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ABSTRACT Recently, telemedicine solutions have become a new trend in remote medical treatment.
Many diseases are originated from abnormal variation of biological processes, especially in nucleosome
positioning. Thus, effective prediction of nucleosome positioning becomes a hotspot in the research of
telemedicine. In this paper, a novel method is provided to compare varies of sequences firstly. This method,
which is called fractal entropy increment of diversity (FEID), is based on information entropy and increment
of diversity. Then, a novel nucleosome positioning method is provided by using FEID into the data set
of diversiform DNA sequences of human, worm, fly, and yeast. Moreover, experimental results show that
FEID is an effective nucleosome positioning method by compared with other methods on several benchmark
data sets. Finally, the most important nucleotide sequence in nucleosome positioning is provided based on
calculated contribution rates of nucleotide sequences.

INDEX TERMS Telemedicine, information entropy, fractal entropy increment of diversity, fractal,
nucleosome positioning.

I. INTRODUCTION
Telemedicine is a new medical technology which can pro-
vide remote diagnosis, treatment and consultation service to
area with poor medical condition. Telemedicine becomes a
research hotspot because it helps people who live in remote
areas. However, many diseases are related to variation of
biological processes which can’t be directly observed in
telemedicine. Recently, with the development of computer
technology, communications technology and medical tech-
nology, some information involved data, voice and image
can transfer in a long distance. Which contributes to the
implementation of telemedicine. In order to obtain more
accurate diagnostic results, study the cause of the disease
from the gene level is necessary. Besides, many diseases are
associated with abnormal reactions in biological processes.
In this case, long-distanced nucleosome positioning is val-
ued to study because it affects various bioprocesses [1], [2].
Furthermore, analysis of nucleosome positioning is signifi-
cant for providing an in-depth understanding of biological
processes in diseases, such as binding of transcription factors
and transcriptional regulation mechanism [3], [4].

FIGURE 1. Nucleosome is constructed by a histone octamer that wrapped
tightly by a DNA sequence with 147 base pair (bp). And two nucleosomes
are connected by linker DNA.

Nucleosome is the basic units of eukaryotic chromatin,
which is constructed by a histone octamer that wrapped
tightly by a DNA sequence with 147 base pair (bp) (Figure 1).
Nucleosome positioning provides important information for
remote diagnosis, for example, a gene based diagnosis can
be quickly determined if genetic variations can be found by
remote nucleosome positioning. Hence it becomes a critical
issue in telemedicine in recent years.

Recently, studies of theoretical prediction model and
experiment of nucleosome positioning have been developed
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based on development of genetic maps in human, mouse,
chicken and yeast genomes [5]–[7]. Today, many prediction
theories of nucleosome positioning have been presented, such
as nucleosome-DNA interaction model, N-Score combined
with mathematical regression model, curvature spectrum,
term Hidden Markov Model and relative fragment frequency
index [8]–[13].

Earlier study by Satchwell et al. found that GG
di-nucleotide sequence appeared about 10-bp periodicity in
DNA sequences, which was used to bend around histone
octamer [3]. Afterwards, various nucleosome positioning
methods had been proposed based on DNA sequence scores.
Xing et al. [11] used functions related position in nucleo-
some positioning. Polishko et al. [9] proposed an improved
Gaussian model for nucleosome positioning. Xi et al. [10]
used Hidden Markov Model in nucleosome positioning and
obtained nucleosome occupancy maps by used software
‘‘NuPoP’’. Besides, based on a probabilistic graphical model,
Yassour et al. [12] proposed a newmodel in nucleosome posi-
tioning. Based on the NPS algorithm, iNPS algorithm was
used in nucleosome positioning [8], [13]. Furthermore, sev-
eral nucleosome positioning models were proposed accord-
ing to the information of di-nucleotide sequences frequencies
[5], [6], [14]. Recently, many software and R packages were
applied to predict the position of nucleosome [15]–[17].

Increment of diversity was also an important measure of
biological sequences, which was widely utilized to mea-
sure similarity of two diversity sources. Earlier, Li et al.
predicted the structural class of protein based on incre-
ment of diversity [18]. Later, Chen et al. [19] presented
a SVM-based method to predict subcellular localization
according to combined increment of diversity . Increment
of diversity and quadratic discriminant analysis (IDQD) was
adopted by Yun et al. [21] to predict subcellular localization.
Wang et al. [20] constructed immune classifier using incre-
ment of diversity. Besides, Yang and Li [22] predicted presy-
naptic and postsynaptic neurotoxins based on increment of
diversity. Zuo and Li [23] used the subsequence increment
to predict the plant pol-II promoter. They also used mini-
mum increment of diversity to predict protein amino acids
of plasmodium [24]. Afterwards, DNA sequence and protein
pattern recognition were studied by increment of diversity
and quadratic discriminant analysis [25]. Based on increment
of diversity, Chen et al. [26] identified mitochondrial protein
of malaria parasites and developed an effective treatment for
reducingmorbidity of malaria. Recently, Feng et al. [27] have
identified antimicrobial peptides by increment of diversity.
Zhang et al. [28] trained a SVM detector to do pathological
brain detection. And nucleosome positioning, which is impor-
tant to understand biological processes, has also been studied
by increment of diversity and quadratic discriminant analysis
in [14]. Furthermore, Zhao et al. [14] and Chen et al. [29]
calculated scores of different regions in genome and analyzed
the nucleosome occupancy.

Studies of nucleosome positioning have shown that posi-
tion of nucleosome is related to genome sequences. Indeed,

some sequences of the core DNA appear periodically, which
is favorable for theDNA fragments to bend around the histone
octamer [3], [30], [31]. Furthermore, a sequence with high
affinity to histone is beneficial to the formation of compact
structure of nucleosome. However, a DNA sequence with
low affinity to histone is helpful when transcription factor
approaches target sequence. Therefore, core-DNA can be
truly recognized according to the distribution of genome
and positions of nucleosome can be determined by DNA
sequences.

In this paper, based on the increment of diversity,
a new metric ‘‘fractal entropy increment of diversity
(FEID) [32]–[34]’’ is used to find a new nucleosome posi-
tioning method by DNA sequence because fractal is a mea-
sure of self-similarity and fractal dimension is an important
characteristic of objects with complex structure. Thus, when
consider that iterative process of genomic structure is related
to fractal, we first extract the fractal dimension of DNA
sequences as an important feature of nucleosome positioning.
Then, with similar hypothesize that gene sequences impact
nucleosome positioning [3], [30], [31], we put these char-
acteristics into back propagation neural network (BP neural
network) to predict position of nucleosome on human, worm,
fly and yeast genomes datasets [35], [36]. Meantime, jack-
knife test and 10-fold cross-validation are used to evaluate the
effectiveness of our model. Finally, analysis of contribution
rates of nucleotide sequences is provided to find key factors
that influence nucleosome positioning.

Rest of the paper is organized as follows. Section 2 presents
materials and methods of this paper, including sources of
benchmark datasets, fractal entropy increment of diver-
sity, FEID-BP model and evaluation metrics of results;
Section 3 shows the experiment results and its additional
analysis; Proposed method and future plans are discussed in
Section 4; Conclusion is provided in Section 5.

II. MATERIALS AND METHODS
A. DATASET
In this paper, core-DNA distributions of different species
are analyzed with a combined dataset, including nucle-
osome information in both human, worm, fly and yeast
genomes. The dataset of human comes from Guo et al. [6],
and compared nucleosome positioning data is from
Schones et al. [37] (http://dir.nhlbi.nih.gov/papers/lmi/
epigenomes/hgtcellnucleosomes.aspx). The data of human
genome used in this paper is ‘‘hg 18’’ version of UCSC
human genome database (http://hgdownload.cse.ucsc.edu/).
Partial data extracted from chromosome 20 of human genome
is used as experimental nucleosome positioning dataset of
human as follows [38].

First, each DNA fragment is assigned with a given nucle-
osome formation score. Then, the sequences with highest
scores are chosen as core DNAs, while those with the lowest
scores are chosen as linker DNAs. Finally, to reduce redun-
dant data in current dataset, CD-HIT software is applied to

33452 VOLUME 6, 2018



M. Lu et al.: Nucleosome Positioning With Fractal Entropy Increment of Diversity in Telemedicine

remove redundancy with threshold 80% [39]. The obtained
benchmark dataset contains 2273 core DNA sequences and
2300 linker DNA sequences with same length 147 bp. The
dataset is same to dataset in supplementary data of Ref.6.

Similarly, the dataset of worm and fly are from
Guo et al. [6]. Entire genome data are available from the
UCSC genome database (http://hgdownload.cse.ucsc.edu/).
Compared nucleosome positioning data of worm is also from
UCSC genome database and compared nucleosome position-
ing data of fly is fromMavrich et al. (http://atlas.bx.psu.edu/)
[40], [41]. In UCSC database, WS170/ce4 version is cho-
sen as entire worm genome data and BDGP R5 version
is chosen as entire fly genome data in this paper. Then,
by same methodology to construct dataset of human genome,
experimental nucleosome positioning datasets of worm and
fly are finally obtained.

Dataset of worm contains 2567 core DNA sequences
and 2608 linker DNA sequences with same length 147 bp.
The dataset is same to dataset in supplementary data of
Ref.6. Dataset of fly contains 2900 core DNA sequences and
2850 linker DNA sequences with same length 147 bp. The
dataset is same to dataset in supplementary data of Ref.6.

Dataset of the yeast genome is constructed by
Chen et al. [42] and compared nucleosome position-
ing data is from Lee et al. [7]. With entire genome
data (http://www.yeastgenome.org/) and same chosen strat-
egy, benchmark dataset is obtained with 1880 core DNA
sequences and 1740 linker DNA sequences with same length
150 bp. The dataset is same to dataset in supporting informa-
tion of Ref.43.

B. FRACTAL ENTROPY INCREMENT OF DIVERSITY
1) INCREMENT OF DIVERSITY
Measure of Diversity (MD) is applied to describe interaction
of factors in high dimensional space S = {m1,m2, . . .ms},
which is composed of s different dimensions. Let X ∈ S; xi
denotes frequency of ith dimension of X in simple base; when
assuming (∀x)0·logb

0
x = 0 is tautology, measure of diversity

MD(X) of X (x1, x2, . . . , xs) is defined as Eq.1, where NX =∑s
i=1 xi is frequencies’ amount of every xi in X; b is the given

base of logarithm.

MD (X) = NX logb NX −
∑s

i=1
xi logb xi (1)

Similarly, when we have another diversity source
Y (y1, y2, . . . , ys) ∈ S, MD(Y) can be defined as Eq.2, where
yi denotes frequency of ith component in Y and NY =∑t

i=1 yi.

MD (Y ) = NY logb NY −
∑s

i=1
yi logb yi (2)

Then, MD of X+Y is defined as Eq.3.

MD (X + Y ) = (NX + NY ) logb (NX + NY )

−

s∑
i=1

(xi + yi) logb (xi + yi) (3)

Thus, increment of diversity (ID) of X and Y is defined
to measure similarity of two diversity sources X and Y by
Eq.4, which is widely used to describe similarity between
X and Y. The more similar between X and Y, the less ID(X,Y)
is calculated.

ID (X ,Y ) = MD (X + Y )−MD (X)−MD (Y ) (4)

2) ENTROPY INCREMENT OF DIVERSITY
In this paper, based on increment of diversity and information
entropy in information space, Entropy Increment of Diver-
sity EID) is provided.

We have Eq.5 to describe diversity of sequence X, where
H(X) denotes information entropy of sequence X. H(X)
reflects chaos of DNA sequences. The larger the value is,
the more chaotic the DNA sequences are. The meaning of
Nx is the same as the Nx in Eq. 1, and the value is equal to
the length of DNA sequences minus 1.

MD (X) = NXH(X) (5)

Because core DNA sequences and linker DNA sequences
have different sequence preferences. Besides, different fea-
tures of these two kinds of sequences become apparent if we
splice those DNA sequences with same sequence preferences.
Thus, it is necessary to consider length of DNA sequence
when we measure the diversity of DNA sequences, which
means that MD(X) reflects the sequence preference of DNA
sequence.

Assuming that there is another sequence Y (y1, y2, . . . , ys),
which is composed of same s different components, we have
Eq.6 to record MD(Y) like Eq.5.

MD (Y) = NYH(Y) (6)

When we have MD(X+Y) in Eq.7, EID(X, Y) can be
defined in Eq.8 where k = 0 if X = Y, k = 1 if X 6= Y,
N = min(Nx ,Ny).

MD (X+ Y) = NX+YH (X+ Y) (7)

EID(X,Y) = MD(X+ Y)−MD(X)−MD(Y)+2kNlogs

(8)

Each DNA sequence has a certain sequence preference.
Type of the DNA sequences can be determined by calculated
their sequence preference. Meanwhile, in case that results of
EID are negative, a constant was added in Eq.8.

3) FRACTAL DIMENSION
In this paper, fractal dimension is another method used to
measure similarity. Box-counting method is applied to cal-
culate fractal dimension of DNA sequences.

Supposing A as a nonempty bound subset of space Rn,
a number of boxes are applied to cover A. For all r > 0,
Nr(A), which denotes minimum boxes’ number, is given
by Eq.9 where d = lim

r−→0

logNr (A)

log( 1r )
means box-counting

dimension.

Nr (A) ∝
1
rd

(9)
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4) PREDICTING MODEL: FEID-BP MODEL
In this paper, with calculated FEID of various types of DNA
fragments in both core DNA and linker DNA, a recognition
method of nucleosome positioning is provided by used BP
neural network which is constructed as follows.
Step 1: Combine all core DNA sequences as one long

sequence, count sequence frequencies of all types of di-
nucleotide and calculate its MD as X2 = {x1, x2, . . . x16}.
Step 2: Combine all linker DNA sequences as one

long sequence, count sequence frequencies of all types of
di-nucleotide and calculate its MD as Y2 = {y1, y2, . . . y16}.
Step 3: Count sequence frequencies of all types of

di-nucleotide in all core DNA sequences and all linker DNA
sequences. For each DNA sequences (assuming its serial
number is k), calculate its MD X′k = {x

′

k,1, x
′

k,2, . . . x
′

k,16}.
Step 4: Calculate both s+k,2 = EID(X′k,X2) and s−k,2 =

EID(X′k,Y2) by Eq.8 to obtain a two dimensions fea-
ture vectors for each X’R(EID1EID2). Calculate the box-
counting dimensions sk,d for each core DNA and linker DNA
by Eq.9.
Step 5: Similarly, calculate fractal entropy increment

of diversity of other types of DNA fragments, includ-
ing tri-nucleotide, four-nucleotide, five-nucleotide and six-
nucleotide fragments. For each DNA sequence with serial
number k, we have a vector Sk with 11 dimensions in Eq.10.

Sk =
{
s+k,2, s

−

k,2, s
+

k,3, s
−

k,3, s
+

k,4, s
−

k,4, s
+

k,5, s
−

k,5, s
+

k,6, s
−

k,6, sk,d
}
(10)

Step 6: Use Sk as feature vector of kth DNA sequence k,
recognized all Sk with BP neural network.

5) EVALUATIONS OF THE QUALITY OF PREDICTION
Independent data test, k-fold cross-validation and jackknife
test are often used to evaluate model’s quality. However,
jackknife test is deemed to have a better effect than other
methods [43]. Thus, jackknife test is widely used by many
scholars to evaluate the quality of a model [5], [6], [44]–[49].

In this paper, four factors TP, FP, FN and TN are defined
as true positive, false positive, false negative and true neg-
ative, respectively. Detailedly, TP denotes the number that
core DNA sequences are predicted to core DNA sequences;
TN denotes the number that linker DNA sequences are pre-
dicted to linker DNA sequences; FP denotes the number that
linker DNA sequences are predicted to core DNA sequences;
FN denotes the number that core DNA sequences are pre-
dicted to linker DNA sequences. The following metric Sn, Sp,
Acc and Mcc are defined to evaluate performance of our
method, where Sn denotes sensitivity, Sp denotes specificity,
Acc denotes accuracy, and Mcc denotes Mathew correlation
coefficient [5].

Sn =
TP

TP+ FN

Sp =
TN

TN + FP

Acc =
TP+ TN

TP+ FN + TN + FP

Mcc =
TP× TN − FP× FN

√
(TP+ FN )(TP+ FP)(TN + FN )(TN + FP)

III. RESULTS
A. CONTRIBUTION RATES OF THE NUCLEOTIDE
SEQUENCES
Contribution rate is an important metric to measure benefits’
factors in economics. When assume x is input and y is output;
quantity of x and y are 0 in the initial state; y is a function of
x; contribution ratio cr is defined by Eq.11.

cr =
y(x)
x

(11)

Based on Eq.11, contribution rate is defined as Eq.12 in
arbitrary initial state. ∇y and ∇x are defined as increment of
output and input, respectively.

∇cr =
∇y
∇x

(12)

According to Eq.12, contribution rates of nucleotide
sequences can be calculated as follows.
Step 1: Combine all types of DNA fragments as input

factors (di-nucleotide, tri-nucleotide, four-nucleotide, five-
nucleotide and six-nucleotide sequences) and calculate pro-
vided model’s accuracy acc by using FEID-BP model.
Step 2: Calculate provided model’s accuracy by using each

type of DNA fragments as the only input factor. Accuracy of
di-nucleotide, tri-nucleotide, four-nucleotide, five-nucleotide
and six-nucleotide sequences are defined as acc2, acc3, acc4,
acc5 and acc6, respectively.
Step 3: Combine all types of DNA fragments as input fac-

tors except di-nucleotide and calculate the model’s accuracy
acc

′

2. Similarly, acc
′

3, acc
′

4, acc
′

5, acc
′

6 denote accuracy of
our model when remove tri-nucleotide, four-nucleotide, five-
nucleotide and six-nucleotide sequences from input factors,
respectively.
Step 4: Calculate contribution rates of different DNA frag-

ments by Eq.13.

∇cr i =
acc− acc

′

i

acci
(13)

Here, ∇cr iis contribution rate of each type of i-nucleotide,
and i = {2, 3, 4, 5, 6}. Detailedly, contribution rates of
di-nucleotide, tri-nucleotide, four-nucleotide, five-nucleotide
and six-nucleotide sequences are respectively defined as
∇cr2,∇cr3,∇cr4,∇cr5,∇cr6.

Accuracy and contribution rates of all types of DNA frag-
ments are shown in both Figure 2 and Table 1. In Figure 2,
red line means accuracy of FEID by used only one type
of DNA fragment, green line means accuracy of FEID by
used all type of DNA fragment except one type, blue line
means accuracy of FEID by used all type of DNA fragment.
In order to make comparison with the red lines and green
lines, the lines with different colors are placed in same figure.
Values of Y axis have no function linkage to the value of X
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FIGURE 2. Accuracy of our FEID-BP with different DNA fragments in
human (a), worm (b), fly (c) and yeast (d) genomes. Point at red line
denotes accuracy when only use di-nucleotide, tri-nucleotide,
four-nucleotide, five-nucleotide and six-nucleotide sequences as input
factors, respectively. Point at green line denotes accuracy when use all
type of DNA fragments except di-nucleotide, tri-nucleotide,
four-nucleotide, five-nucleotide and six-nucleotide sequences,
respectively. Point at blue line denotes accuracy when use all types of
DNA fragments (di-nucleotide, tri-nucleotide, four-nucleotide,
five-nucleotide and six-nucleotide sequences).

axis in blue lines because blue line means accuracy using
all types of DNA fragments as input factors that it has no
function linkage to all types of DNA fragment.

TABLE 1. Contribution rates of different DNA fragments in four species.

In Table 1, we find that contribution rate of six-nucleotide
sequence is highest in human, worm and fly datasets. How-
ever, in yeast dataset, contribution rate of five-nucleotide
sequences is the highest. Though there are many combina-
tions of nucleotide sequences can be used as input factors
based on di-nucleotide, tri-nucleotide, four-nucleotide, five-
nucleotide and six-nucleotide sequences, accuracy will drop
if one type of DNA fragments with negative ∇cri is put into
input factors of FEID-BP model. Moreover, every contribu-
tion rate of one type of DNA fragments is not high, which
means structure of nucleosome is controlled by many types
of nucleotide fragments. In this paper, because different DNA

TABLE 2. Comparison using jackknife test in human genome.

TABLE 3. Comparison using jackknife test in worm genome.

TABLE 4. Comparison using jackknife test in fly genome.

fragments interact with each other and contribution rates of
input nucleotide fragments is complex, all types of nucleotide
fragments are used in our nucleosome positioning model at
last. In fact, accuracy of our model with all 5 types of DNA
fragments is larger than accuracy without any type of DNA
fragment.

B. PREDICTED RESULTS OF HUMAN,WORM, FLY
AND YEAST DATASETS
We use jackknife test to evaluate model’s quality with human,
worm and fly datasets.Meanwhile, 10-fold cross-validation is
used to evaluate model’s quality with yeast dataset. Accuracy
of FEID is 0.8789, 0.8976, 0.8550 and 0.9994 for human,
worm, fly and yeast datasets, respectively. Detailed com-
parisons are shown in Tables 2-5 and Figure 3. The accu-
racies of FEID model are higher than other methods with
human, worm and fly datasets. Accuracy for yeast dataset
reaches 0.9994, higher than those obtained using DNA defor-
mation energy model [50] and iNuc-PhysChem model [51]
(Figure 3D). Furthermore, our model has best Mathew corre-
lation coefficient with human, worm and fly datasets which
means input factors in this paper is more related to nucleo-
some positioning. All these results show that FEID-BPmodel
is an effective method in nucleosome positioning.

Besides, the iNuc-PseKNCmodel and the iNuc-PhysChem
model are based on SVM, those methods may be deficient
in finding key factors in nucleosome positioning. While the
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TABLE 5. Comparison using 10-fold cross-valudation test in yeast
genome.

most important factors in nucleosome positioning can be
found based on calculated contribution rates of nucleotide
sequences.

IV. DISCUSSION
From Table 1, we find that six-nucleotide plays more impor-
tant role in nucleosome positioning than other DNA frag-
ments. We believe it is because of two main reasons.

On the one hand, a six-nucleotide sequence is composed
by two molecule tri-nucleotide sequences. We know that a
tri-nucleotide sequence can participates in gene expression
processes because they can construct codons in transcrip-
tion [52]. In the processes of gene expression, the changes
of nucleosome are quite clear. Furthermore, nucleosome has
a low occupancy in TSS and CTCF position [8].

On the other hand, six-nucleotide sequences contain more
sequences information in nucleosome positioning. Thus,
we deduce that characteristics of six-nucleotide sequences are
similar to feature of nucleosome [53]. In the future, we will
combine the six-nucleotide sequences with six dimensional
flexibilities of nucleotide sequences in nucleosome position-
ing. Besides, based on the distribution map of nucleosome
positioning, important information for remote diagnosis will
be found.

Besides, we analyze relevance of the ten features in order
to find more factors related to nucleosome positioning.

Correlation degree can be measured by correlation coeffi-
cient. Due to the unknown distribution of ten features, spear-
man correlation coefficient is used to calculate relevance of
ten features.

From Figure 4a,b,c,d, we can obtain relevance of ten fea-
tures in human, worm, fly and yeast genomes, respectively.

As shown in Figure 4, some features vectors are highly rel-
evant. In order to obtain accurate results, meanwhile, reduce
calculation time, the following strategy was adopted.

At first, search for those features vectors with high rele-
vance in four species genomes and set relevant threshold. And
two features vectors whose correlation coefficient exceeded
the threshold were considered as features vectors of highly
relevant. Then, use all features vectors except those features
vectors with highly relevant as input feature vector of model
to recognize core DNA. Finally, 10-fold cross-validation
was used to examine the performance of prediction model.

FIGURE 3. Comparison results of various methods in human (a), worm
(b), fly (c) and yeast (d) genomes datasets. X axis denotes the metrics
to evaluate model’s quality, including Acc, Sn, Sp and Mcc, and Y axis
deno,tes the values of four metrics in human, worm, fly and yeast
genomes, respectively.

The threshold and feature vectors with high velevance
in Table 6. The prediction results obtained all feature vectors
except those with high relevance were shown in Table 7.
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FIGURE 4. Relevance of ten features in human, worm, fly and yeast
genomes were shown by color matrix. Different color denoted different
correlation coefficient, the relation between color and correlation
coefficient was shown in legend. For simplicity, v1 ∼ v10 denoted ten
features vectors obtained by positive di-nucleotide, negative
di-nucleotide, positive tri-nucleotide, negative tri-nucleotide, positive
four-nucleotide, negative four-nucleotide, positive five-nucleotide,
negative five-nucleotide, positive six-nucleotide and negative
six-nucleotide, respectively. Furthermore, those features vectors with high
relevance were connected by a line and the relevance became weaker
and weaker with the increase of distance with color matrix. (a) Relevance
of ten features in human genome; (b) Relevance of ten features in worm
genome; (c) Relevance of ten features in fly genome; (d) Relevance of ten
features in yeast genome.

As shown in Table 6-7, using new feature vectors with low
relevance as input vectors of model, the prediction accuracy
of human, worm and yeast was slightly lower than those
obtained by 10 feature vectors. Which illustrated that new

TABLE 6. Feature vectors with high relevance in four species.

TABLE 7. Prediction results obtained by feature vectors combinations as
input feature vectors of model.

features of Table 7 were important factors in nucleosome
positioning. As for fly genome, the prediction results were
not ideal only using new feature vectors as input feature vec-
tors of model. Which showed that different DNA fragments
interacted with each other and interaction information was
favor to nucleosome positioning.

V. CONCLUSION
In this paper, a novel nucleosome positioning method based
on both fractal, entropy information and increment of diver-
sity was proposed. Based on this method, core DNAs of
human, worm, fly and yeast were recognized by their
sequences. In order to evaluate model’s quality, different
nucleosome positioning methods were compared with same
exist benchmark datasets. Experimental results showed that
the provided model was an effective nucleosome position-
ing method. Besides, this paper analyzed importance of all
factors which were thought to play roles in nucleosome
structure. We found six-nucleotide sequences palyed most
important role in nucleosome positioning based on analysis
of nucleotide sequences we used.

Because nucleosome positioning has great significance
in telemedicine, when combined the information of nucleo-
some positioning with biology processes, genetic variations
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in remote area will be found recently. Furthermore, a gene
based diagnosis will be quickly determined in future.

However, FEID-BP model was based on sequences infor-
mation, some factors influencing nucleosome position were
ignored. In order to obtain more accurate prediction results,
we will combine the sequences information with physico-
chemical properties of sequences in nucleosome positioning
in the future.
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