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ABSTRACT The Gerschgorin circle theorem was recently applied to build two detectors for the purpose of
spectrum sensing in cognitive radio applications, the so-called Gerschgorin radius-based and the Gerschgorin
disk-based detectors. However, the corresponding test statistics do not exhibit the constant false alarm rate
(CFAR) property and are not robust against dynamical noise, the situation in which nonuniform noise levels
fluctuate over time. In this paper, a novel and simple detector for cooperative or multi-antenna spectrum
sensing is proposed. The test statistic is the ratio between the sum of the Gerschgorin radii and the sum of
the Gerschgorin centers relative to the covariance matrix of the signal received from one or more transmitters.
It is named Gerschgorin radii and centers ratio (GRCR) detector. The GRCR exhibits the CFAR property
and is robust against nonuniform and dynamical noise and received signal powers, yet being able to detect
time-uncorrelated or time-correlated transmitted signals over additive Gaussian noise and fading channels.

INDEX TERMS Cognitive radio, Gerschgorin circle theorem, robust spectrum sensing.

I. INTRODUCTION

The spectrum sensing [1] is a crucial task within the cognitive
radio (CR) framework [2]. It enables the negotiated or oppor-
tunistic access of CR-enabled secondary user (SU) terminals
to vacant bands in a network of primary user (PU) terminals,
thus alleviating the problems of congestion and scarcity of
the radio-frequency spectrum inherited by the current fixed
allocation policy. The cooperative spectrum sensing (CSS)
is prevailing among several approaches, due to its capabil-
ity of mitigating channel fading, shadowing and the hidden
node problems by taking advantage of spatial diversity [1].
In centralized CSS, the received signal samples collected
by the SUs or the SUs’ local decisions are sent to a fusion
center (FC), where they are combined to allow for the global
decision upon the occupation of the sensed band. Owing to
the cooperation, more reliable global decisions are obtained
when compared to local SUs’ decisions.

Several detection schemes have been proposed so far for
the purpose of spectrum sensing, for instance the energy
detection, the matched filter detection, the cyclostation-
ary feature detection and several eigenvalue-based detection
schemes [1], [3]. Cyclostationary detection needs to know
the cyclic frequencies of the PU signal, and matched filtering
requires the knowledge of the PU waveforms and the channel

from the PU to the SUs. On the other hand, energy detection
and eigenvalue-based detection do not need any information
on the channels between the primary transmitter and the SUs,
neither on the signal to be detected.

The energy detector and some eigenvalue-based detectors
are semi-blind, i.e. they rely on the knowledge of the noise
power, thus being vulnerable to the inaccuracies of the noise
variance estimates, which is usually referred to as noise
uncertainty. Moreover, energy detection is optimal for detect-
ing independent and identically distributed (i.i.d.) signals [4].
Its performance degrades when detecting time-correlated sig-
nals, which is the case for most practical applications, mainly
due to filtering effects [3]. Some eigenvalue-based spectrum
sensing schemes can cope with both i.i.d. and non-i.i.d.
(n.i.i.d.) signals [3]. There are other techniques, including
some eigenvalue-based ones, that are totally blind, meaning
that they do not need to know the noise variance as well.

The most known eigenvalue-based detection tech-
niques are those built from the generalized likelihood
ratio test (GLRT), the maximum-minimum eigenvalue
detection (MMED), also known as eigenvalue ratio
detection (ERD), and the maximum eigenvalue detection
(MED), also known as Roy’s largest root test (RLRT) [5].
Among these, the RLRT is considered the best in several
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circumstances, but likewise the energy detection it needs
to know the noise power for decision, thus being prone to
noise uncertainty. The RLRT is an asymptotically optimum
nonparametric detector under the Neyman-Pearson criterion
for the case of a single unknown signal immersed in Gaussian
noise with known variance [5]. In the generalized energy
detection (GED) [6], which is an improved variation of the
conventional energy detection, the problem of high sensitivity
to noise uncertainty remains [7].

A spectrum sensing technique that is robust against noise
uncertainty is not necessarily insensitive to nonuniform noise,
a situation in which the noise variances are different among
the SUs’ receivers. Moreover, a spectrum sensing technique
that is robust against nonuniform noise is not necessarily
insensitive to nonuniform and dynamical noise, when the
noise levels vary over time.

Nonuniform noise arises, for instance, due to uncal-
ibrated receivers, different noise powers affecting the
receivers, receivers subjected to different temperatures, and
intentional or unintentional interference. The dynamics is
observed when at least one of these phenomena vary over
time. In the case of sensing techniques that need to know
the noise variances, the nonuniform and dynamical noise
condition may also arise from the fluctuations of the noise
estimates as well.

Hence, the development of spectrum sensing strategies that
are robust against nonuniform and dynamical noise is not
simply a desirable design guideline. Due to the high chance
of encountering those impairments in practice, it is in fact
mandatory that the spectrum sensing technique is immune to
them. This paper proposes such a technique.

A. RELATED WORK

A GLRT-based spectrum sensing method is proposed in [§]
to operate with receivers subjected to different and unknown
variances and arbitrary signal-to-noise ratios (SNRs). The
resultant test is called Hadamard ratio (HR) test.

The performance of the Hadamard ratio test is analytically
investigated in [9]. Specifically, the authors have derived
approximate, but very accurate closed-form expressions for
computing the probability of detection of the HR test.

A variant of the Hadamard ratio test, named noncircular
Hadamard ratio (NC-HDM) test, is devised in [10] to cope
with the important case of noncircular (NC) or improper
primary signals [10], [11]. The key idea of [10] is to
explore the complementary covariance matrix [12] of the
received signal, besides the ordinary covariance matrix,
to achieve improved performances and robustness in the
n.i.i.d. noise scenario. Examples of digital modulation
schemes that produce improper complex baseband signals
are binary phase-shift keying (BPSK), pulse amplitude mod-
ulation (PAM), Gaussian minimum-shift keying (GMSK),
offset quaternary phase-shift keying (OQPSK), and baseband
(but not passband) orthogonal frequency-division multiplex-
ing (OFDM) [12, p. 27]. Even proper baseband signals may
become improper at the receiver due to imbalance between
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their in-phase and quadrature (I/Q) components, which is the
case, for example, of quaternary phase-shift keying (QPSK)
signals [12, p. 28].

The GLRT approach is applied in [13] to the situation in
which there is no information on the number of PU signals.
The resultant detector was called arithmetic to geometric
mean (AGM) detector.

Two detectors for spectrum sensing are proposed in [14],
both exploring the volume associated to the received signal
sample covariance matrix (SCM), to distinguish between the
presence or absence of the PU signal. The resulting volume-
based detectors (VD) were named VD1 and VD2. The former
is blind, whereas the latter needs the knowledge of the noise
variance estimate to form the test statistic. In spite of being
blind, the VD1 outperforms the VD2 in most of the cases
analyzed in [14], in terms of performance and robustness
against nonuniform noise.

The analytical performance of the volume-based detec-
tor VD1 proposed in [14] is assessed in [15]. Specifically,
expressions for computing the false alarm and the detection
probabilities for the scenario of i.i.d. noise are derived, as well
as for the theoretical computation of the decision threshold.
Although based on approximations, those expressions are
capable of providing quite accurate results.

In [16], two blind spectrum sensing methods whose test
statistics are based on the Gerschgorin circle theorem were
proposed. The Gerschgorin circle theorem is also applied to
the wide-band spectrum sensing problem in [17]-[19], but it
is not used to directly form the test statistics. Instead, a source
number estimation technique based on the Gerschgorin theo-
rem is applied to determine the number of active channels,
and the decision rule is based on a predefined fraction of
this number with largest sampling powers. Hence, the noise
variance is not needed to make the decision on the channel
occupation state. In fact, there are several proposals that
consider the Gerschgorin disk estimator (GDE) or its varia-
tions to tackle the fundamental signal processing problem of
estimating the number of sources; see for instance [20], [21]
and references therein.

The problem of multiple antenna spectrum sensing is
addressed in [22], taking into account the correlation between
the received signals at different uncalibrated receivers in the
presence of additive white Gaussian noise (AWGN). The test
statistic combines the weighted estimates of the correlations
between all antenna pairs. The performance of the proposed
detector is optimized by tuning the weights. The special case
of the test statistic proposed in [22] for two antennas can be
interpreted as the Hadamard ratio test.

An important observation about the previous spectrum
sensing techniques is that their performances were assessed
under nonuniform but fixed (non-dynamical) noise vari-
ances. Unfair judgments about the performance gaps and
about the performance ranking when multiple techniques
are compared may arise from this nonuniform and fixed
variance approach, as will be discussed later on in this

paper.
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The circular folding cooperative power spectral density
split cancellation (CFCPSC) is one of the most recent blind
and robust spectrum sensing methods proposed in the lit-
erature [23]. The test statistic is formed as a ratio between
power spectral densities in which the noise variance terms
present in the numerator and denominator are canceled-out.
The CFCPSC is robust against nonuniform and dynamical
noise, but demands signal power concentration in the sensed
band, which limits its application range.

B. CONTRIBUTION AND ORGANIZATION OF THE ARTICLE
It seems that [16] is the single publication, so far, with a direct
application of the Gerschgorin circle theorem to the construc-
tion of test statistics for spectrum sensing. However, the test
statistics proposed in [16] do not exhibit the constant false
alarm rate (CFAR) property. The CFAR is a crucial property
of any detector for spectrum sensing or radar applications,
since it enables the configuration of the decision threshold
for a given target probability of false alarm, independently of
the noise variance. In the methods proposed in [16], the noise
variance information is eventually needed to set the decision
threshold for a given target performance, which diminishes
their practical appeal. Moreover, the methods derived in [16]
are not robust against dynamical noise, as demonstrated later
on in this paper.

Motivated by the above facts, a novel and simple technique
for cooperative or multi-antenna spectrum sensing is pro-
posed herein. The corresponding test statistic is formed by the
ratio between the sum of the Gerschgorin radii and the sum of
the Gerschgorin centers with respect to the covariance matrix
of the signal received from a single PU transmitter or from
multiple PU transmitters. The proposed test statistic is named
Gerschgorin radii and centers ratio (GRCR). Extensive simu-
lation results are presented and discussed to demonstrate the
following main attributes of the GRCR:

« Itis robust against dynamical noise and against dynam-

ical received signal powers.

« It exhibits the constant false alarm rate property.

o It is among the simplest test statistics, since the most
complex operation is the computation of the received
signal sample covariance matrix.

o It outperforms most of the common blind detec-
tors under nonuniform and dynamical noise variances,
especially when large noise variance differences are
considered.

« It works with single or multiple primary transmitters.

o It works in both AWGN and fading channels.

o It is capable of detecting time-correlated and time-
uncorrelated PU signals.

As a byproduct, this paper can also be cast as a review of
some of the most recent and powerful cooperative spectrum
sensing techniques.

The remainder of the article is organized as follows:
In Section II, the system model for the cooperative spectrum
sensing problem is described. Section III is devoted to the
proposed GRCR test statistic. Several competing detectors
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are presented in Section IV, along with a complexity analysis.
Numerical results and discussions are given in Section V.
Section VI concludes the paper and gives some directions for
further contributions regarding the GRCR.

Il. SYSTEM MODEL

Let a discrete-time multiple-input, multiple-output (MIMO)
model in which m SUs collect mn samples (n samples per SU)
of the received signal from s PU transmitters during the
sensing interval. In the centralized CSS with data fusion,
the samples from all SUs are sent to the FC to form the
received signal matrix Y € C"™*" given by

Y=HX+V, ey

where H € C"™** is the channel matrix with elements h;;,
i=12,....,mj=1,2,...,s, representing the complex
channel gains between the j-th PU and the i-th SU. These
gains are assumed to be constant during the sensing interval,
and independent and identically distributed (i.i.d.) between
consecutive sensing rounds.

In order to consider the realistic situation of possibly dif-
ferent received signal powers across the SUs, for instance due
to different channel attenuations between the PU transmitters
and the SU receivers, the channel matrix H is given by

H=GA, @

where A € C™*¢ is the matrix whose elements are oj; = 1
for pure AWGN channels between the PU transmitters and the
SU receivers, or «;; are zero-mean complex Gaussian random
variables having unitary second moment to represent flat and
slow Rayleigh fading channels. The matrix G € R™*" in (2)
is a diagonal gain matrix given by

G:diag(/ P ) 3)
Pavg

where p = [p1,p2, ..., pm]T is the vector with the received
signal powers in each SU, and p,y, = %Zil pi is the
average received signal power over all SUs.

Without loss of generality, the overall channel power gain
is unitary, meaning that each PU transmits with a constant
power given by payg/s.

The matrix X € C**" in (1) carries the samples of each
PU signal on each of its rows. Two cases are considered here
for the elements of X: i) they are zero-mean i.i.d. complex
Gaussian random variables, i.e. the PU signals are white
noise; ii) they are drawn from a zero-mean baseband QPSK
signal with T samples per symbol, where t controls the tem-
poral correlation between samples (z = 1 for i.i.d. samples;
T = n for n.i.i.d. samples having maximum correlation).

In the case of uniform noise, V € C™*" is the matrix
containing i.i.d. Gaussian noise samples with zero mean and
variance 2, i.e V ~ NC(0, o°T), with I being the identity
matrix of order m. In the case of nonuniform noise, the ele-
ments of the i-th row of V have variance ol.2, i=1,...,m.
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FIGURE 1. Gerschgorin disks under #{, (a) and #L; (b), for a sample covariance matrix R obtained from m = 5, n = 5000 and

SNR = —10 dB. The marks x are the centers of the disks.

Denoting the average noise variance as oazvg = % Yol
the received SNR, in dB, averaged over all SUs is given by

SNR = 101og;, <pazvg>.
g,

avg

“

The metrics typically used to assess the spectrum sensing
performance are the probability of detection and the probabil-
ity of false alarm, respectively defined as Py = Pr(decision =
H1|H1) and Pg, = Pr(decision = H|Hg), where H; and Ho
are the hypotheses of the presence (i.e. Y = HX + V) and
absence (i.e. Y = V) of the PU signals, respectively, and Pr(-)
is the probability of the underlying event.

A high value of Pq is desired to reduce the interference
caused by the secondary network to the primary network due
to missed detections. On the other hand, a low value of Py,
is aimed at, so that more opportunistic transmissions can be
made by the secondary network due to bands that are less
frequently declared occupied when they are actually vacant.

A typical tool for analyzing the above metrics simultane-
ously is the receiver operating characteristic (ROC) curve,
which trades Py, versus Py by varying the decision threshold.

1Il. PROPOSED TEST STATISTIC
The sample covariance matrix of the received signal is com-
puted by the FC as
vyt
R=-YY', 4)
n
where T denotes the Hermitian operation (complex conjugate
and transpose).
The Gerschgorin circle theorem [24, p. 82] states that the
eigenvalues XA of R are located in the union of the m disks

A — riil < Z |7

J#

(6)
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where r;; is the element in the i-th row and j-th column
of R, for i,j = 1,...,m. The quantity C; = rj; is the
i-th center and the quantity R, = ZJ-# |r,~j| is the corre-
sponding radius of the Gerschgorin disk denoted as D(Cj, R;).
In other words, the Gerschgorin circle theorem identifies
a region in the complex plane containing the eigenvalues
of a complex square matrix. Since every covariance matrix
is positive semi-definite, then C; € Ry, meaning that the
Gerschgorin centers are located in the non-negative part of
the real axis.

It has been found empirically that the ratio between
the sum of the Gerschgorin radii and the sum of the
Gerschgorin centers with respect to R has different behaviors
under o and 1, being capable of serving as a test statistic
for spectrum sensing. Based on this finding, the proposed
Gerschgorin radii and centers ratio (GRCR) test statistic is
defined as

T _ YR
GRCR ST

)

The simple reasoning behind the construction of this
test can be explained with the help of Fig. 1, where the
Gerschgorin disks under Ho (a) and H; (b) are shown
for a sample covariance matrix R obtained from m = 5
SUs, n = 5000 samples per SU and SNR = —10 dB.
Under Hj, the eigenvalues of R are [A, X2, A3, A4, A5] ~
[10.44,10.30, 9.90, 9.76, 9.51], the Gerschgorin radii are
[R1, R2, R3, R4, R5] ~ [0.54, 0.25, 0.34, 0.63, 0.43],
the Gerschgorin centers are [Ci, C2, C3, C4, Cs] ~
[9.93,10.37,9.81,9.89,991], >Ry =~ 219, Y. C =~
49.92, and Tgrcr =~ 0.04. Under H;, the eigenvalues
are [A1, A2, A3, A4, As] ~ [12.38,10.43, 10.19,9.82,9.61],
the Gerschgorin radii are [R1, R2, R3, R4, R5] =~ [1.22, 0.46,
1.84,1.13, 2.18], the Gerschgorin centers are [Cy, C3, C3,
C4,Cs] =~ [10.15,10.40, 10.45,10.03,11.39], >R, =~
6.83,> C; ~ 52.42, and Tgrcr ~ 0.13.
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FIGURE 2. Histograms of the GRCR test (7) for 02 = 03,5 = 1 (a) and 02 = 63,5 = 10 (b), obtained from m = 6, n = 10 and

SNR = 0 dB.

From this simple example, which corresponds to a low
SNR condition, it can be noticed that the numerator of (7)
has changed significantly from #g to 7 (from 2.19 to 6.83),
while the denominator has not changed significantly (from
49.92 to 52.42), producing an increase of about 3 times
in Tgrcr. This means that Tgrcr under H; departs from
Tcrer under Hg as the SNR increases, which is a necessary
condition for the test statistic to work properly. As expected,
the discrimination between Ho and #; becomes poorer in
lower SNR regimes, which also happens with other detectors.
The numerical results in Section V confirm these statements.

Detection would be possible by the sole computation
of Y R;, but it is the division by Y C; that brings the CFAR
property to the test statistic (7).

Figure 2 shows the histograms obtained from 50000 values
of the test statistic (7) for each of the hypotheses, under
uniform noise with o2 = aazvg = 1 (a) and
o2 = aazvg =10 (b), m = 6 SUs, n = 10 samples per SU,
and SNR = 0 dB. In this illustration the transmitted powers
were adjusted to keep the SNR fixed for both values of oazvg,
according to (4). It can be seen that the histograms under Hg
are identical in shape and support, meaning that the proposed
test statistic has the CFAR property. In other words, if the
decision threshold is set to yield the desired false alarm rate
for a given noise variance at the input of the SUs’ receivers,
this false alarm rate will not change if the noise variance is
changed.

The Algorithm 1 synthesizes the steps of the proposed
GRCR cooperative spectrum sensing technique.

IV. COMPETING TEST STATISTICS

In this section, the test statistics used for comparisons with
the proposed one are described in a concise way, aiming
at giving to the present paper a self-contained character.
Some of them are robust against nonuniform noise, a few
are robust against nonuniform and dynamical noise, and oth-
ers are not robust at all. All test statistics discussed in this
section exhibit the CFAR property, except the Gerschgorin
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Algorithm 1 Steps of the GRCR Spectrum Sensing

1) Each of the m SUs in cooperation collects n samples
of the received signal during the sensing interval and
transmits them to the FC.

2) The FC forms the matrix Y € C"™*" defined in (1)
with the received samples, and computes the covariance
matrix R € C™*™ using (5).

3) The FC computes C; = rj; and R; = Zj#i ]r,-j , where
rij is the element in the i-th row and j-th column of R,
and forms the GRCR test statistic Tgrcr using (7).

4) The FC decides in favor of the presence of the PU signal
if Tgrcr > & and decides in favor of the absence of the
PU signal otherwise, where £ is the decision threshold
configured to achieve the desired CFAR.

radius-based and the Gerschgorin disk-based tests described
in Section IV-C.

The choice of the competing test statistics described in
the sequel was made based on their popularity and newness,
also taking into account implementation complexities that
are not very away from each other, aiming at fairness in the
subsequent comparisons.

Among the techniques reported in Section I-A, the
NC-HDM of [9] was not considered due to the fact of being
derived for noncircular received signals, which is not the
scenario targeted by the majority of the detectors proposed
in the literature so far. The VD2 test of [14] was not chosen
because of having worse performance than the VDI1. The
detectors that do not use the Gerschgorin theorem to form the
test statistic were not considered either, which is the case of
the ones proposed in [17]-[19]. The multi-antenna spectrum
sensing technique proposed in [22] was not chosen due to
the relatively high complexity of finding the weights used in
the test statistic. Finally, the reason for not considering the
CFCPSC of [23] was twofold: i) its exhibits a high algorith-
mic complexity, in spite of the relatively simple operations
performed in each step; ii) it demands that the PU signal
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spectrum has some power concentration, i.e. it has to occupy
a fraction of the sensed band.

A. ENERGY DETECTOR TEST STATISTICS

The most simple and known semi-blind detector is the energy
detector (ED), whose test statistic is

I«
Tep=— 2. Wil ®)

where y;; is the element in the i-th row and j-th column of the
received signal matrix Y. In the nonuniform noise scenario,
the ED becomes

m 1 n
Teow = —5 2, il” ©)
1

The statistical power of the test (8) is inferior to the test (9),
since the latter makes full use of the knowledge of the noise
variances in all SUs’ receivers.

B. EIGENVALUE-BASED TEST STATISTICS

In eigenvalue-based CSS, spectral holes are detected using
test statistics built from the eigenvalues of the sample covari-
ance matrix defined in (5). Representing the ordered eigen-
values of Ras Ay > Ar > --- > A, the test statistics for the
classical GLRT for a single PU signal and uniform noise,
the MMED (or ERD) and the MED (or RLRT) are computed
at the FC according to [5]

Al
TGLRT = = (10)
pREPY
Al
TvmMED = —, (11
Am
Al
Tvep = —- (12)
o
In the nonuniform noise scenario, the MED becomes
A
T™MEDN = ——- (13)
avg

Since there is no way of using the different noise variances
in the case of the MED, the test (13) has a reduced statistical
power when subjected to nonuniform noise.

If there is no information on the number of PU signals,
the GLRT approach yields the so-called arithmetic to geo-
metric mean (AGM) detector [13], whose test statistic is

Tagm = ==L (14)

The tests (10), (11) and (14) are blind, whereas the
tests (12) and (13) are semi-blind. Semi-blind detectors
need the noise variance information, being inherently prone
to noise uncertainty, which is also the case of the energy
detector.
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C. GERSCHGORIN RADIUS-BASED AND GERSCHGORIN
DISK-BASED TEST STATISTICS

Motivated by the fact that the Gerschgorin disks D(C;, R;) are
poor representations of the location of the eigenvalues of R,
in [16] a transformed covariance matrix R’ is used instead
of R. The matrix R’ is constructed from a unitary transfor-
mation on R that preserves its eigenvalues, but reduces the
Gerschgorin radii, as follows. Firstly, matrix R is partitioned
according to

ri e Flm
1 . m R r
R=| = Y
: .. : r Ymm
rml RN Fmm

where R is called the leading sub-matrix of R, with order
(m — 1) x (m — 1). This matrix is formed by removing the
m-th row and the m-th column of R. The vector r of length
m — 1 is formed by the m-th column of R without the
element r,,,. The leading sub-matrix R; is then factored
as Ry = UDUT, where U is a unitary matrix of order
(m—1) x (m — 1) formed by the eigenvectors of Ry, and
D is a diagonal matrix of the same order, whose main
diagonal is formed by the eigenvalues of R;. From U,
the unitary transformation matrix T is constructed according

to
U o0
T [OT 1], (16)

where 0 is the all-zero vector of length m — 1. Finally,
the transformed covariance matrix is given by

D Ulr
R =T/RT = . 17
|:rTU T'mm ] an
Writing the eigenvector matrix as U = [ug, up, ..., U1 17,

where u; is the eigenvector corresponding to the i-th largest
eigenvalue, the Gerschgorin radius-based (GR) test statistic
proposed in [16] is

Tor = ulr]. (18)

The Gerschgorin disk-based (GD) test statistic proposed
in [16] is given by
1 m
TGD — m—1 Zl=l dlu |ll]1LI'|. (19)
(H;n:I dii ) m
where d; is the element in the i-th row and column of D.

It can be noticed that Tgr and Tgp need the eigen-
decomposition of the leading sub-matrix Ry, thus being more
complex than the proposed Tgrcr in (7). However, the impor-
tant observation concerning (18) and (19) is that these test
statistics do not exhibit the CFAR property, although this
attribute is claimed in [16].

To illustrate the non-CFAR property of the GR and the
GD tests, Figs. 3 and 4 respectively show the histograms
obtained from 50000 values of the test statistics (18) and (19)

for each of the hypotheses, under uniform noise with o> =
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FIGURE 4. Histograms of the GD test (19) for 2 = ‘fazvg =1(a)ando? = "azvg = 10 (b), obtained from m = 6, n = 10 and

SNR = 0 dB.
oazvg = 1 (a) and ol = Gzlzvg = 10 (b), m = 6 SUs,
n = 10 samples per SU, and SNR = 0 dB. In these

illustrations the power of the signal transmitted by the SU
was adjusted to keep the SNR fixed for both values of G?izvg’
according to (4). It can be seen that the ranges of variation
of the decision threshold under Ho, i.e. the support of the
histograms, are not the same under different noise powers,
meaning that the GR and the GD test statistics do not exhibit
the CFAR property. In other words, if the decision threshold
is set to yield the desired false alarm rate for a given noise
variance at the input of the SUs’ receivers, this false alarm
rate will change if the noise variance changes. A detector that
exhibits the CFAR property does not change its false alarm
rate, no matter the noise variance is.

D. HADAMARD RATIO TEST STATISTIC
The GLRT-based spectrum sensing method proposed in [8]
to operate with uncalibrated receivers yields the so-called
Hadamard ratio (HR) test statistic

det(R)

HR = =5 (20)
[T rii
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where det(R) is the determinant of R.

The HR is one of the most powerful detectors in the
presence of nonuniform noise, yet having a relatively low
complexity [14].

E. VOLUME-BASED TEST STATISTIC
The volume-based detector 1 (VDI1) proposed in [14] is
shown to be robust against nonuniform noise variances,
possibly outperforming the HR detector when the noise vari-
ances remain unchanged over the sensing rounds, i.e., in the
nonuniform and non-dynamical noise condition. The
VDI test statistic is
Typi = log [det(E_lR)], 1)

where E~! is the inverse of the matrix E = diag(d), where
diag(d) forms a diagonal matrix whose main diagonal is
composed of the elements of the vectord = [d, da, - - - , dp]-
The i-th element of d is the Euclidean norm of the i-th row
of R, that is, d; = |R(, 1)|2.

It can be noticed that the complexity of the VD1 is higher
than the HR, since the former involves the computation of the
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logarithm of the determinant of a product of two matrices,
one being the sample covariance matrix and the other being
the inverse of a matrix derived from the sample covariance
matrix.

In order to reach the final decision upon the occupancy of
the sensed channel, the test statistic 7 selected among (7),
(8), (9), (10), (11), (12), (13), (14), (18), (19), (20) and (21) is
compared with the decision threshold &, which is computed to
yield the target values of Py and Py,. For the above detectors,
Py = Pu(T > &|Hy) and Py, = Pr(T > &|Hp), except in
the cases of the HR test (20) and the VD1 test (21), for which
Py = Pr(Tur > &|Ho) and Pra = Pr(Tur > &|H1) [8], [14].

F. COMPUTATIONAL COMPLEXITIES

The processing time required for computing the test statis-
tic (7) for the proposed GRCR test is mostly owed to the
computation of the sample covariance matrix R, which costs
O(nm?) floating-point operations [25].

The energy detection test statistic (8) is the less complex.
Its computational cost is dominated by the nm multiplica-
tions, thus yielding a complexity of O(nm).

The complexity of the eigenvalue-based test statistics (10),
(11), (12) and (14) is determined by the complexity associated
to the sample covariance matrix computation, i.e. O(nmz),
plus the complexity related to the eigenvalue computation,
which costs O(m?) [20].

The GR and GD tests (18) and (19), respectively, need
to compute the sample covariance matrix R with complex-
ity O(nm?), plus the extra burden of O((m — D) to perform
the eigen-decomposition of the leading sub-matrix Ry, result-
ing in complexity growths comparable to the eigenvalue-
based test statistics.

For the HR test (20), the computation of the sample covari-
ance matrix R costs O(nm?), and the burden to calculate the
determinant of R costs around O(m>) or more.

In the case of the VDI test statistic (21), the com-
putational complexity is dominated by a cascade of the
cost associated to the sample covariance matrix estimation,
which is O(nm?), and the cost of computing the determi-
nant of a matrix of order m, which is O(m3) or more. The
inversion of E and posterior matrix multiplication E~'R
are relatively simple operations, since E is a diagonal
matrix.

In summary, the smallest computational complexity
growth is achieved by the ED, followed by the GRCR
and then by the other tests considered herein. Notice that
the GRCR is m times more complex than the ED. As a
consequence, in the typical scenario of cooperative spec-
trum sensing with a small number of SUs in cooperation,
this represents a small complexity increase with respect
to the ED. One must recall, however, that the ED is
semi-blind and the GRCR is totally blind. Hence, to the
best knowledge of the author, the proposed GRCR is the
blind and robust test with lowest computational complexity
growth.
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V. NUMERICAL RESULTS AND DISCUSSIONS

Each point on the ROC curves shown hereafter was gener-
ated from 50000 Monte Carlo events simulating the genera-
tion of each test statistic under the hypotheses Hy and ;.
The decision threshold & was varied from the minimum
to the maximum values of each corresponding test statis-
tic in 100 equally-spaced values. The values of Py, versus
Py were determined from the empirical cumulative distri-
bution function (CDF) computed from the counts of false
alarm and detection events for each test statistic. Specifically,
Pia = 1 —cp(t|Ho) fort = &, and Pq = 1 — cr(t|H,) for
t = &, where cr(t|Ho) and c7(¢t|H ) are the CDFs of the
test statistic 7 under Ho and H;, respectively. Each value
for the probability of detection on curves other than ROCs
was computed from 10000 Monte Carlo events simulating
the generation of each test statistic under the hypothesis H.
The channels between the PUs to the SUs were slow and flat
Rayleigh fading channels.

A. PRELIMINARY RESULTS

Some preliminary results are provided in this subsection with
the purpose of paving the way for the performance compar-
isons presented subsequently.
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0.0 . " . T . " . : .
0.0 0.2 0.4 0.6 0.8 1.0

Probability of false alarm, Py,

FIGURE 5. Performance of different detectors under uniform noise for
02 = 0}, ~1.78, m = 6,n = 10 and SNR = —3 dB. These results are in
agreement with [16, Fig. 3(a)]. This figure is better viewed in color.

Figure 5 gives ROC curves for the global spectrum sensing
performance achieved by the test statistics GR, GD, ED,
MMED and AGM, under uniform noise. In this case the
noise variance is the same across all SUs; its value was set
to 0> A 1.78. The other system parameters were chosen
as m=6S8SUs, n = 10 samples per SU, SNR = -3 dB,
single i.i.d. Gaussian PU signal, and uniform received pow-
ers. These parameters are the same as those adopted in [16,
Fig. 3(a)].

The results shown in Fig. 5 are in agreement with
[16, Fig. 3(a)], serving to validate the simulations. These
results are also meant to be references for comparisons
with Fig. 6 in terms of the consequence of having uni-
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form or nonuniform noise variances at the input of the SUs’
receivers.

Figure 6 considers the same system parameters used
in Fig. 5, but now for a nonuniform noise scenario
with [0}, 05,07, 07,0 25 0] ~ [3.02,0.32,4.37,0.23,
2.24, 0.54], yielding Oavg ™ 1.78 and var(oavg) ~ 2.90.
This set of variances are the same as those adopted
in [16, Fig. 3(b)]. Notice in this figure that there are two
curves for the ED, one using (8) and the other using (9). With
the exception of the curve obtained using (9), the others are
in agreement with [16, Fig. 3(b)]. The ED adopted in [16] is
the test (8), which uses the unfair value of 02 = oazvg ~ 1.78,
thus yielding a worse performance than the ED (9), which
makes full use of the knowledge of aiz, i=1,...,6.
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Probability of false alarm, Py,

FIGURE 6. Performance of different detectors under nonuniform noise
for 02, ~ 1.78 and var(o2,g) ~ 2.90, m = 6, n = 10 and SNR = -3 dB.

Excluding the ED using (9), the remaining results are in agreement with
[16, Fig. 3(b)]. This figure is better viewed in color.

The most relevant result of this subsection is presented
in Fig. 7, complementing Figs. 5 and 6. The system param-
eters are the same as those in Fig. 6, but now it has been
chosen a different set for the noise variances, that is [0'12, 0’22,
032,04,05,06] [0.81, 3.41,0.12, 0.88, 1.08, 4.40], also
yielding O’avg 1.78 and Var(aavg) ~ 2.90. It can be noticed
that the detector performances have changed significantly
compared to Fig. 6, with the exception of the ED due to the
fact that noise variances are known. It can also be observed
in Fig. 7 that the performances of the MMED and the AGM
have exchanged their ranking with respect to Fig. 6.

From the results in Figs. 6 and 7, it can be concluded that
the robustness of a given spectrum sensing technique under
nonuniform noise, and even its performance relative to other
techniques, cannot be fairly assessed by means of a single
realization of the noise variances. The correct procedure is
to vary the noise levels over the Monte Carlo events, which
configures the nonuniform and dynamical noise scenario.
This conclusion also extends to the case of unequal received
signal powers, whose correct procedure is also to vary them
over the sensing rounds.
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FIGURE 7. Performance of different detectors under another set of
nonuniform noise with ¢2,, ~ 1.78 and var(s2,,) ~2.90,m = 6, n = 10
and SNR = —3 dB. These results complement those in [16, Fig. 3]. This
figure is better viewed in color.

Notice that the dynamical received powers and dynamical
noise variances are consistent with a real spectrum sens-
ing scenario in which signal and noise intensities are time-
varying quantities due to time-varying receiver positions,
temperatures, noise and interference sources. Hence, here-
after the nonuniform noise and nonuniform received signal
power scenarios are simulated dynamically.
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FIGURE 8 Performance of all detectors under nonuniform and dynamical
noise a’ ~ulo. os"avg’ 1. 95«7av 1, with "avg =1.78,form =6, n = 10 and
SNR = —3 dB. This figure is better viewed in color.

B. PERFORMANCE OF THE PROPOSED AND THE
COMPETING DETECTORS
Figure 8 shows ROC curves for all detectors considered in this
paper under nonuniform noise, with noise variances drawn
from a uniform distribution in each sensing round, that is
~ U[0.0503,4, 1.9504,], with o, = 1.78. As before,
1t has been adopted m = 6 n = 10, SNR = —3 dB, single
i.i.d. Gaussian PU signal, and uniform received powers.
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It can be seen from Fig. 8 that the GRCR is the blind
detector with best performance, since it is only outperformed
by the ED (9) and the MED, which are non-blind techniques
that need the knowledge of the noise variances at the SUs’
receivers. The detectors GR, GD, HR and VDI have approx-
imately the same performance in this scenario, but worse than
the GRCR. The GLRT, the AGM and the MMED have poorer
performances due to their high sensitivity to nonuniform
noise.

An important aspect unveiled by Fig. 8 in favor of the
GRCR technique is that it can achieve attractive performances
using a relatively small number of samples (only 10 in the
situation depicted in the figure). This is particularly inter-
esting in applications requiring short sensing intervals,
for instance to increase the throughput of the secondary
network.

From this point on, only the spectrum sensing techniques
that do not require the knowledge of the noise variance are
evaluated. Thus the ED and the MED are excluded from
the analyses. The GR and the GD are also excluded, since
they do not exhibit the important property of CFAR. Among
the eigenvalue-based techniques, only the classical GLRT
is considered, since it is the best blind test statistic under
unknown uniform noise and single PU signal [5], although
it is not robust against nonuniform noise. The tests HR and
VDI, which were designed for uncalibrated noise variances
are also considered. In summary, the results shown hereunder
are for the proposed GRCR (7), the GLRT (10), the HR (20)
and the VD1 (21).

When nonuniform noise variances and nonuniform
received powers are considered, their values in each sens-
ing round were independently drawn from a uniform
distribution, respectively as o> ~ U[0. OSoan, 1 950avg] and

; ~ UIO. Ospavg’ L. 95Pavg]

For the sake of conciseness, only QPSK primary signals
are considered, since the detection of modulated signals is
the most common situation in practice. It is attested, however,
that i.i.d. Gaussian PU signals were also used under the same
conditions, keeping the conclusions unchanged with respect
to QPSK signals. The number of samples per QPSK symbol
has been arbitrarily set to 7 = 10; see Section II.

An important performance measure of a spectrum sens-
ing technique is the required SNR at which a given Pq is
achieved for a fixed Py,. For instance, the reference proba-
bilities from the IEEE 802.22 standard for cognitive wireless
regional area networks (WRANSs) are Pg > 0.9 for a fixed
Pr, = 0.1 [26], [27]. Hence, the CFAR has been fixed
at 0.1 for all analyzed detectors. The required number of
samples depends mainly on the specified sensing interval,
on the detection technique and on the SNR. It has been fixed
at n = 500, which is the value sufficient for the target Py to
be reached at low SNR values, as also required by the IEEE
802.22 standard.

Figure 9 shows the P4 versus the SNR for the analyzed
detectors under uniform noise and received powers for s = 1
PU transmitter, m = 6 SUs and n = 500 samples collected

2454

by each SU. It can be seen that all detectors have comparable
detection metrics, with a small advantage of the GLRT.
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FIGURE 9. P4 versus SNR for n = 500, s = 1, m = 6, n.i.i.d. QPSK PU
signal, uniform noise and received powers.

The above system parameters were also used to plot
Fig. 10, now considering nonuniform noise variances and
nonuniform received signal powers. It can be noticed that the
classical GRLT is very sensitive to the dynamical variation of
the noise and signal powers, whereas the other three detectors
are robust. The detection capability of the HR has improved
slightly from the uniform noise and signal powers to the
nonuniform situation; the opposite has happened with the
VDI1. The GRCR has maintained exactly the same perfor-
mance, which is attractive from the perspective of having a
fixed performance for any noise or received signal variation
about the corresponding averages.
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FIGURE 10. P4 versus SNR for n = 500, s = 1, m = 6, n.i.i.d. QPSK PU
signal, nonuniform noise and received powers.

The number of PU transmitters is changed to s = 3
in Fig. 11, considering the uniform noise and received signal
powers. The other system parameters are the same as those
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FIGURE 11. Py versus SNR for n = 500, s = 3, m = 6, n.i.i.d. QPSK PU
signals, uniform noise and received powers.

adopted in Fig. 9. The performances of all detectors are
roughly the same, but reduced in comparison with the case
of s = 1 (see Fig. 9). Such a reduction in the probability
of detection with an increase in the number of transmitted
signals has been also observed in [8].
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FIGURE 12. Py versus SNR for n = 500, s = 3, m = 6, n.i.i.d. QPSK PU
signals, nonuniform noise and received powers.

The number of PU transmitters is also s = 3 in Fig. 12,
but now considering the scenario of nonuniform noise and
nonuniform received signal powers. The other system param-
eters are the same as those adopted in Fig. 11. Again,
the detection performance of the GLRT has been drastically
affected with respect to the situation of uniform noise and
signal powers shown in Fig. 11, while the other detectors
remained robust, with a little improvement of the HR and a
little penalty of the VDI. It can be noticed, one more time,
that the performance of the proposed GRCR has not changed
from the uniform to the nonuniform and dynamical noise
and signal. When compared with Fig. 10, it can be observed
in Fig. 12 that all detectors had their performances decreased
with the increased number of PU transmitters.
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VI. CONCLUSIONS

This paper has presented a novel and simple test statis-
tic for cooperative or multi-antenna spectrum sensing.
The test, which was named Gerschgorin radii and centers
ratio (GRCR) test, is formed by the ratio between the sum of
the Gerschgorin radii and the sum of the Gerschgorin centers
relative to the covariance matrix of the signal received from
a single or multiple transmitters.

The GRCR exhibits the CFAR property and is robust
against nonuniform and dynamical noise and received
signal powers, yet being capable of detecting time-
uncorrelated or time-correlated transmitted signals over addi-
tive Gaussian noise and fading channels.

The performance of the GRCR is very close to the perfor-
mances of leading robust detectors recently proposed in the
literature, with the advantage of being simpler and keeping
its performance metrics unchanged from the situation of uni-
form to nonuniform and dynamical noise and received signal
powers. A clear advantage in performance over the analyzed
robust detectors can be observed when a small number of
samples is collected by the SUs. This is particularly attractive
for short sensing time applications.

A complementary conclusion is related to the way in
which the robustness of detectors under nonuniform noise and
received signal powers must be assessed. The most common
situation in practice is to have both noise and received powers
varying over time, meaning that they must have dynamical
behavior in models and simulations. The fixed noise and
received signal powers setup must be avoided, unless it is
intended to mimic a situation which is likely to happen in the
real world.

A natural deployment of the proposed GRCR test statistic
is to find its distribution under Ho and H;, so that, hope-
fully, closed-form expressions for calculating Pg,, Pg and
the decision threshold & can be derived. This seems to be
a formidable challenge that represents an opportunity for
further contributions.

The computation of the GRCR test statistic could ben-
efit from modern techniques for the efficient computation
of the covariance matrix, like those described in [25]. The
impact of using such techniques on the global spectrum
sensing performance is also an interesting problem to be
tackled.
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