECCs. Hence, for the sake of sheding some light onto the
parallelism between the classical and quantum regime, we
proceed with the classical syndrome-based decoding first.

In the classical domain a C(n, k) code maps k information
bits into n coded bits, where k < n. The purpose of attaching
(n − k) redundant bits is to facilitate error detection or even
error correction. Let us refer to Fig. 10 and consider the clas-
sical C(7, 4) Hamming code, which maps 4 information bits
into 7 coded bits and hence becomes capable of correcting
a single error. In general, the mapping of the k information
bits is performed by multiplying the information row vector x
consisting of k elements by the generator matrix G having
(k×n) elements. Explicitly, the mapping can be formulated as

y = x ∗G, (33)

where the resultant codeword y is a row vector having n
elements, while the notation of ∗ represents the matrix mul-
tiplication over modulo-2. For instance, the generator matrix
of the C(7, 4) Hamming code is defined by

GHamming =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

. (34)

From Eq. (33) and (34) we can generate the code space
mapping shown in Table 6, where xi denotes all the possible
combination of information bits and yi represents the associ-
ated legitimate codeword bits.

The generator matrix G can be arranged into a systematic
form as

G = (Ik |P) , (35)

where Ik is a (k × k) identity matrix and P is a matrix having
k × (n − k) elements. The form given in Eq. (35) generates
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a systematic codeword y consisting of the k-bit information
word x followed by (n− k) parity bits. A generator matrix G
is associated with an (n − k) × n-element PCM H, which is
defined as

H =
(
PT |In−k

)
. (36)

As an example, the generator matrix of the classical C(7, 4)
Hamming code of Eq. (34) is associated with the following
PCM:

HHamming =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

. (37)

The PCM of H is constructed for ensuring that a valid code-
word y satisfies the following requirement:

y ∗HT
= 0. (38)

A received word y may be contaminated by an error vector
e ∈ {0, 1}n due to channel impairments, which is denoted
by E in Fig. 10. More explicitly, the resultant received words
corrupted by the additive noise E can be formulated as

y = y+ e. (39)

The error syndrome s is a row vector having (n− k) elements
obtained by the following calculation:

s = y ∗HT
= (y+ e) ∗HT

= y ∗HT
+ e ∗HT

= 0+ e ∗HT

= e ∗HT . (40)

The syndrome vector s contains the information related to
the error pattern imposed by the channel. To elaborate, we
have 2k legitimate codewords generated by the all possible
combination of the k information bits, 2n possible received
bit patterns of ŷ and 2(n−k) possible syndromes s, each
unambiguously identifying one of the 2(n−k) error patterns,
including the error-free scenario. Hence, for the classical
C(7, 4) Hamming code, the syndrome vector si can detect
and correct a single error pattern as specified in Table 7. The
error recovery ri is determined based on the most likely error
pattern. After obtaining the syndrome vector, the recovery
vector ri is applied to the received words to obtain the pre-
dicted codeword ŷ = y + r, as depicted in Fig. 10. The
application of the recovery operator ri to the received word
always collapses it into one of the legitimate codewords y,
hence the predicted codeword ŷ can be finally demapped in
order to obtain the predicted information bits x̂ using Table 6,
as illustrated in Fig. 10. For linear systematic codes, this
process can be simply performed by chopping the last (n−k)
bits, namely the redundant bits.

For more a detailed example, let us consider k information
bits of x = (1 1 0 1). The information bits are encoded
using the classical C(7, 4) Hamming code employing the
generator matrix of Eq. (33), yielding the coded bits of
y = (1 1 0 1 1 0 0). Let us assume that the channel corrupts

TABLE 6. The code space mapping of the C(7,4) classical Hamming code.

TABLE 7. The look-up table to determine the most likely error pattern
ei ∈ E that corresponds to the syndrome value si , which is created based
on Eq. (37) and (40).

the legitimate codeword y by imposing an error pattern of
e = (1 0 0 0 0 0 0) yielding the received word of y =
(0 1 0 1 1 0 0). Next, the receivedword is fed to the syndrome
calculation block, which contains the PCM of Eq. (37). Based
on Eq. (40), the received word y = (0 1 0 1 1 0 0) generates
the syndrome vector of s = (1 1 0). Utilizing the look-up
table of Table 7, the error recovery vector becomes r =
(1 0 0 0 0 0 0). Upon applying the error recovery vector, the
received word y is collapsed to one of the legitimate code-
words y in Table 6, which is ŷ = (1 1 0 1 1 0 0). Assuming
that the predicted codeword ŷ is valid, the demapper decides
to translate the predicted codeword ŷ = (1 1 0 1 1 0 0) to
the predicted information bits as x̂ = (1 1 0 1). Hence, the
original information is successfully recovered. The whole
process of syndrome calculation, error recovery and demap-
ping jointly form the decoding process. It is important to note
that in practice, the syndrome calculation, recovery operator
and demapper are amalgamated into a single decoder block.
Let us now assume that the channel imposes an error

pattern beyond the error correction capability of the classical
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FIGURE 11. The basic model of QSCs implementation over the quantum depolarizing channel. The k logical qubits are mapped into n physical
qubits with the aid of (n− k) redundant/auxiliarry qubits (ancillas) to provide protection from the quantum decoherence. This schematic is
similar to the classical error correction model where (n− k) redundant bits are added to k information bits in order to provide error
correction. The quantum encoder V serves the same purpose as G of the classical error correction codes in Fig. 10. The quantum encoder V
transforms the state of k logical qubits |ψ〉 into the state of n physical qubits |ψ〉 with the aid of (n− k) ancillas. The quantum depolarizing
channel imposes the error vector represented by the n-tupple Pauli operator P ∈ Gn. The syndrome operators Si ∈ S generate the
eigenvalues of ±1, which are analogous to the value 0 and 1 of the classical syndrome vector, which is provided by the PCM H in Fig. 10. The
error recovery R applies the correction according to the syndrome values provided by the syndrome measurements. Finally, the
quantum-domain inverse encoder V† transforms the predicted state of physical qubits |ψ ′〉 back to the predicted state of logical qubits |ψ ′〉,
which carries out the same function as the demapper D in the classical syndrome-based decoding of Fig. 10.

C(7, 4) Hamming code. For example, assume that we send k
information bits of x = (1 1 0 1), similar to that of in the
previous example, while the channel inflicts an error pattern
of e = (1 1 0 0 0 0 0). As a result, we have the received
codeword bits of y = (0 0 0 1 1 0 0). Based on the received
codeword, we have the syndrome vector of s = (0 1 1).
Based on the syndrome vector, the error recovery of r =
(0 0 1 0 0 0 0) is chosen. Consequently, the error recovery
vector collapses the received word to the incorrect legitimate
codeword, which is ŷ = (0 0 1 1 1 0 0), instead of the cor-
rect codeword of y = (1 1 0 1 1 0 0). Since the demapper
assumes that the error recovery completes the task perfectly,
the demapper decides that the predicted information bits are
x = (0 0 1 1). Compared to the original information bits, the
predicted information bits are considered as an error. This
example demonstrates that the classical C(7, 4) Hamming
code is unable to operate flawlessly beyond its error correc-
tion capability.

C. A BRIEF REVIEW OF QUANTUM STABILIZER CODES
The formulation of QSCs is capable of detecting both the
number and the position of errors without actually observing
the state of physical qubits, which is vitally important since

otherwise the quantum state will collapse to classical bits
upon measurement. This was achieved by amalgamating the
classical syndrome-based decoding with the QECCs. Similar
to classical error correction codes, QSCs also rely on attach-
ing redundant qubits to the information qubits for invoking
error correction. The basic model of QSCs is depicted in
Fig. 11, which will be contrasted to its classical pair in
Fig. 10. In order to generate the codespace C, the redundancy
is constituted by (n − k) auxiliary qubits. Next, a unitary
transformation V transforms the k qubits in the state of |ψ〉
and the (n − k) auxiliary qubits into an n qubits in the state
of |ψ〉. The unitary transformation of V represents the action
of the quantum encoder. Explicitly, themapping of the logical
qubits constituting the state of |ψ〉 ∈ C2k to the physical
qubits forming the state of |ψ〉 ∈ C2n by the encoder V of
Fig. 11 can be mathematically formulated as follows:

C = {|ψ〉 = V(|ψ〉 ⊗ |0〉⊗(n−k))}. (41)

The QSCs rely on the stabilizer operators Si ∈ S for iden-
tifying the type, the number and also the position of the qubit
errors. A stabilizer operator Si is an n-tuple Pauli operator,
which preserves the state of physical qubits as defined below:

Si|ψ〉 = |ψ〉. (42)
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The quantum channel inflicts errors represented by n-tuple
Pauli operators P ∈ Gn, as given in Eq. (31), which trans-
forms the encoded physical qubits that were originally in the
state of |ψ〉 to the potentially corrupted physical qubits in the
state of |ψ̂〉, as seen in Fig. 11. More explicitly, this process
can be described as follows:

|ψ̂〉 = P|ψ〉. (43)

The stabilizer operators act similarly to the syndrome calcu-
lations routinely used in classical error correction codes. To
elaborate a little further, a stabilizer operator will return an
eigenvalue of +1, when an error operator P commutes with
the stabilizer operator, while we arrive at the eigenvalue of
−1, if it anti-commutes. The eigenvalues of +1 and −1 are
analogous to the classic syndrome bit of 0 and 1, respectively,
which can be defined as follows:

Si|ψ̂〉 =

{
|ψ̂〉, SiP = PSi
−|ψ̂〉, SiP = −PSi.

(44)

Therefore, the stabilizer operators naturally have to inherit the
commutative property. Consequently, the product between
the stabilizer operators Si yields another legitimate stabilizer
operator. Furthermore, the commutativity property implies
that

Si|ψ〉 = Sj|ψ〉 = SiSj|ψ〉 = |ψ〉, ∀Si,j ∈ S, (45)

suggesting that the stabilizer group S is closed under multi-
plication.

Based on the syndrome measurement by the stabilizer
operators Si, a recovery operator constituted by the n-tupple
Pauli operator of R ∈ Gn seen in Fig. 11 is applied to
the corrupted physical qubit state |ψ̂〉, yielding the predicted
state of the original encoded logical qubit |ψ ′〉, which is
formulated as

|ψ ′〉 = R|ψ̂〉. (46)

Finally, the inverse encoder V† of Fig. 11 performs the fol-
lowing transformation5:

V†
|ψ ′〉 = V†R|ψ̂〉
= V†RP|ψ〉
= V†RPV(|ψ〉 ⊗ |0〉⊗(n−k))
= (L|ψ〉)⊗ (M|0〉⊗(n−k)), (47)

where we have V†RPV ≡ L⊗M andL ∈ Gk represents the
error inflicted on the logical qubits according to |ψ ′〉 = L|ψ〉,
whileM ∈ Gn−k represents the residual error remained in the
(n − k) auxiliary qubits after the error correction procedure.
In the case of R = P , we arrive at RP = I⊗n, where
I⊗n denotes an n-fold tensor product Pauli-I matrix. Another
possibility is to arrive at RP = Si. In either of these cases,
the state of the physical qubits is not altered, since we have

5The inverse encoder V† is the Hermitian transpose of encoder V . It
is referred to as the inverse, since it satisfies the unitary requirement of
V†V = I, as the inverse of the matrix does.

RP|ψ〉 = |ψ〉. Therefore, the decoding procedure of Fig. 11
successfully recovers the original quantum state constituted
by the logical qubits, yielding |ψ ′〉 = |ψ〉.

The stabilizer operators can be translated into the classi-
cal PCM H by mapping the Pauli matrices I, X, Y and Z
onto (F2)2 as follows:

I →
(
0 | 0

)
,

X →
(
0 | 1

)
,

Y →
(
1 | 1

)
,

Z →
(
1 | 0

)
. (48)

This concept is also known as the Pauli-to-binary isomor-
phism. By exploiting the Pauli-to-binary isomorphism, the
stabilizer operators of any QSC can be represented as a pair
of PCMs Hz and Hz, where Hz is invoked for handling the
phase-flip (Z) errors and Hx for handling the bit-flip (X)
errors. Explicitly, the classical PCM representation of the
QSC stabilizer operators may be written as follows:

H = (Hz|Hx) . (49)

The classical representation of the stabilizer operators gives
the advantage of predicting and evaluating the performances
of QSCs by treating them similarly to classical error correc-
tion codes. Additionally, it allows us to transform a pair of
classical PCMs into the correponding quantum counterpart.
However, to ensure that the commutative property is pre-
served in the quantum domain, a pair of classical PCMs have
to satisfy the so-called symplectic criterion [6] given by

Hz ·HT
x +Hx ·HT

z = 0. (50)

A special class of QSCs, namely the family of Calderbank-
Shor-Steane (CSS) codes, treats the phase-flip (Z) and bit-
flip (X) errors as two separate entities. More specifically,
this can be interpreted as having the PCMs of Hz and Hx

in Eq. (49) formulated as Hz =

(
H′z
0

)
and Hx =

(
0
H′x

)
,

respectively. Therefore, the binary PCM H can be expressed
as follows:

H =
(
H′z 0
0 H′x

)
. (51)

Consequently, the symplectic criterion given in Eq. (50) can
be reduced to the following criterion:

H′z ·H
′
x
T
= 0. (52)

Furthermore, we can formulate a CSS code by using a PCM
of H′z = H′x and the resultant quantum code may be referred
to as a dual-containing quantum CSS code or self-orthogonal
quantum CSS code. For dual-containing CSS codes, the sym-
plectic criterion can be further simplified to H′zH

′
z
T
= 0. For

a more detailed example, please refer to [38].
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FIGURE 12. Example of qubit arrangement on a rectangular lattice
structure. The black circle-based qubits on the edges of the lattice
represent the physical qubits or the encoded state, the red square-based
qubits lying on the vertices of the lattice act as the X stabilizer operators,
while the blue triangle-based qubits lying on the plaquettes (faces) of the
lattice constitute the Z stabilizer operators.

IV. QUANTUM TOPOLOGICAL ERROR CORRECTION
CODES: DESIGN EXAMPLES
Let us now delve deeper into the TECC concept in the quan-
tum domain. The quantum version of TECCs, namely the
QTECCs, constitute a member of the QSC family, whose
stabilizer operators are defined by the underlying lattice
structure. This formalism offers several benefits for the
implementation of quantum computers. Firstly, it explic-
itly accommodates the physical implementation of quantum
memory by mapping the qubits to the lattice arrangement
exemplified by Fig. 4 and 5. Secondly, the localized nature of
the stabilizer measurements confines the interaction amongst
qubits and also eliminates the interaction of qubits associ-
ated with a specific quantum gate that physically far from
each other. Thirdly, the number of errors corrected can be
increased simply by extending the size of the lattice. For
now, let us assume having a square lattice structure similiar
to Fig. 4 for defining the stabilizer operators of a surface code
illustrated in Fig. 12 [24]. Explicitly, surface codes represent
the quantum equivalent of classical TECCs on rectangular
lattice structures. The physical qubits are portrayed by the
black circles laying on the edge of the lattice, the X stabilizer
operators are defined by the red squares on the lattice vertices,
while the Z stabilizers are defined by the blue triangles on the
lattice plaquettes (faces). The stabilizer operators of QTECCs
are defined as follows:

Av =
∏

i∈vertex(v)

Xi, Bp =
∏

i∈plaquette(p)

Zi, (53)

where i indicates the index of stabilizer operators contain-
ing the Pauli matrix X as well as Z and the rest of the
stabilizer operators are given by the Pauli identity matrix I.
Hence, the encoded state of the physical qubits of QTECCs is

constrained within a code space C satisfying

C = {|ψ〉 ∈ H|Av|ψ〉 = |ψ〉,Bp|ψ〉 = |ψ〉; ∀v, p}. (54)

More specifically, let us revisit Fig. 12 for exemplifying the
construction of the stabilizer operators of a QTECC, namely
of the surface codes, which is one of the QTECC construc-
tions whose stabilizer operators are defined by a rectangular
lattice structure [24]. For instance, the red square on the ver-
tex number 3 of Fig. 12 represents theX stabilizer operator of
A3 = X4X6X7X9

6 as seen in the row S3 of Table 8. Similarly,
the blue triangle on the plaquette number 5 of Fig. 12 defines
the Z stabilizer operator of B5 = Z7Z9Z10Z12 as seen in the
line B5 of Table 8. By performing the same evaluation for all
of the red squares and blue triangles, we arrive at the stabilizer
operators for the quantum surface codes, as listed in Table 8.

TABLE 8. The stabilizer operators (Si ) of the quantum surface code
having the lattice construction of Fig. 12. The code has a minimum
distance of 3 (d = 3), which means that it is only capable of
correcting a single qubit error.

Let us now consider an example of how the error correc-
tion procedure works using the QTECCs, which is similar
to the classical TECCs, by revisiting Fig. 12. For instance,
let assume that the quantum decoherence imposes a bit-
flip (X) error on the physical qubit index 7. Since, the X-
type error commutes with the Z stabilizer operators, which
are represented by the blue triangles, the adjacent Z stabilizer
operators return the eigenstate values of −1 upon measure-
ment. Consequently, the Z stabilizer measurements yield a
syndrome vector of sz = [0 1 0 0 1 0], where only the
vector elements of i = 2, 5 have the value of 1. For the
short block code considered in Fig. 12, the error recovery
operatorsR of Fig. 11 are determined based on hard-decision
maximum-likelihood (ML) decoding, which is translated into
a simple look-up table (LUT) decoder. Therefore, based on
the syndrome vector of sz, the error recovery operator R of
Fig. 11 is given byR = X7. Likewise, let us now assume that
the qubit on index 7 also suffers from a Z-type error imposed
by the quantum channel. The associated syndrome vector
gleaned from the X stabilizer operators is sx = [0 0 1 1 0 0],
where only the vector elements of i = 3, 4 have the value
of 1. Thus, based on the syndrome vector of sx , the decoder
applies the error recovery operator ofR = Z7.

6This representation is used for simplifying the original stabilizer operator
of A3 = I1⊗I2⊗I3⊗X4⊗I5⊗X6⊗X7⊗I8⊗X9⊗I10⊗I11⊗I12⊗I13.
For the rest of this paper, the simplified notation is used.
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FIGURE 13. Example of a qubit arrangement for colour code, which is a
type of QTECCs whose stabilizer operators are defined by a triangular
lattice structure. The black circles-based qubits on the vertices of the
lattice represent the physical qubits, while the faces or the plaquettes of
the lattice denoted by red squares define stabilizer operators of the
colour code. The resultant code has a minimum distance of d = 3 and
hence becomes capable of correcting a single qubit error. This specific
configuration bears a resemblance to the C[7,1,3] Steane’s 7 qubit code.

Again, similar to the classical TECCs, the construction of
QTECCs is indeed not limited to the square lattice structure.
Let us now elaborate on another construction inspired by
the construction proposed in [25] using the triangular lattice
based on the classic example of Fig. 5. In the proposal of [25],
this specific code construction is often referred to as the (tri-
angular) colour code, since the underlying triangular lattice
is composed by the tri-coloured hexagonal tiles. However,
constructing the stabilizer operators of colour codes slightly
differs from that of the surface codes. The colour codes use
the lattice plaquettes to define both the Z and X stabilizer
operators. Consequently, the resultant colour codes belong to
the family of dual-containing CSS codes, which is in contrast
to the surface codes that belong to the class of non-dual-
containing CSS codes. For colour codes, defining both the Z
and X stabilizer operators using the same plaquette always
guarantees satisfying the symplectic criterion of Eq. (50).
However, for surface codes, we cannot always satisfy the
symplectic criterion by using the same procedure. Therefore,
the dual of the lattice is used for defining half of the stabilizer
operators of the surface codes in order to satisfy the symplec-
tic criterion.7

Let us consider Fig. 13 for constructing the stabilizer
operators of distance-3 colour codes, which are only capable
of correcting a single qubit error. The plaquette denoted by
red square at index 3 is used to define both the Z and X
stabilizer operators. Thus, the resultant X stabilizer operator
is A3 = X2X4X6X7 and the resultant of Z stabilizer operator
is B3 = Z2Z4Z6Z7. The stabilizer operators for the colour
code having the minimum distance 3 in Fig. 13 are listed

7The dual of a lattice or a graph G is the graph that has a vertex for each
plaquette of the graph.

in Table 9. We can observe that the colour code of Fig. 13
exhibits a strong resemblance to Steane’s 7-qubit code.

TABLE 9. The stabilizer operators (Si ) of the colour code seen in Fig. 13.
The code has a minimum distance of 3 (d = 3), which means that it is
only capable of correcting a single qubit error.

To draw on the parallelism between classical TECCs and
QTECCs, let us consider the stabilizer operators of the colour
code having a minimum distance of d = 3, as seen in Table 9.
Since the distance-3 colour code belongs to the family of
quantum CSS codes, the PCM H obtained by using Eq. (48)
and (51) is encapsulted as follows:

A CSS stabilizer code C[n, k, d] having (n − k) stabilizer
operators can be portrayed as a classical code having a PCM
H containing (n−k)×2n elements. Therefore, the coding rate
of the classical dual of a quantum CSS code can be expressed
as follows [11]:

rC =
2n− (n− k)

2n
,

=
n+ k
2n

,

=
1
2

(
1+

k
n

)
,

=
1
2

(
1+ rQ

)
, (56)

where rC is the coding rate of the classical dual of the stabi-
lizer code C[n, k, d] exhibiting a quantum coding rate of rQ.
The relationship between the classical and quantum coding
rate in Eq. (56) can be rewritten as

rQ = 2rC − 1. (57)

For instance, let us consider the distance-3 colour codes
C[n, k, d] = C[7, 1, 3], as exemplified in Fig. 13, and its
classsical dual C(n, k, d) = C(7, 4, 3),8 as seen in Fig. 5.
Explicitly, we have the classical coding rate of rC = 4/7
for the C(7, 4, 3) code. By substituting rC = 4/7 into
Eq. (57), we obtain the quantum coding rate for its quantum
counterpart as rQ = 1/7, which is the quantum coding rate
of distance-3 colour code C[7, 1, 3]. The same goes for the
classical square codes and their quantum counterpart, namely
for the surface codes. Let us consider the distance-5 classical
square code, which is labeled by S2 in Fig. 8 and its quantum
pair, which is labeled by S2 in Fig. 14. We can readily
determine the quantum coding rate of the surface code S2
C[41, 1, 5], which is rQ = 1/41. Therefore, by substituting
rQ = 1/41 into Eq. (56), we arrive at the coding rate of
its classical dual given by rC = 21/41, which is indeed the
coding rate of the classical square code S2 C(41, 21, 5).

8To avoid ambiguity, we use the notation C(n, k, d) for classical error
correction codes and C[n, k, d] for quantum stabilizer codes.
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FIGURE 14. The minimum distance (d ) versus quantum coding rate (rQ) of QTECCs based on the code
parameter given in Table 10. For QTECCs, the quantum coding rate tends to zero as we increase the
minimum distance. We also include quantum Hamming codes and the QBCH codes having n = 127 physical
qubits for the sake of comparing the QTECCs with the non-topological QSCs. The parameters of quantum
Hamming codes and QBCH codes are listed in Table 11 and 12, respectively.

TABLE 10. The code parameters for various QTECCs based on the minimum distance d of the code.

Similar to their classical counterparts, the code parameters
of QTECCs, such as the number of logical qubits k , the
number of physical qubits n, the minimum distance of the
code d , as well as the quantum coding rate rQ, depend on the
size of the lattices. Following the same line of investigation as
for the classical TECCs, we derive the complete formulation
for the number of logical qubits k and the number of physical
qubits n as a function of the minimum distance of the codes,

which is given in Table 10. We plot the minimum distance (d)
versus quantum coding rate (rQ) of QTECCs in Fig. 14 for
colour codes [25], for rotated surface codes [31], for surface
codes [24] and for toric codes [22]. We also include the
non-topological QSCs, namely the QBCH codes [7] hav-
ing n = 127 physical qubits and the quantum Hamming
codes, which constitute the quantum analogue of Hamming
bound-achieving code constructions [42]. Similarly to the

H =


1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1

 . (55)
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FIGURE 15. The normalized minimum distance versus quantum coding rate of QTECCs based on parameter
given in Table 10. For QTECCs, the normalized minimum distance and quantum coding rate tend to zero as
we increase the minimum distance. We also include the QBCH codes having the physical qubits of n = 127,
quantum Hamming codes, quantum Hamming bound and also quantum GV bound for CSS codes for the
sake of comparing the QTECCs with the non-topological QSCs.

TABLE 11. Code parameters of quantum Hamming codes having a single
error correction capability, which is used in Fig. 14 and 15. The quantum
coding rate rQ and normalized minimum distance δ are calculated using
Eq. (1) and (17), respectively.

classical domain, the behaviour of both the QBCH codes and
the quantum Hamming codes is as expected, exhibiting the
behaviour inherited from their classical analogues. However,
it is interesting to observe that the quantum coding rate of
QTECCs tends to zero for long codewords. Nevertheless,
this phenomenon is expected, if we consider the classical
to quantum isomorphism in the context of the coding rate
given in Eq. (56) and (57). For the classical TECCs, the
coding rate rC approaches the value of rC = 1/2 for long
codewords. Hence, by substituting rC = 1/2 into Eq. (57),
we arrive at rQ = 0, which is the phenomenon we observe
in Fig. 14.

TABLE 12. Code parameters of QBCH codes having codeword length of
n = 127, which is used in Fig. 14 and 15. The quantum coding rate rQ and
normalized minimum distance δ are calculated using Eq. (1) and (17),
respectively.

Next, we plot the normalized minimum distance (δ) versus
the quantum coding rate (rQ) in Fig. 15. Once again, for the
sake of comparison, we also include the quantum Hamming
bound [43] and the quantum GV bound derived for CSS
codes [44] in addition to the QBCH codes and the quantum
Hamming codes. The quantum Hamming bound is defined
by [43]

k
n
≤ 1−

(
d
2n

)
log2 3− H

(
d
2n

)
, (58)

while the quantum GV bound for CSS codes is given by [44]

k
n
≥ 1− 2H

(
d
n

)
. (59)
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Both the quantum Hamming bound and the quantum GV
bound of Fig. 15 serve the same purpose as the classical
Hamming bound and the GV bound seen in Fig. 9. Explic-
itly, they portray the upper bound and the lower bound of
normalized minimum distance versus quantum coding rate
trade-off. Once again, the puzzling behaviour of classical
TECCs resurfaces for the QTECCs, as observed in Fig. 15.
Since all the QBCH codes, quantum Hamming codes and
QTECCs inherit the properties of their classical counterparts,
their behaviour is reminiscent of that of their classical coun-
terparts. As for the QTECCs, the definitive interpretation of
this unusual behaviour is left for future exploration in our
research. Nonetheless, for a relatively long codeword, the
QTECCs are reminiscent of QLDPC codes. Observe from
Fig. 15 that both the normalized minimum distance and the
quantum coding rate of QTECCs tend to zero upon increasing
the minimum distance by increasing the codeword length.
Therefore, the QTECCs are deemed to be more favourable
for short to medium codeword lengths.

V. PERFORMANCE OF QUANTUM TOPOLOGICAL ERROR
CORRECTION CODES
In this treatise, we consider the performance of QTECCs
under the popular quantum depolarizing channel. Explicitly,
the quantum depolarizing channel is characterized by the
quantum depolarizing probability p inflicting an error pattern
constituted by the Pauli operators P ∈ Gn upon the state of
physical qubits, where each qubit may independently expe-
rience a bit-flip error (X), a phase-flip error (Z), or both bit-
flip and phase-flip error (Y) with an equal probability of p/3.
In order to get a more precise insight into the performance
trends of QTECCs, we have to distinguish how the different
error patterns affect the state representing the physical qubits.
Explicitly, the n-tupple Pauli error pattern may be classified
as follows, which will be exemplified in Fig. 16 and 17 after
their definitions:

1) Harmful detected error pattern. This specific type
of error pattern has a similarity to the conventional bit
error in the classical domain. The error pattern of P
anti-commutes with the stabilizer operators Si ∈ S,
hence triggers non-trivial syndrome values.

2) Harmful undetected error pattern. The error pattern
commutes with all of the stabilizer operators, except
that it does not belong to the stabilizer group S . In the
classical domain, this is similar to the error pattern
that returns the all-zero syndrome. The error pattern is
harmful, since it does not trigger a non-trivial syndrome
value, yet it corrupts the legitimate state of the physical
qubits.

3) Harmless undetected error pattern. This particular
error pattern does not have any classical analogue. The
error pattern is harmless, because it belongs to the
stabilizer group S. This is also referred to as a degener-
ate error pattern. Consequently, the error patttern does
not alter the legitimate state of the physical qubits.

By considering the degeneracy, the actual perfor-
mances of QTECCs are potentially improved.

In order to illustrate both the harmless and harmful unde-
tected error patterns, we refer to Fig. 16 and 17. First, we
commence with the harmless undetected error pattern, which
is illustrated in Fig. 16. In this example, we consider a surface
code having a minimum distance of 5, which implies that it
is only capable of correcting two qubit errors. Following the
stabilizer formulation of QTECCs discussed in Section IV,
the physical qubits are arranged along the edges of the square
lattice, while the X stabilizer operators are located in the ver-
tices. Therefore, the X stabilizer operators on the vertices are
used for indicating the Z errors, which will trigger eigenval-
ues of−1 if they anticommute with theX stabilizer operators.
Let us assume that the quantum depolarizing channel inflicts
threeZ errors on the physical qubits, which are denoted by the
filled black circles in Fig 16, while the hollow black circles
represent the error free physical qubits. All of the error pat-
terns given in Fig 16 (a), (b), and (c) trigger the eigenvalues of
−1 for the stabilizer operators denoted by filled red squares,
while the rest of the stabilizer operators are represented by
hollow red squares, which return eigenvalues of+1. Since the
decoder relies on hard-decision ML decoding, all of the error
patterns given in Fig. 16 (a), (b), and (c) have the same prob-
ability of occurence. Let us assume that the decoder always
decides to apply the error recovery pattern of Fig. 16 (a)
for the specified values of stabilizer measurement. When the
actual error pattern is the one given in Fig. 16 (a), the states
of the physical qubits are fully recovered. By contrast, if the
actual error pattern is the one seen in Fig. 16 (b), but it is
corrected using the error recovery operator of Fig. 16 (a), we
arrive at the accumulated error pattern shown in Fig. 16 (d).
Lastly, when the actual error pattern is the one given by
Fig. 16 (c), but we attempt to correct it using the error recov-
ery of Fig. 16 (a), we obtain the error pattern seen Fig. 16 (e).
However, if we observe closely the error pattern illustrated
in Fig. 16 (d), it is reminiscent of a plaquette Z stabilizer
operator denoted by the filled blue triangle. Therefore, based
on the definition of stabilizer operators, the error pattern given
in Fig. 16 (d) does not alter the legitimate state of physical
qubits. Similarly, the error pattern of Fig. 16 (e) resembles
the product of two adjacent plaquette stabilizer operators.
Since the product between a pair of stabilizer operators return
another valid stabilizer operator, the error pattern given in
Fig. 16 (e) belongs to the stabilizer group S. Once again,
by definition, the error pattern given in Fig. 16 (e) does not
corrupt the legitimate state of physical qubits. This is an
example of harmless undetectable error patterns.
To elaborate a little further, a harmless undetected error can

be directly generated by the quantum decoherence, where the
Pauli operator P ∈ Gn imposed by the quantum depolarizing
channel is identical to the stabilizer operator Si. Another
possibility is that it is generated by the associated error recov-
ery procedure, when trying to recover an ambiguous error
pattern, where there are more than one possible error patterns
associated with a specific syndrome value, as illustrated in
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FIGURE 16. Illustration of how the error recovery operator R creates the degenerate error patterns and how the degeneracy nature of QECCs
may improve the performance of QTECCs. All of error patterns given in (a), (b) and (c) represent error patterns generating an identical
syndrome value. Without lose of generality, let us assume that based on the generated syndrome value, the decoder always decides to
perform error recovery operator R of (a) on the corrupted state of physical qubits. If the actual error pattern is (a), the corrupted state of
physical qubits will be fully recovered. By contrast, figure (d) shows the resultant error pattern if the actual error pattern is (b), but it is
corrected using the error pattern given in (a). Moreover, figure (e) represents the resultant error pattern if the actual error pattern is (c) and it
is corrected using the error recovery pattern of (a). As the result, the error pattern (d) represents a stabilizer operator of a plaquette, while the
error pattern (e) resembles the product of two adjacent stabilizer operators. Both error patterns of (d) and (e) constitute the harmless
undetecteable error patterns, since they belong to the stabilizer group S. Therefore, the state of physical qubits is not altered after the
recovery operator R of (a) is applied to all error patterns of (a), (b) and (c). In classical set up, both error patterns (d) and (e) are considered
as error events. However, in quantum domain, both error patterns (d) and (e) are considered as error-free cases. This specific error-type has
no similarity in quantum domain and hence potentially improves the performance of QTECCs.

Fig. 16. The degeneracy property, which is associatedwith the
harmless undetectable error patterns, does not have a classical
analogue, because in the classical setup, the resultant error
patterns illustrated in Fig. 16 (d) and (e) will always be con-
sidered as an error. Ultimately, considering the degeneracy
potentially improves the performance of QECCs.

Let us consider a range of different scenario for illustrating
the presence of harmful undetected error patterns, which is
portrayed in Fig. 17. Similar to the previous example of
Fig. 16, three Z errors are imposed on the state of logical
qubits by the quantum depolarizing channel. The error pat-
terns given in Fig. 17 (a) and (b) trigger the eigenvalues of−1
for the stabilizer operators denoted by filled red squares in
Fig. 17, while the rest of the stabilizer operators represented
by hollow red squares return eigenvalues of +1. Given the
associated syndrome value, the decoder always decides to
apply the error recovery operator of Fig. 17 (a). In the specific
scenario, where the actual error pattern is the one given by
Fig. 17 (b), the resultant error pattern is given in Fig. 17 (c).
We can observe that the resultant error pattern of Fig. 17 (c)
commutes with all of the stabilizer operators in Fig. 17.
However, this specific error pattern does not belong to the sta-
bilizer operator S, since we cannot represent a chain of errors

by the product of stabilizer operators. Consequently, this
undetectable error pattern inevitably corrupts the legitimate
state representing the physical qubits. This is an example of
the harmful undetectable error patterns. This error pattern is
similar to that of its counterpart in the classical domain, where
the error pattern returns the all-zero syndrome.

Therefore, based on these conditions, by modifying the
probabilty of correct decoding in the classical domain [45],
we can readily formulate the worst-case upper-bound QBER
performance of QTECCs as

QBERupper(n, d, p) = 1−
t=b d−12 c∑
i=0

(
n
i

)
pi(1− p)n−i

−

|S|∑
i=1,∀Si∈S

pw(Si)(1− p)n−w(Si),

(60)

wherew(Si) is theweight of the stabilizer operator Si, which is
defined by the number of non-identity Pauli operators within
the stabilizer operators. The second term of Eq. (60) repre-
sents all the correctable error patterns of QTECCs, while the
last term of Eq. (60) represents the degenerate error patterns
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FIGURE 17. Illustration of the harmful undetectable error pattern in quantum domain. The actual error pattern
inflicts the state of physical qubits is given in (b), while the decoder always decides to perform a recovery
operator given in (a). Instead of recovering the legitimate state of the physical qubits, the specified error
recovery procedure generates a chain of error that commutes with all of the stabilizer operators, as shown
in (c). In quantum domain, it constitutes the harmful undetectable error patterns. In classical domain, it
resembles the error pattern that generates all-zero syndrome values.

that belong to the stabilizer operators. For example, let us
revisit the construction of the surface codes of Fig. 12. There
are 12 stabilizer generators for a distance-3 surface code,
as seen in Table 8. Hence, we can potentially generate in
total 212 unique stabilizer operators, since the product of the
stabilizer operators returns another valid stabilizer operator.
However, in order to further simplify the expression given
in Eq. (60), we only consider the error patterns resembling
the specified stabilizer operators given in Table 8, since they
exhibit a lower weight of non-identity Pauli matrices and
hence have a higher probability of occurance. Therefore, for
surface codes, the last term of Eq. (60) can be approximated
as (2d2 − 2d)p4(1 − p)n−4. The term (2d2 − 2d) represents
the number of stabilizer operators, which is given in Table 10,
and we assume that all the weight of the stabilizer operators
w(Si) are equal to 4.

A. QBER VERSUS DEPOLARIZING PROBABILITY
In order to characterize the performance of QTECCs by
simulations, we exploit the fact that the QTECCs belong to
the family of quantum CSS codes, which handle the bit-
flips (X) and phase-flips (Z) separately. Hence, we invoke

two independent binary symmetric channels (BSC), one for
the X channel and one for the Z channel, where each channel
is characterized by the flip probability of 2p/3, where p is the
associated depolarizing probability of the quantum depolariz-
ing channel [13], [16]. The decoder utilizes hard-decisionML
decoding relying on a simple LUT decoder, as exemplified in
Section III. However, this classical-domain simulation only
represents the performance of QTECCs without considering
the degenerate error patterns. To elaborate a little further,
we generate all-zero information bits at the input and send
them through the two independent BSC channels. Therefore,
we always consider all of non all-zero decoded bits at the
decoder output as an error. However, in order to additionally
consider several cases of degenerate error patterns, which is
exemplified in Fig. 16, we performed an additional evaluation
step. We evaluate the non all-zero corrected received words
and check for the degenerate error patterns. If it satisfies
the degenerate error pattern criterion that we have defined
above, we conclude that this is an error free case. However,
we are not capable of providing a complete list of all possible
degenerate error patterns and in this treatise we only consider
the error pattern resembling the stabilizer generators of Si,
which is exemplified in Table 8 and 9 for surface codes and
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FIGURE 18. QBER performance of the distance-3 surface code,
rotated-surface code and colour code over the quantum depolarizing
channel, which is capable of correcting a single qubit error. The code
parameters are given in Table 13. For this scenario, the decoder using
hard-input ML decoding approach for predicting the error pattern.
(a) Colour code. (b) Rotated surface code. (c) Surface code.

triangular codes, respectively. The QBER performance of
distance-3 QTECCs versus the quantum depolarizing prob-
ability is portrayed in Fig. 18, where the code parameters
are given in Table 13. We also include the upper bound
of the QTECCs performance of Eq. (60) in Fig. 18. It can

TABLE 13. Code parameters for distance-3 colour code, rotated surface
code and surface code.

be clearly observed that the upper bounds match with the
QTECCs performance without considering the degenerate
error patterns.

As we mentioned earlier, there are two sources of the
degenerate error pattern at the output of the decoder. First,
the degenerate error patterns that imposed ubiquitous directly
by the quantum channel, where the error exhibits an identical
pattern to the stabilizer operator Si. Second, the degenerate
error pattern generated by the recovery operator R, when it
tries to recover the legitimate physical qubits, as illustrated
in Fig. 16. The second case is more dominant than the first
one. The reason can be explained as follows. Let us assume
the Z stabilizer operators of distance-3 surface code given
in Table 8. There are six Z stabilizer operators correspond
to the 26 = 64 possible syndrome vector, including the
error-free scenario. Remember that the distance-3 surface
code can only flawlessly correct a single error qubit within
the block of 13 physical qubits, where each of the single
qubit error pattern is associated with only one syndrome
vector. In other words, amongst all of 64 possible syndrome
vectors, there are only 13 syndrome vectors used to uniquely
distinguish the correctable error patterns, while the rest of
the syndrome vectors are associated with the error pattern
ambiguity, as exemplified in Fig. 16 and 17. Due to this
reason, the QTECCs are considered as the highly degenerate
QSCs. Hence, the upper bound of the QBER performance
matches the simulation-based performance recorded without
considering the degeneracy, since it considers only the first
source of the degeneracy, where only a portion of all valid sta-
bilizer operators Si ∈ S in Eq. (60) is included in calculation.
However, by accommodating both of the degeneracy cases,
the QBER performance of QTECCs is indeed improved, as
displayed in Fig. 18.

Increasing the minimum distance of a given QSC con-
struction, which directly improves its per-codeword error cor-
rrection capability (t), is achieved by increasing the number
of physical qubits (n) or by decreasing the quantum coding
rate. Specifically for QTECCs, increasing the minimum dis-
tance means simultaneously increasing the number of phys-
ical qubits (n) and decreasing the quantum coding rate (rQ).
Naturally, the goal of increasing the minimum distance of the
QSCs is to achieve a better QBER performance. However, the
improvement of QBER the performance can only be observed
below a certain value of depolarizing probability (p), which
may be referred to as the threshold probability (pth). Using
the upper bound QBER performance of Eq. (60), we plot
the QBER curves for colour, rotated-surface, surface and
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FIGURE 19. Upper bound QBER performance of QTECCs for the minimum distance of d = {3,5,7,9,11} based on Eq. (60) and the code
parameters given in Table 10. The crossover amongst the QBER curves represents the threshold probability (pth), which are portrayed in
dashed line. (a) Upper bound QBER performance of colour codes. (b) Upper bound QBER performance of rotated-surface codes.
(c) Upper bound QBER performance of surface codes. (d) Upper bound QBER performance of toric codes.

toric codes in Fig. 19. For each of the QTECC construc-
tions, we portray the upper bound QBER performance for
the minimum distances of d = {3, 5, 7, 9, 11}. The threshold
probability of each code is denoted by the crossover QBER
curves, which we portray in dashed line. The threshold prob-
ability of colour, rotated-surface, surface and toric codes are
1.83 × 10−2, 1.34 × 10−2, 6.28 × 10−3 and 6.77 × 10−3,
respectively.

B. QBER VERSUS DISTANCE FROM HASHING BOUND
Presenting the performance of QTECCs over quantum depo-
larizing channel by portraying the QBER curves versus the
depolarizing probability (p) does not take the quantum coding
rate (rQ) into consideration. As we mentioned earlier, we
can simply decrease the quantum coding rate further and
further in order to increase the error correction capability
of the QTECCs. Nonetheless, for the sake of depicting a
fair comparison upon reducing the quantum coding rate, we
have to scrutinize how much performance improvement we
obtain upon decreasing the quantum coding rate. Therefore,
in order to demonstrate howmuch performance improvement
we attain compared to the how much we decrease the quan-

tum coding rate, we normalize the QBER performance by
incorporating the quantum hashing bound. More explicitly,
the quantum hashing bound can be expressed as follows [46]:

CQ(p) = 1− H (p)− p. log2(3), (61)

where H (p) is the binary entropy of p. More specifically, the
quantum hashing bound of Eq. (61) dictates that a random
quantum code C having a sufficiently long codeword and a
quantum coding rate rQ ≤ CQ(p) may yield an infinitesimally
low QBER for a given depolarizing probability p. Alterna-
tively, we can refer to CQ(p) as the hashing limit for the
quantum coding rate rQ associated with a given depolarizing
probability p. In terms of its classical dual pair, the value
of CQ is similar to the capacity limit. Similarly, for a given
coding rate rQ, we can find a value of p∗ satisfying rQ =
CQ(p∗), where p∗ denotes themaximumvalue of depolarizing
probability p so that a quantum code C having quantum
coding rate of rQ can operate at an infinitesimally low QBER.
The value of p∗ may be referred to as the hashing limit for
depolarizing probability of p associated with a given quantum
coding rate rQ. In classical domain the value of p∗ is similar to
the noise limit. Therefore, in general, the aim is that of finding
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FIGURE 20. Upper bound performance of QTECCs in term of the QBER versus the distance D from the hashing bound. The code
parameters are given in Table 10. The dashed lines portray the ultimate distance to the quantum hashing bound of D0 = 0.1893.
(a) Upper bound performance of colour codes. (b) Upper bound performance of rotated surface codes. (c) Upper bound performance of
surface codes. (d) Upper bound performance of toric codes.

a QSC that is capable of performing as close as possible to the
quantum hashing bound.

For example, let us consider the distance-3 and distance-5
rotated surface codes having quantum coding rate of rQ =
1/9 and rQ = 1/25, respectively. By substituting CQ = 1/9
and CQ = 1/25 into the Eq. (61), we obtain the noise limit
of p∗ = 0.160 and p∗ = 0.179, respectively. It is clearly seen
that the noise limit is higher for the quantum code exhibiting
a lower quantum coding rate. To incorporate the quantum
hashing bound into the QBER performances of QTECC, we
define the distance from hashing bound as follows:

D , p(rQ)− p, (62)

where p(rQ) is the hashing limit for depolarizing probability
of p associated with a given quantum coding rate rQ. In other
words, by changing the horizontal axis from the depolarizing
probability p to the distance D from hashing bound, we shift
all the QBER curves according to their hashing bounds, so
that all the hashing bounds are at the reference point ofD = 0.
Several pertinent questions arise from the quantum hashing

bound formulation. Firstly, is there a noise limit, where no
QSC constructions are capable of achieving a satisfactorily

low QBER? Indeed, the answer is yes. By substituting the
CQ = 0 into Eq. (61), which is the lowest possible value
of achievable quantum coding rate, we arrive at the ultimate
hashing bound of p(0) ≈ 0.1893. Secondly, what is the
farthest possible distance from the quantum hashing bound
for any QSC construction. To answer this question, we have
to consider the worst-case scenario, where a QSC exhibiting
a near zero quantum coding rate (rQ ≈ 0) achieves an
infinitesimally low QBER at near zero quantum depolarizing
probability (p ≈ 0). By substituting the value of rQ = 0
and p = 0 into Eq. (62), we define the ultimate distance of
hashing bound D0 as

D0 = p(0)− p

= 0.1893− 0

= 0.1893. (63)

Therefore, the desirable performance of any QSCs quantified
in terms of the QBER versus distance from the quantum
hashing bound is represented by the curves exhibiting a rea-
sonably low QBER as close as possible to the reference point
of D = 0. Naturally, this implies having a low QBER as
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FIGURE 21. The performance of QTECCs having a minimum distance of 3
in terms of fidelity of Eq. (64). The colour code reaches the fidelity
threshold earlier than the rotated-surface and surface code, since the
colour code has the lowest number of physical qubits compared to the
rotated surface code and the surface code. The code parameters are given
in Table 13.

far as possible from the ultimate distance from the hashing
bound of D0 = 0.1893. In simpler terms, any QSCs can
only operate at a reasonably low QBER within the hashing
bound range of 0 ≤ D ≤ D0. Consequently, we should
consider the reduction of the quantum coding rate rQ as
beneficial only if the associated QBER performance curve
moves closer to the reference point of D = 0. Otherwise, it is
more advisable to find a better code construction exhibiting
an identical quantum coding rate, to increase the number of
physical qubits, while maintaining the quantum coding rate,
or to invoke more powerful decoding scheme, for example
by utilizing a soft-decision-aided decoder. The QBER perfor-
mance of QTECCs versus their distances from the quantum
hashing bound are portrayed in Fig. 20. It can be observed that
even though increasing theminimumdistance of theQTECCs
yields a performance improvement in terms of their QBER
versus depolarizing probability p shown in Fig. 19, in terms
of their distance from the hasing bound D, at low QBER, the
curves are crowded in the vicinity of the ultimate hashing
bound distance of D0. Moreover, the results show an agree-
ment with the quantum coding rate versus minimum distance
evolution of QTECCs seen in Fig. 15. The improvement of
the minimum distance, which is directly linked to the error
correction capability, upon reducing the quantum coding rate
is not fast enough to compensate the increasing number of
physical qubits. Therefore, we believe that QTECCs are most
suitable for short to moderate codeword lengths.

C. FIDELITY
From an implementational perspective, a quantum gate or
quantum channel is often characterized by the so-called

fidelity, which represents the closeness of a pure quan-
tum state of |ψ〉 compared to the mixed states having
the quantum density operator of ρ. More explicitly, since
the quantum channel imposes the quantum decoherence
on our legitimate quantum state representing the physical
qubits |ψ〉, there is a probability that decoder does not suc-
cessfully recover the legitimate state. Therefore, the ensem-
ble of all the possible predicted legitimate state of physical
qubits |ψ̂〉 can be represented using the state of |ψi〉 hav-
ing a probability of pi. The fidelity can be formulated as
follows [47]–[49]:

F = 〈ψ |ρ|ψ〉. (64)

while ρ, which portrays the statistical characteristics of a the
mixed states, is defined by

ρ =

N∑
i=1

pi|ψi〉〈ψi|, (65)

where the |ψi〉 represents all of the possible state in
the ensemble and pi is the probability of having state
|ψi〉 in the ensemble, which is subject to unity constraint
of
∑N

i=1 pi = 1.
In order to demonstrate the benefit of QTECCs in the

context of quantum depolarizing channel, we compare the
so-called initial fidelity Fin and final fidelity Fout. The initial
fidelity is the fidelity of the pure quantum state of |ψ〉 over the
quantum depolarizing channel P unprotected by any QSCs
scheme. Therefore, the initial fidelity Fin can be expressed as
follows:

Fin = 1− p. (66)

The final fidelity is that of the pure state of the desired
output |ψ ′〉 protected by the a QSC scheme after the recovery
procedure R and inverse encoder V† of Fig. 11. Therefore,
the final fidelity Fout of the quantum system can be readily
formulated as

Fout = 1− QBER. (67)

The fidelity performance for the distance-3 QTECCs are
depicted in Fig. 21. The black solid line represents the con-
dition of Fin = Fout. The crossover point between the line of
Fin = Fout and fidelity performance curve of QTECCs is the
break-even point, which we may referred to as the threshold
fidelity Fth. The break-even point denotes the minimal ini-
tial fidelity required to ensure that we do acquire a fidelity
improvement upon the applicaton of the QSC scheme, which
is invoked for protecting the state of the physical qubits. The
upper bound of threshold fidelity Fth for the different types
of QTECCs having code parameters listed in Table 10 is
depicted in Fig. 22. It can be observed that different code fam-
ilies having various minimum distances d result in different
threshold fidelity Fth. For the QSCs utilizing hard-decision
syndrome decoding, we derive the upper-bound approxima-
tion formula for determining the value of Fth. First, from
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FIGURE 22. Upper bound fidelity performance of QTECCs. (a) Upper bound fidelity performance of colour codes.
(b) Upper bound fidelity performance of rotated surface codes. (c) Upper bound fidelity performance of surface codes.
(d) Upper bound fidelity performance of toric codes.

Eq. (60) and Eq. (67), we arrive at

Fout = 1− QBERupper

= 1−

1−
t=b d−12 c∑
i=0

(
n
i

)
pi(1− p)n−i


= 1−

n∑
b
d−1
2 c+1

(
n
i

)
pi(1− p)n−i. (68)

For a low depolarizing probability p, the expression given in
Eq. (68) can be approximated in order to determine the upper
bound of the output fidelity as follows:

Fout ≈ 1−
( n

b
d − 1
2
c + 1

)
pb

d−1
2 c+1. (69)

Since the threshold fidelity satisfies the relationship of Fth =
Fin = Fout, we can substitute Fout = Fth and p = 1 − Fth
into Eq. (69). Finally, the upper bound for the threshold
probability can be encapsulated as

Fth(n, d) = 1−
( n

b
d − 1
2
c + 1

)−1/b d−12 c
. (70)

For example, the threshold for a distance-3 colour code
having a quantum coding rate rQ = 1/7 based on Fig. 22
is Fth = 0.942, while using the upper bound approximation
of the fidelity threshold in Eq. (70) we have Fth = 0.952.
For the distance-3 of rotated surface code, surface code and
toric code, the threshold fidelity values based on Fig. 22 are
Fth = 0.968, Fth = 0.986 and Fth = 0.993, respectively.
By using the approximation of Eq. (70), the upper bound
fidelity thresholds are given by Fth = 0.972, Fth = 0.987
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and Fth = 0.994, respectively for the distance-3 rotated
surface code, surface code and toric code. Here, we use the
family of QTECCs as our representative examples, while the
threshold fidelity of Eq. (70) is generically applicable for any
QSCs using hard-decision syndrome decoding. Ultimately,
the implementation of QTECCs are capable of reducing
the effect of quantum decoherence, which is demonstrated
by the QBER reduction and also improving the reliability
of quantum channel, which is demonstrated by the fidelity
improvement.

VI. CONCLUSIONS
We portrayed the evolution of the topological error cor-
rection codes designed in the classical domain to their
quantum-domain dual pairs. We showed that by arranging
the bits of the codeword on a lattice structure in classi-
cal domain provides a benificial inherent error correction
capability. Furthermore, for a long codeword, the classical
topological error correction codes (TECCs) correspond to
the family of LDPC codes exhibiting attractive properties,
such as unbounded minimum distance as a function of the
codeword length, structured construction and a coding rate
of r = 1/2. By contrast, the quantum topological error
correction codes (QTECCs) are more suitable for applica-
tions requiring short to moderate codeword lengths, since the
quantum coding rate of QTECCs tends to zero for a long
codeword. We characterized the performance of QTECCs in
the face of the quantum depolarizing channel in terms of the
QBER attained. First, we showed that QTECCs are highly
degenerate quantum codes, therefore the classical simulation
is only capable of portraying the performance of QTECCs
without considering the degeneracy property. Secondly, we
demonstrated that increasing the minimum distance of the
QTECCs improves the QBER performance. Additionally, we
normalized the performance by taking the coding rate into
consideration by introducing the distance from the hashing
bound. Explicitly, we have shown that the growth of min-
imum distance of QTECCs upon increasing the codeword
length is not fast enough to compensate for the increased
codeword length. Consequently, the QBER performance of
QTECCs gradually tends to the ultimate distance from the
hashing bound. Finally, we determined the fidelity threshold
for QSCs based on hard-decision syndrome decoding, which
represents the minimum fidelity value required for a quantum
system in order to glean benefits from QSCs. Ultimately, the
employment of QSCs will improve the reliability of quantum
computers.
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