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ABSTRACT A modern production plant may consist of several parallel-running batch processes, and the
monitoring of such processes is imperative. This paper proposes a multiset canonical correlation analysis
(MCCA)-based joint-individual monitoring scheme for parallel-running batch processes, which considers
the individual feature of each batch process and the joint features shared by all batch processes. First, four-
way batch process data are unfolded into two-way time-slice data. Second, MCCA is performed at each
time instant to extract joint features throughout all running batch processes. Then, for each batch process,
the measurements are projected onto a joint feature subspace and its orthogonal complement subspace that
contains the individual features of the batch process. Finally, monitoring statistics are constructed to examine
the joint and individual features. The proposed monitoring scheme is applied on a numerical example and
the simulated parallel-running batch-fed penicillin fermentation processes. Monitoring results show the
efficiency of the proposed approach.

INDEX TERMS Parallel-running batch processes, fault detection, multiset canonical correlation analysis,
process monitoring.

I. INTRODUCTION
Batch processes play an important role in the chemical,
biological, pharmaceutical, and semi-conductor industries
[1]–[3]. Nowadays, a production plant may consist of several
parallel-running batch processes. These batch processes have
intense interactions and communicate with each other, which
construct a cyber-physical system (CPS). With the increasing
demand in plant safety and product quality, fault detection
and diagnosis for this kind of CPS are imperative [4], [5].
Meanwhile, due to the rapid advancement of data collect-
ing, transmitting, and storing techniques, data-driven process
monitoring methods have become popular, among which
multivariate statistical process monitoring methods are of
particular interest [6]–[13].

Numerousmultivariate statistical batch processmonitoring
methods have been developed. In [14], the characteristics
of batch processes were summarized, and multivariate sta-
tistical process control methods were developed for online

monitoring of batch processes. In [15], multiway principal
component analysis (MPCA) was proposed to extract infor-
mation by projecting the data onto low-dimensional spaces
defined by the latent variables. In [16], multi-way partial least
squares (MPLS) was developed to extract information from
process measurement variable trajectories that is more rele-
vant to the final quality variables of the product. The MPCA
and MPLS methods establish the basis of batch process mon-
itoring, and several extensions are proposed to address var-
ious process characteristics such as uneven length, multiple
phases, or multiple operation modes [17]–[20]. Although
numerous successful applications are reported, these moni-
toring methods are limited on an individual batch process.
However, a modern production plant may consist of sev-
eral parallel-running batch processes, and the monitoring of
which is imperative.

Aside from PCA and PLS, canonical correlation analy-
sis (CCA) is an alternative classical multivariate analysis
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FIGURE 1. Illustration of the data unfolding and the proposed monitoring scheme.

method, which aims to characterize the relationship between
two sets of variables. The first applications of CCA on
process monitoring have been reported [21], [22]. Recently,
a residual generation-based CCA fault detection scheme was
proposed, in which CCA is used to characterize the relation-
ship between input and output [23]. Shortly afterwards, a
genetic algorithm regularized CCA-based distributed mon-
itoring scheme was proposed, in which CCA is employed
to characterize the relationship between different subsys-
tems [24]. The efficiency is theoretically analyzed and exper-
imentally tested. However, conventional CCA efficiently
characterizes the relationship between two sets of variables
but is limited in handling more than two sets of variables.
Recently, a multiset CCA (MCCA)-based joint-individual
monitoring scheme for multi-unit processes was proposed,
which splits each operation unit into joint feature subspace
and individual feature subspace [25]. However, this monitor-
ing scheme was developed for continuous processes that have
two-way data and have relatively constant correlations. For
batch processes, the correlations may change from time to
time at a running cycle, and the usage of MCCA for batch
process monitoring is under investigation.

This study develops a MCCA-based joint-individual mon-
itoring scheme to achieve efficient monitoring of parallel-
running batch processes. The contributions of the current
work can be summarized as follows:

(i) A four-way to two-way data unfolding method is intro-
duced for dealing with the data of parallel-running batch
processes. A set of parallel-running batch process data gen-
erally has four dimensions, namely, variable dimension, time

dimension, batch dimension, and process dimension, as illus-
trated in Fig. 1. The history data collected from the process
include four-way data. First, the four-way data are unfolded
along the process wise, and then B sets of three-way data are
obtained. For each process, the three-way data are unfolded
as time-slice data, as illustrated in Fig. 1.

(ii) Considering the correlation may change from time to
time, theMCCA-based joint-individual feature extracting and
modeling is performed at each time instant to characterize the
relations among the parallel-running batch processes. For the
k-th time instant of all batch processes, MCCA is performed
to extract the joint features throughout the entire plant. Then,
the measurements of each batch process are projected onto a
joint feature subspace, which contains the features related to
the entire plant and an individual subspace, which consists of
individual features that show only the local batch process.

(iii) The superiority of the proposed monitoring scheme
is theoretically analyzed within the multivariate statistical
framework of hypothesis testing, which enhances the data-
driven batch process monitoring theory basis. The efficiency
of the proposed fault detection scheme is illustrated by
case studies on a numerical example and simulated parallel-
running batch-fed penicillin fermentation (FBPF) processes.

The remainder of this article is organized as follows: In
Section II, the basics of MCCA are briefly reviewed, and
the monitoring problem of parallel-running batch processes
is formulated. In Section III, the proposed MCCA-based
monitoring scheme for parallel-running batch processes is
presented in detail. Some characteristics of the proposed
monitoring scheme are also discussed. Then, in Section IV,
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application examples on a numerical example and the
parallel-running simulated FBPF benchmark processes are
provided. Finally, in Section V, conclusions are drawn.

II. PRELIMINARIES AND PROBLEM FORMULATION
In this study, Rn denotes the n-dimensional Euclidean space,
Rn×m denotes the set of all n×mmatrices, diag(. . .) denotes
a diagonal matrix, E (·) denotes the expectation operator,
6(·) denotes the covariance. χ2 (m) denotes the chi-square
distribution with m degrees of freedom, rank(A) denotes the
rank of a matrix A, and prob(A) denotes the probability of the
event A. The other notations are standard.

A. MCCA BASICS
Given two sets of random vectors x1 ∈ Rm1 and x2 ∈ Rm2

with [
x1
x2

]
∼ N

([
E (x1)
E (x2)

]
,

[
6x1 6x1x2

6x2x1 6x2

])
,

CCA finds canonical correlation vectors w1 and w2 to maxi-
mize the correlation between wT1 x1 and w

T
2 x2, i.e., [25], [26],

(w1,w2) = argmax
(w1,w2)

ρ(wT1 x1)(wT2 x2)
= argmax

(w1,w2)

wT1 6x1x2w2(
wT1 6x1w1

)1/2 (wT2 6x2w2
)1/2 . (1)

The solution can be obtained by performing singular value
decomposition on a matrix K as

K = 6
−1/2
x1 6x1x26

−1/2
x2 = L6VT , (2)

where

6 =

[
diag(σ1, . . . , σr ) 0

0 0

]
∈ Rm1×m2

and r = rank(6x1x2 ). The canonical correlation vectors can
be obtained as [26]

w1 = 6
−1/2
x1 L ∈ Rm1×m1 , (3)

w2 = 6
−1/2
x2 V ∈ Rm2×m2 . (4)

MCCA extends the CCA tomore than two set forms. Given
B sets of variables with xb ∈ Rmb , b = 1, 2, . . . ,B, MCCA
takes multiple stages to find canonical vectors that maximize
the correlation among the canonical variables [25], [27], [28].
Five objective functions for MCCA have been introduced
[27], among which the maximum variance method, given its
simplicity, is employed in the current study. The method has
been demonstrated to be equivalent to solving the following
optimization problem [25], [29]:

(w1,w2, . . . ,wB) = argmax
w1,w2,...,wB

ρ =

B∑
a 6=b

wTa xax
T
bwb

s.t.
1
B

B∑
b=1

wTb xbx
T
bwb = 1. (5)

Then, we can obtain the multiset canonical variables as

zb = wTb xb (b = 1, . . . ,B), (6)

where wb = [w(1)
b . . . w(D)

b ]T withD denoting the number
of extracted joint features. More detailed discussions on the
MCCA are provided in [25], [27], and [28].

B. PROBLEM FORMULATION AND MOTIVATION
For a production process that has parallel-running batch
processes, the process data include a four-way matrix as
X (I × J × K × B), where I is the number of batches, J is
the number of measured variables in each process, K is the
number of measurements in each operation cycle, and B is the
number of batch processes. For process monitoring, the four-
way data are first arranged as B sets of three-way data as
Xb (I × J × K ) (b = 1, . . . ,B). Each three-way data can be
further unfolded as two-way data, which can be achieved
by several unfolding methods. To achieve online monitoring,
which means that the process data should be tested in each
time instant, the three-way data are unfolded along the time
dimension, and then K time-slice data matrices are obtained,
as illustrated in Fig. 1. The k-th time slice for the b-th process
can be denoted as Xb,k (I × J) (k = 1, . . . ,K ). Let the mea-
surement of the b-th process at the k-th time instant of the i-th
batch be xb,k,i =

[
xb,k,i,1, xb,k,i,2, . . . , xb,k,i,J

]T .
The parallel-running batch processes may share a common

power system, pneumatic system, material supplying system,
or reaction environment. Therefore, correlations among vari-
ables from different batch processes generally exist. T 2 test
is a likelihood-ratio test and has been widely used for fault
detection [30]. According to the Neyman-Pearson lemma,
given a certain false alarm rate (FAR), the T 2 test provides
the best fault detectability if no prior fault information is
available [30]. Then, to monitor a local process, the following
two T 2 tests using different variables can be performed.
(i) T 2

L : T
2 test on only the measured variables in the b-th

process, that is,

T 2
L,b (k) =

[
xb,k,i,1, xb,k,i,2, . . . , xb,k,i,J

]T
×6−1b,k

[
xb,k,i,1, xb,k,i,2, . . . , xb,k,i,J

]
∼ χ2 (mL,b,k), (7)

where mL,b,k = rank(6b,k ) and 6b,k is the covariance
matrix of the xb,k,i. This T 2 test can detect a fault that affects
only the local process but may ignore the correlation with
other processes.

(ii) T 2
G: T

2 test on all measured variables from all pro-
cesses. Then, xG(k) = [x1,k,i,1, x1,k,i,2, . . . , x1,k,i,J , x2,k,i,1,
x2,k,i,2, . . . , x2,k,i,J , . . . , xB,k,i,1, xB,k,i,2, . . . , xB,k,i,J ]T . and

T 2
G(k) = xTG(k)6

−1
xG (k) xG ∼ χ

2 (mxG,k), (8)

where mxG,k = rank(6xG (k)) and 6xG (k) is the covari-
ance matrix of xG(k). This T 2 test considers the correlation
among processes. However, involving all measured variables

VOLUME 6, 2018 13007



Y. Wang et al.: Joint-Individual Monitoring of Parallel-Running Batch Processes Based on MCCA

may introduce non-beneficial information into the monitor-
ing, which will relax the control limit and degrade the moni-
toring performance [6], [24].

III. MCCA-BASED MONITORING FOR
PARALLEL-RUNNING BATCH PROCESSES
A. MCCA-BASED FAULT DETECTION
In a continuous process, the correlation is generally kept con-
stant. However, the correlation in a batch process may change
time to time. Therefore, the correlation should be analyzed at
each time instant. Following the offline modeling and online
monitoring procedures, theMCCA-basedmonitoring scheme
is established as follows.

1) OFFLINE MODELING
Step 1: Data preparation

The four-way data X (I × J × K × B) are collected
under normal operating condition, and the four-way
data are unfolded into two-way time-slice data as illus-
trated in Fig. 1. First, the data are arranged along the
process-wise as Xb (I × J × K ) (b = 1, . . . ,B). Second,
the three-way data are unfolded into time-slice data as
Xb,k (I × J) (k = 1, . . . ,K ) for each process. Then at each
time instant, it is appropriate to assume that the process data
are Gaussian distributed with a large number of running
cycles [17]. The mean and variance of measurements are
calculated at each time slice, and the data at each time instant
are mean–variance normalized. It is worth mentioning that
since uneven length batches can generally be synchronized
through variousmethods [14], [31], the current study assumes
that the batches are synchronized to be with even length.
Step 2:MCCA joint feature extraction at each time instant k
On the basis of MCCA, the canonical vectors for the b-th

batch process are obtained as wb(k) = [w(1)
b (k) . . .w(D)

b (k)]T

using the time-slice data Xb,k (I × J). These canonical vec-
tors are supposed to be responsible for the joint features
throughout the entire process. Then, the d-th canonical vari-
able of the b-th batch process is obtained as

z(d)b (k) =
(
w(d)b (k)

)T
xb (k),

(d = 1, 2, . . . ,D; b = 1, 2, . . . ,B). (9)

The canonical variables related to the d-th joint
feature from all operation units can be obtained as
z(d)(k) = [z(d)1 (k) . . . z(d)B (k)]T (d = 1, 2, . . . ,D).
Step 3: Joint feature statistic establishment at each time

instant k
For the d-th joint feature, the T 2 statistic T 2

J ,d (k) can be
calculated as

T 2
J ,d (k) =

(
z(d) (k)

)T (Z(d) (k) (Z(d) (k))T
N − 1

)−1
z(d) (k),

(10)

where Z(d) (k) denotes the d-th joint feature of the training
data and N denotes the number of historical training data

samples. The corresponding threshold can be calculated as

T 2
th,J ,d (k) =

B(N 2
− 1)

N (N − B)
Fα (B,N − B), (11)

where Fα (B,N − B) denotes the F distribution with B and
N-B degrees of freedom and significant level α.
Step 4: Individual feature extraction at each time instant k
The individual feature in each batch process is obtained

by projecting the measurements onto the orthogonal comple-
ment subspace of canonical vectors, which can be achieved
through the QR decomposition on wb (k) as

wb (k) =
[
Q1,b (k)Q2,b (k)

] [R1,b (k)
0

]
= Q1,b (k)R1,b (k) .

(12)

where Q2,,b (k) consists of the orthogonal projecting vectors
of the individual feature subspace.
Step 5: Individual feature statistic establishment at each

time instant k
The T 2 test for the individual features in the b-th batch

process can be established as

T 2
I ,b (k) = xTb (k)Q2,b (k)

×

(
QT2,b (k)Xb (k)XT

b (k)Q2,b (k)

N − 1

)−1
×QT2,b (k) xb (k), (13)

where Xb(k) denotes the historical training data of the b-th
operation unit. The threshold can be obtained as

T 2
th,I ,b (k) =

(mb − D) (N 2
− 1)

N (N − mb + D)
Fα (mb−D,N−mb+D).

(14)

Step 6: Steps 1 to 5 are repeated to establish the local fault
detector for each local process at each time instant.

2) ONLINE MONITORING
Step 7: Online sample scaling

An online measurement at the time instant k is mean–
variance scaled. For an online measurement of the b-th pro-
cess at time instant k , the measurement is mean–variance
scaled using the previously obtained mean and variance.
Step 8: Statistics calculation
The scaled measurements are projected onto the joint-

feature subspace and individual feature subspace of each
batch process. The values of corresponding statistics are
calculated.
Step 9: Status determination
The existence of a fault is determined, and the type of the

fault is identified based on the detection logic as
T 2
J ,d (k)≤T

2
th,J ,d (k) and T

2
I ,b(k)≤T

2
th,I ,b(k)⇒ fault-free

T 2
J ,d (k) > T 2

th,J ,d (k)⇒ fault in the d-th joint feature
T 2
I ,b(k) > T 2

th,I ,b(k)⇒ fault in the b-th subprocess.
(15)
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If a fault is detected by an individual feature statistic,
the fault generally affects the corresponding sub-process and
the fault location can be identified. Otherwise, if a fault is
detected by a joint feature statistic, the fault may affect several
processes and spread to the entire process.

B. CHARACTERISTICS OF THE PROPOSED
MONITORING SCHEME
Non-detection rate (NDR) and FAR are two important indices
used to evaluate the monitoring performance of a proposed
method. On the basis of the properties of the NDR, the fol-
lowing propositions on the fault detection performance of the
proposed joint-individual monitoring scheme can be derived:
Proposition 1: To detect a local fault that affects only the

individual features of the b-th batch process, the T 2 test on the
individual features, i.e., T 2

I ,b, will provide better monitoring
performance than the T 2

L,b and T
2
G. The proof is provided in

Appendix A.
Proposition 2: For a fault that affects only the joint fea-

tures, the inclusion of the individual features in the T 2

test is not necessary. The derivation is similar to that of
Proposition 1.
Proposition 3: For a fault that affects only the joint fea-

ture in the b-th batch process, involving canonical variables
from other batch processes may provide better monitoring
performance than examining the joint feature individually.
The proof is provided in Appendix B.
It is noted that if the data are unfolded along the batch

dimension, considering that a batch run may have multi-
ple phases and the correlation may change from phase to
phase in a batch cycle, some phase partition algorithms such
as clustering-based algorithms may be needed to deal with
the multiple operating conditions [32]–[34]. However, the
proposed MCCA-based monitoring scheme unfolds the data
along the time dimension, and then the underlying assump-
tion is the correlations among variables and processes keep
unchanged at a time instant k in different batch running
cycles. Then it is appropriate to assume that the process
data at each time slice are Gaussian distributed with a large
number of normal running cycles [17].

IV. APPLICATION EXAMPLES
A. APPLICATION ON A NUMERICAL EXAMPLE
In this study, a CPS that consists of three batch processes is
employed to test the monitoring performance of the proposed
monitoring scheme, which is as follows:

x1,1(k) = 50+ k + ε1
x1,2(k) = t1 − 0.5 ∗ k + ε2
x2,1(k) = 50+ k + ε3
x2,2(k) = t2 − 0.5 ∗ k + ε4
x3,1(k) = 50+ k + ε5
x3,2(k) = t3 − 0.5 ∗ k + ε6, (16)

in which

[
t1 t2 t3

]T
∼ N

[ 0 0 0
]T
,

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1


and ε1, . . . , ε6 are Gaussian-distributed independent noise
with zero mean and variance of 0.01. Since the source vari-
ables t1, t2 and t3 are correlated, the three processes are
related. Each batch run consists of 30 samples. To establish
the MCCA-based model, process data of 200 batches under
normal operating conditions are collected. Two faults are con-
structed to test the monitoring performance of the proposed
monitoring scheme as follows:

Fault 1: A ramp change with an amplitude of 0.05∗(k−10)
is added to x1,1 from the 11th point to the 25th point.

Fault 2: A ramp change with an amplitude of 0.05∗(k−10)
is added to x1,2 from the 11th point to the 25th point.

Fault 1 is a fault that affects only the individual feature
of batch process 1. The monitoring results for fault 1 using
T 2
J ,1 (the T

2 test on the joint feature from only process 1), T 2
J

(the T 2 test on the joint feature with all processes involved),
T 2
I ,1 (the T 2 test on the individual feature from process 1),
T 2
L,1 (the T 2 test on the variables from process 1), and T 2

G
(the T 2 test on variables from all processes) are provided
in Fig. 2. As shown in Fig. 2, the fault is not detected by
the statistics that examine the joint features (T 2

J ,1 and T 2
J ).

The fault is detected by T 2
I ,1, T

2
L,1, and T 2

G, among which
T 2
I ,1 has the fewest ND points (highlighted by the ellipses and

arrows). The monitoring results are consistent with the fault
property, i.e., only the individual feature is affected by the
fault. T 2

L,1 and T
2
G havemoreND points andworsemonitoring

performance because they introduce monitoring redundancy,
as discussed by Proposition 1.

FIGURE 2. Monitoring results for the numerical example fault 1.

Fault 2 is a fault that affects the joint feature of
batch process 1, which is related to the other processes.
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FIGURE 3. Monitoring results for the numerical example fault 2.

The monitoring results for fault 2 using T 2
J ,1,T

2
J ,T

2
I ,1, T

2
L,1,

and T 2
G are provided in Fig. 3. The individual feature of

process 1 is not affected as no fault point is detected. T 2
J has

the fewest ND points and performs the best in detecting the
fault (highlighted by the ellipses and arrows). The monitoring
results support the points discussed by Propositions 2 and 3.
For better comparison, Monte Carlo tests of 1000 times are
carried out and the average NDRs for the two faults are
presented in Fig. 4. From the Fig.4, it can be seen that T 2

I ,1
performs the best for the fault 1 and the T 2

J performs the
best for the fault 2 (with lowest NDR and highlighted by the
ellipses and arrows).

FIGURE 4. Monte Carlo test results for the two faults in the numerical
example.

B. APPLICATION ON THE SIMULATED FBPF PROCESS
The FBPF industrial process is a well-known benchmark
batch process for testing batch process monitoring schemes
[35], [36]. A modular simulator for the fermentation
industrial process is developed by the monitoring and
control group of the Illinois Institute of Technology
(http://mypages.chee.iit.edu/∼cinar). A simplified flow
diagram of the penicillin fermentation is presented in
Appendix C Fig. 7. In the current work, 16 measured
variables are employed for monitoring, which are listed in
Appendix C Table 1. Initial conditions and set points are
listed in Appendix C Table 2. Three batch processes are

FIGURE 5. Monitoring results for the FBPF fault 1.

simulated simultaneously, and the correlations among batch
processes are generated by adding the same Gaussian dis-
tributed signal to the initial conditions of aeration rate. The
sampling time is 1 h, and the overall duration of each batch
is 400 h, including batch and fed-batch stages. Process data
of 100 batches are collected. Two joint features are extracted
in each batch process, and the MCCA-based monitors are
established.

Two different faults are simulated to test the monitoring
performance of the proposed monitoring scheme as follows.

Fault 1: A ramp fault of magnitude 20% is introduced into
the aeration rate (variable 1) from the 150th to the 300th hour
of batch process 1. Since the sameGaussian distributed signal
is added to the initial conditions of aeration rate, the fault 1 is
a fault that affects the joint feature.

Fault 2: A ramp fault of magnitude 5% is introduced into
the agitator power (variable 2) from the 150th to the 300th
hour of batch process 1. Since the agitator power runs inde-
pendently, the fault 2 does not affect the joint feature at the
beginning of the fault.

The monitoring results for the fault 1 are presented
in Fig. 5. T 2

J1 denotes the T 2 test on the first joint feature,
T 2
J2 denotes the T 2 test on the second joint feature, T 2

JG1
denotes the T 2 test on the first joint feature with joint features
from the other processes included, T 2

JG2 denotes the T 2 test
on the second joint feature with joint features from the other
processes included, T 2

I1 denotes the T
2 test on the individual

features of process 1, T 2
L1 denotes the T

2 test on the measured
variables of process 1, and T 2

G denotes the T 2 test on all
measured variables from all processes. At the early stage of

13010 VOLUME 6, 2018
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FIGURE 6. Monitoring results for the FBPF fault 2.

the fault, the T 2
JG1 detected the fault first and then the other

statistics, which means that the first joint feature is affected
first. The second feature is not affected, and almost no fault
point is detected. T 2

I1 has not detected the fault at the early
stage; however, as time goes on, the individual features are
affected and the fault is revealed. The results are consistent
with the fault property, i.e., the fault affects the joint feature
first.

The monitoring results for the fault 2 are presented
in Fig. 6. The fault is first detected by T 2

I1 and then by T 2
JG2.

That means at the beginning of the fault, the joint features are
not affected by the fault. Themonitoring results are consistent
with the fault property. The efficiency of the proposed joint-
individual monitoring scheme is verified.

V. CONCLUSIONS
In this study, a MCCA-based joint-individual monitoring
scheme for parallel-running batch processes is proposed.
First, the four-way process data are unfolded into two-way
time-slice data. Second, MCCA is performed to extract the
joint features throughout the entire process. Then, for each
batch process, the individual features are obtained by pro-
jecting the measurement to the orthogonal complement space
of the joint features. Finally, monitoring statistics are con-
structed to examine the joint and individual features. The effi-
ciency of the proposed monitoring scheme is shown through
application examples on a numerical example and the FBPF
benchmark process.

It is worth mentioning that this work provided prelimi-
nary studies on the fault detection of parallel-running batch

processes. Fault isolation and diagnosis can be the subjects
of future work. Also, extensions to more complex batch
processes such as nonlinear, uneven length or multiple phase
batch processes are under investigation.

APPENDIX A
PROOF OF PROPOSITION 1
In the following proofs, we ignore the mark of time instant k
when no ambiguity is observed. The following properties of
NDR are employed here [24].
Property 1: Given the same degree of freedomm, the NDR

is a monotonically decreasing function of the non-central
parameter v ∈ (0,+∞).
Property 2: Given the same non-central parameter v,

the NDR is a monotonically increasing function with the
degree of freedom m.

Assume that a fault model of the measurement of the b-th
process xb can be expressed as

xb,f = xb,N +2f . (A1)

For a local fault that affects only the individual feature of
the process, we can obtain (2f )T Q1,b = 0, (2f )T Q2,b 6= 0.
The NDR for the T 2

I ,b test on only the individual features for
the b-th operation unit is

NDR
(
T 2
I ,b

)
= Fχ2

(
T 2
th,I ,b;mb − D, νI ,b

)
, (A2)

where Fχ2

(
T 2
th,I ,b;mb − D, νI ,b

)
is the cumulative dis-

tribution function of the non-central chi-squared distribu-
tion with mb − D degree of freedom and non-central
parameter vI ,b.

νI ,b =
(
QT2,b (2f )

)T
6−1I ,b

(
QT2,b (2f )

)
= (2f )T

(
Q2,b6

−1
I ,bQ

T
2,b

)
(2f )

= (2f )T

Q2,b

(
QT2,bXbXT

bQ2,b

N − 1

)−1
QT2,b

 (2f )
= (2f )T

(
Q2,b

(
QT2,b6xbQ2,b

)−1
QT2,b

)
(2f ). (A3)

The T 2 test on all variables in the b-th batch process is

T 2
L,b = xTb6−1xb xb. (A4)

The NDR for the T 2
L,b is

NDR
(
T 2
L,b

)
= Fχ2

(
T 2
th,b;mb, νb

)
, (A5)

where

νL,b = (2f )T 6−1xb (2f )

= (2f )T 6−1xb (2f )

= (2f )T
(
XbXT

b

N − 1

)−1
(2f )

= (2f )T
([
Q1,bQ2,b

]
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×

([
Q1,bQ2,b

]T XbXT
b

[
Q1,bQ2,b

]
N − 1

)−1
×
[
Q1,bQ2,b

]T)
(2f )

=

[
0 (2f )T Q2,b

]([QT1,b
QT2,b

]
6xb

[
Q1,bQ2,b

])−1
×

[
0

QT2,b (2f )

]
=

[
0 (2f )T Q2,b

](QT1,b6xbQ1,b 0

0 QT2,b6xbQ2,b

)−1
×

[
0

QT2,b (2f )

]
= (2f )T

(
Q2,b

(
QT2,b6xbQ2,b

)−1
QT2,b

)
(2f ). (A6)

Evidently, the non-central parameters are vL,b = νI ,b. The
T 2 test on all variables in the entire process is

T 2
G = xTG6−1xG xG. (A7)

The NDR for the T 2
G is

NDR
(
T 2
G

)
= Fχ2

(
T 2
th,G;mG, νG

)
. (A8)

Thus, vL,b = νI ,b = vG. The degree of freedom is
mG ≥ mb ≥ mb − D. According to Property 2, the NDR
of the T 2

I ,b will be smaller than that of the T 2
L,b and T

2
G for the

batch process.

APPENDIX B
PROOF OF PROPOSITION 3
Assume that a fault affects only a joint feature in the b-th
process, i.e., (2f )T Q1,b 6= 0, (2f )T Q2,b = 0. The T 2 test
on the canonical variables in the b-th batch process is

T 2
J ,d,b = xTbw

(d)
b

(
6Zb,d

)−1 (w(d)b

)T
xTb , (A9)

and the non-central parameter for the NDR is

νJ ,d,b = (2f )T
(
w(d)b

(
6zb,d

)−1 (w(d)b

)T)
(2f )

= (2f )T
(
w(d)b

(
6zb,d

)−1 (w(d)b

)T)
(2f ) . (A10)

The non-central parameter for NDR of the T 2 test that
involves canonical variables from all operation units is

vJ =
[
(2f )T w(d)b 0T

](
6zb,d 6zb,d ,z∼b,d

6z∼b,d ,zb,d 6z∼b,d

)−1
×

[(
w(d)b

)T
(2f )

0

]

= (2f )T w(d)b

[
6zb,d −6zb,d ,z∼b,d6

−1
z∼b,d6z∼b,d ,zb,d

]−1
×

(
w(d)b

)T
(2f ). (A11)

To compare the non-central parameters νJ ,d,b and vJ ,
the difference between them can be derived as

vJ − νJ ,d,b = (2f )T w
(d)
b

×

[(
6zb,d −6zb,d ,z∼b,d6

−1
z∼b,d6z∼b,d ,zb,d

)−1
−
(
6zb,d

)−1] (w(d)b

)T
(2f ). (A12)

[(6zb,d −6zb,d ,z∼b,d6
−1
z∼b,d6z∼b,d ,zb,s )

−1
− .(6zb,d )

−1] is pos-
itive semidefinite, and the vJ − νJ ,d,b is a quadratic form.
Therefore, we can have vJ − νJ ,d,b ≥ 0 and then vJ ≥ νJ ,d,b.
Apparently, involving the canonical variables from other pro-
cesses may increase the non-central parameter. According to
Property 1 of the NDR, the monitoring performance may be
improved.

APPENDIX C
INTRODUCTION TO THE FBPF PROCESS

FIGURE 7. Flowsheet of the penicillin cultivation process [35], [36].

TABLE 1. Measured variables of the fed-batch penicillin fermentation
process [35], [36].
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TABLE 2. Initial conditions and set points to simulate the penicillin
cultivation process [35], [36].
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