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ABSTRACT Dempster–Shafer evidence theory is efficient to deal with uncertain information. One assump-
tion of evidence theory is that the source of information should be independent when combined by
Dempster’s rule for evidence combination. However, the assumption does not coincide with the reality. A lot
of works are done to solve the problem about the independence. The existing method based on the statistical
parameter Pearson correlation coefficient discount is one of the feasible methods. However, the Pearson
correlation coefficient is only used to characterize the linear correlation between the attributes of the normal
distribution. In this paper, a new method is proposed, the Pearson correlation coefficient and Shearman
correlation coefficient to generate the discounting factor. Taking the parametric statistic and nonparametric
statistic into consideration, the proposed method is more efficient. The experiments on wine data set are
illustrated to show the efficiency of our proposed method.

INDEX TERMS Dempster-Shafer theory, dependent evidence combination, Pearson coefficient, Shearman
coefficient, total coefficient.

I. INTRODUCTION
How to deal with the uncertain information in real appli-
cations is still an open issue [29], [30]. One of the most
used math tools, Dempster-Shafer evidence theory [1], [2],
is efficient to model and to combine uncertain information,
which is widely used in many engineering systems, such as
risk analysis and reliability [31], uncertainty measure [33]
and decision making [30], [33].

However, it is worth mentioning that the Dempster’s rule
assumes the independence between the evidence [2]. Some
researchers argue that there is a disagreement about the
fusion result without considering the correlation between the
evidence [3], [4]. The dependence issue has been partially
addressed so that the results can be more reasonable and
effective [5], [6]. In order to combine the evidence efficiently,
previous researches were broadly divided into two categories:
the first one was to modify Dempster’s rule; the second was
to modify the data of evidence. For example, Cattaneo mod-
ified the combination rules, and interprets ‘‘independence’’
as ‘‘minimal conflict’’ [7]. Modification of the source of
evidence has been paid great attention [8]. Yager [9] proposed
a method, considering a relatively independent degree as a
discounting factor. Then Su et al. [12] proposed the model

based on the Pearson correlation coefficient of the statistical
parameters. In addition, some other works were also pre-
sented [5], [16]–[26].

It should be mentioned that the Pearson correlation coef-
ficient just efficiently characterizes the linear correlation
between the attributes of the normal distribution [28]. But,
it is not efficient to handle the nonparametric situations. In
this paper, a new discounting coefficient based on Shearman
correlation coefficient from the point of view of nonpara-
metric statistical [11]. Since not only the Pearson correlation
coefficient but also the Shearman correlation coefficient are
taken into consideration, the proposed method is efficient
to find more comprehensive relationship between attributes,
which helps to improve the performance of dependent evi-
dence combination.

The paper is organized as follows. Section 2 is the
brief introduction of D-S evidence theory, Pearson cor-
relation coefficient and Shearman correlation coefficient;
Section 3 presents the dependent evidence fusion method
based on Pearson correlation coefficient and the Shear-
man correlation coefficient; The experimental simulation is
shown in Section 4; Section 5 ends the paper with short
conclusion.
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II. PRELIMINARIES
In this section, some preliminaries, such as D-S evidence
theory [1], [2], Pearson correlation coefficient and Shearman
correlation coefficient, are briefly introduced.

D-S Evidence Theory: In the D-S evidence theory, 2 =
(A1,A2,A3, · · · ,AN ) is an identification framework. Ai(1 ≤
i ≤ N ) represents the identification of a focal element in the
framework. N is to identify the number of elements in the
framework.

Basic Belief Assignment(BBA), a mass function is one
of the most basic and important definitions of D-S evidence
theory. 2 is known to identify the framework. There are 22

subsets of the framework 2. Each subset’s mapping is BBA.
BBA has two features: m(∅) = 0 and

∑
A⊆2m(A) = 1.

Assuming the identification framework is 2, m1,m2,

m3, · · ·mn are N BBAs which are all independent. According
to the Dempster combination rule, the result is presented as
follows [27]:

m = m1

⊕
m2

⊕
m3

⊕
· · ·

⊕
mn, α ∈ [0, 1] (1)

(
⊕

means the direct sum.)
where

m(A) =

{
0 if A = ∅;
K−1

∑⋂
Aj=A

∏n
i=1 mi(Aj) otherwise,

(2)

K is the normalization factor, defined as follow:

K = 1−
∑

⋂
Aj=∅

n∏
i=1

mi(Aj) (3)

Given the discounting factor α(α ∈ [0, 1]), m is one of
BBAs on the identification frame 2. αm is defined as a
discounted mass function, shown as follows [10]:

αm(A) =

{
αm(A) if A ⊂ 2, A 6= 2;
1− α + αm(2) otherwise,

(4)

Pearson correlation coefficient: The Pearson correlation
coefficient is a linear correlation coefficient, which is used
to reflect the linear correlation of two normal continuous
variables. Assume X and Y are two samples: the sample
X contains n sample observations (x1, x2, x3, · · · , xn) and
sample Y contains n sample observations (y1, y2, y3, · · · , yn).
Then the Pearson correlation coefficient is defined as fol-
lows [28]:

r =
(N

∑
xiyi −

∑
xi

∑
yi)√

Nx2i − (
∑
xi)

2
√
Ny2i − (

∑
yi)

2
(5)

The value of r is in the interval [−1, 1]. And the greater
the value is, the higher X , Y linear correlation rate will be.
When r = 1, X and Y are completely positive correlation.
When r = −1, X and Y are completely negative correlation.
When r = 0, the linear correlation between X and Y is not
obvious.

Shearman correlation coefficient [11]: The Shearman cor-
relation coefficient is also called the rank correlation coef-
ficient. It is a nonparametric parameter and does not rely

on the distribution of the samples. Therefore, the rank cor-
relation coefficient can be used to describe the correlation
between variables when the sample variables do not strictly
follow the normal distribution. Similarly, assume X and Y
are two samples. The sample X contains n sample observa-
tions (x1, x2, x3, · · · , xn) and the sample Y contains n sample
observations (y1, y2, y3, · · · , yn). The coordinates of X , Y are
in accordance with the order from large to small (or from
small to large). x ′i , y

′
i are used to record the position of xi,

yi after the arrangement. Set di = x ′i − y
′
i, then the Shearman

correlation coefficient is defined as follows [15]:

rS = 1− 6
n∑
i=1

d2i /(n(n
2
− 1)) (6)

With the Pearson correlation coefficient analysis, the value
of rS is in the interval [−1, 1]. The greater the value of rS
is, the closer X ,Y is to the strict monotonous in function.
When rS = 1, X and Y are strictly monotonically increasing
in function. When rS = −1, X and Y are strictly monoton-
ically decreasing in function. When rS = 0, the monotonic
relationship of X and Y is not obvious in function.

III. PROPOSED METHOD
To improve the efficiency of the nonparametric case, a new
method, taking the Shearman correlation coefficient into con-
sideration, is presented in this section.

Assume the collected evidence S1, S2, S3, S4, · · · , SN are
obtained by the sensors. Given two evidence Si, Sj, the Pear-
son correlation coefficient is rPSi,Sj (i, j = 1, 2, 3, · · · ,N ),
and the Shearman correlation coefficient is rSSi,Sj (i, j =
1, 2, 3, · · · ,N ). In this paper, we ignore the sign of the cor-
relation coefficient. The main reason is that both positive and
negative correlation mean the dependent degree of evidence,
to some degree. We use dPSi,Sj and dSSi,Sj to model as the
dependent degree of evidence Si, Sj.
In this situation, set (S1, S2), (S1, S3), (S1, S4), (S1S5),
· · · , (SN , SN ) as N 2 pairs of sources of evidence, and then
calculate their Pearson correlation coefficient and Shearman
correlation coefficient.
Definition 1: Given dPSi,Sj , the corresponding Pearson cor-

relation coefficient matrix is defined as follows:

� =

d
P
S1,S1

· · · dPS1,SN
. . .

...
. . .

dPSN ,S1 · · · dPSN ,SN

 (7)

Definition 2: Given dPSi,Sj , the corresponding Shearman
correlation coefficient matrix is defined as follows:

9 =

d
S
S1,S1

· · · dSS1,SN
. . .

...
. . .

dSSN ,S1 · · · dSSN ,SN

 (8)

Since there exists correlation between one source of evi-
dence and the others, for each source of evidence, the
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FIGURE 1. The flow chart of the proposed method.

rate of correlation with other sources of evidence is totally
calculated.
Definition 3: The total correlation rate of each source

of evidence based on the Pearson correlation coefficient is
defined as follows:

WP
i =

n∑
k=1

dPSi,Sk (9)

Definition 4: The total correlation rate of each source of
evidence based on the Shearman correlation coefficient is
defined as follows:

W S
i =

n∑
k=1

dSSi,Sk (10)

The next step is to define the discounting factor. The func-
tion of the discounting factor is to minimize the correlation
between the sources of evidence to achieve the ‘‘indepen-
dence’’ requirement.
Definition 5: Given the discounting Pearson correlation

coefficient, its corresponding discounting factor is defined as
follows:

π i = 1/(WP
i ) (11)

Definition 6: Given the discounting Shearman correlation
coefficient, its corresponding discounting factor is defined as
follows:

φi = 1/(W S
i ) (12)

Definition 7: The total correlation coefficient correspond-
ing to the discounting factor is defined as:

$i = πi ∗ φi (13)

According to the evidence of the discounting combination
rules Eq. (4): If only the Pearson correlation coefficient is
considered, then α = πi. If only the Shearman correlation
coefficient is considered, then α = φi. If both the Pearson
correlation coefficient and the Shearman correlation coeffi-
cient are taken into account, then α = $i.

TABLE 1. The value of 13BBAs.

The flow chart of the proposed method is illustrated
in Fig. 1.

The algorithm of the proposed method applied to dataset is
as follows:
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TABLE 2. Pearson correlation coefficient.

Step 1: Considering the wine data set of attributes as the
sources of evidence, use the method from literature [13] to
generate BBAs.
Step 2: Obtain the Pearson correlation coefficient matrix

and the Shearman correlation coefficient matrix according to
Eqs. (5-8).
Step 3:Use the Eqs. (9-13) mentioned above to get the total

discounting factor.

TABLE 3. Shearman correlation coefficient.

Step 4: Use the total discounting factor for combina-
tion Eq. (4).
Step 5: Use the pignistic probability transformation for-

mula to convert it into probability [12].

IV. EXPERIMENT
Wine data set is used to illustrate the efficiency of
the proposed method (archive.ics.uci.edu/ml/datasets/Irism).
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TABLE 4. Pearson correlation coefficient (continued table).

The wine data set contains three categories: wine1, wine2,
wine3. And wine1, wine2 and wine3 all have 13 properties,
naming Alcohol, Malic acid, Ash, Alcalinity of ash, Mag-
nesium, Total phenols, Flavanoids, Nonflavanoid phenols,
Proanthocyanins, Color intensity, Hue, OD280 / OD315 of
diluted wines and Proline. Select 40 samples from each cate-
gory for this experiment.

The steps of the experiment are shown as follows:
Step1: Considering the wine data set of attributes as 13

sources of evidence, use the method from literature [13] to
generate 13 BBAs, shown in Tab. 1.
Step2: Obtain the 13-order Pearson correlation coefficient

matrix, shown in Tab. 2 and Tab. 4 and 13-order the Shearman
correlation coefficient matrix according to Eqs. (5-8), shown
in Tab. 3 and Tab. 5.
Step3:Use the Eqs. (9-13) mentioned above to get the total

discounting factor, shown in Tab.6.
Step4: Use the total discounting factor for combina-

tion Eq. (4).

TABLE 5. Shearman correlation coefficient (continued table).

TABLE 6. Discounting factors.

Step5: Use the pignistic probability transformation for-
mula to convert it into probability [12].
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FIGURE 2. The comparison between the Pearson correlation and the total
correlation about the rate of the recognition.

The result is shown in Fig. 2. The solid line is the result
curve based on the Pearson discounting factor, and the dotted
line is the result curve based on the total discounting factor.
As can be seen from Fig. 2, the result of our proposed method
is illustrated to be more stable based on the total discounting
factor. In addition, the correct rate of recognition is 0.87 of our
proposed method, while is 0.5 of Pearson method. The main
reason of the advantage is that not only the Pearson correla-
tion coefficient but also the Shearman correlation coefficient
are taken into consideration, which is more efficient to handle
nonparametric information.

V. CONCLUSION
One open issue of evidence theory is the dependent evidence
combination. The existing method based on Pearson corre-
lation coefficient is not efficient to deal with nonparametric
data. To address this issue, a new method combined with
Shearman correlation coefficient is presented to determine
the discounting coefficient in dependent evidence combina-
tion. The result show that, compared with Pearson correlation
coefficient, the proposed method has better stable and higher
accuracy of recognition of objects. The merit of the proposed
method is that it can efficiently deal with both the parametric
and nonparametric data.
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