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ABSTRACT 3-D object recognition is a challenging task for many applications including autonomous robot
navigation and scene understanding. Accurate recognition relies on the selection/learning of discriminative
features that are in turn used to uniquely characterize the objects. This paper proposes a novel evolutionary
feature learning (EFL) technique for 3-D object recognition. The proposed novel automatic feature learning
approach can operate directly on 3-D raw data, alleviating the need for data pre-processing, human expertise
and/or defining a large set of parameters. EFL offers smart search strategy to learn the best features in a huge
feature space to achieve superior recognition performance. The proposed technique has been extensively
evaluated for the task of 3-D object recognition on four popular data sets including Washington RGB-D
(low resolution 3-D Video), CIN 2D3D, Willow 2D3D and ETH-80 object data set. Reported experimental
results and evaluation against existing state-of-the-art methods (e.g., unsupervised dictionary learning and
deep networks) show that the proposed EFL consistently achieves superior performance on all these data
sets.

INDEX TERMS 3-D object recognition, feature learning, evolutionary algorithms.

I. INTRODUCTION
The availability of high-dimensional data and its meaningful
representation demands the use of feature learning and selec-
tion in many pattern recognition tasks [1]. In the real-world
image datasets, a large number of irrelevant and redundant
features generally exist. These features may significantly
affect the performance of learned models and reduce their
learning speed. Feature learning is a strategy that involves
selection of salient features or removal of redundant features,
from a set of given features, to improve predictive accuracy
for challenging problems such as 3D object recognition.
These salient features help the learned model to achieve good
predictive accuracy. Accurate feature selection/learning is
therefore very crucial and an active research area in pattern
recognition and machine learning [2].

The conventional approaches for feature selection can be
broadly categorized as: hand-crafted, automatic learning, and
hybrid approaches [3], [4]. The first approach requires careful
extraction and analysis of the feature set by human expertise
without utilizing any learning model or optimization [5], [6].
The second approach aims to find themost representative fea-
tures in a large feature space using a pre-determined learning

model. The hybrid approach attempts to take advantage of the
hand-crafted and automatic learning approaches [7]. Hybrid
techniques are shown to find a good solution, while a single
technique often traps into an immature solution.

The success of different feature selection methods depends
on the search strategy used in feature selection process. One
method is to start the search process with an empty set
and successively add features. This is called the sequen-
tial forward search (SFS) [8]. Another approach, called the
sequential backward search (SBS), is to start with a full set
of features and successively remove redundant features [9].
This sequential strategy is less complex and computationally
efficient but it is affected by nesting effect, which means that
once a feature has been added, it cannot be deleted and vice
versa.

The main problems with these search strategies is that
they search the feature space locally rather than glob-
ally and therefore these approaches attempt to find solu-
tions that range between sub-optimal and near optimal
regions. These approaches involve partial search and there-
fore solution of optimal or near optimal is quite difficult to
achieve. In addition, these search strategies also suffer from
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computational complexity. To address these problems,
the recent research has been shifted towards the global search
algorithms. They find the solution in the full search space by
their global search capability. The global search algorithms
work on basis of the activity ofmulti-agents, which ultimately
enhance to find very high-quality solutions within a reason-
able time. Because of their global search and parallelism
nature, Evolutionary Algorithms (EA) can successfully and
efficiently solve the feature selection/learning in a large fea-
ture space [10], [11]. These capabilities of EAs have been
tested for training neural networks [12], fluorescence finger-
printing of plant species recognition, image classification and
action recognition. In the literature, 3D object recognition
using EAs has also been reported. However, instead of using
3D information, these techniques either rely on 2D projec-
tions obtained from 3D views [13] or intensity information
assuming orthographic projection [14]. These techniques are
therefore geared towards 2D data only and do not exploit
any 3D information. Feature learning using EAs from raw
3D data for the challenging task of 3D object recognition is
therefore an open research problem.

In this paper, we fill this research gap by proposing a novel
Evolutionary Feature Learning (EFL) technique for 3D object
recognition. To the best of our knowledge, this is the first
ever investigation of EAs for feature learning using raw 3D
data for 3D object recognition. The proposed EFL exploits
the strengths of Evolutionary Algorithms1 (EAs) for a chal-
lenging task of 3D object recognition and offers a number
of advantages: (1) EFL learns the best feature (candidate
solution) by attempting many unconventional permutations
of chromosomes/individuals (through crossover and muta-
tion) and these permutations yield an exceptionally good
recognition performance, (2) the parallelism inherent in EFL
facilitates its efficient implementation on GPU architectures,
and enables the algorithm to avoid being trapped in local
optimal solution, thus greatly increasing the search speed
for the candidate solution, (3) It could also facilitate effi-
cient exploration of a larger feature space, thus significantly
increasing the chance of learning the ‘‘best’’ features, (4)EFL
works on the chromosomes, which are encoded version of
potential solutions’ parameter, rather the parameters them-
selves, (5) EFL uses probability selection rules and fitness
score, which are obtained from fitness function, without any
other complex information. (6) In contrast to deep learning
techniques, which require large training data for learning and
to avoid over-fitting, the evolutionary feature learning can be
performed on smaller input data.

The proposed technique was extensively evaluated for
the task of 3D object recognition on Washington RGB-D
(low resolution 3D video), CIN 2D3D, Willow 2D3D and
ETH-80 object datasets, and experimental results indicate
that it achieves state-of-the-art performance (Section V).

1In this paper, the Evolutionary Algorithms (EAs) used for feature learn-
ing are Genetic Algorithms, which are referred to as EAs throughout the
paper.

The rest of this paper is organized as follows. The next
section surveys the related work. Section III introduces the
proposed evolutionary feature learning technique. Section IV
discusses the proposed object recognition algorithm. Experi-
mental results and evaluation against existing state-of-the-art
techniques are provided in Section V. Finally, a conclusion is
given in Section VII.

II. RELATED WORK
In this section, we briefly discuss the existing feature
based techniques, which can be grouped into two categories
depending on whether they use hand-crafted features or auto-
matic feature learning. In addition, we briefly review prior
applications of EAs to computer vision.

A. HAND-CRAFTED FEATURES
The most common approach for object recognition is to
use well-designed hand-crafted features. In these techniques,
features are defined by human experts in terms of local neigh-
borhood operations applied to an input image [15].

Zhang [16] proposed Harmonic Shape Image (HSI). The
latter is based on harmonic map theory [17]. HSIs represent
3D surface regions as 2D images, thus reducing the 3D
patch matching to less complex 2D image matching. HSI
has, however, the following constraints. First, the construc-
tion of the boundary mapping for HSI requires ordering of
the boundary vertices of the local surface patch in either
clockwise or counter clockwise direction. Second, to facili-
tate matching of the surface patches, the consistency of two
orders is alsomandatory. Sun et al. [18] proposedHeat Kernel
Signature (HKS). In their proposed technique, the 3D mesh
is considered as a Riemannian manifold and the heat kernel
Ht (m, n) is restricted to the temporal domain Ht (m,m). The
HKS feature can be interpreted as a multi-scale notion of the
Gaussian curvature, where the time parameter t provides a
natural notion of scale. Tombari et al. [19] proposed a feature
named Signature of Histograms of OrienTations (SHOT),
whereby a local reference axis is first constructed for a
feature point, and the neighborhood space is then divided
into 3D spherical volumes. A local histogram is then gener-
ated for each volume by accumulating the number of points
according to the angles between the normal at the feature
point and those at the neighboring points. Recently, Shah
et al. [20] proposed 3D-Div, which exploits the divergence of
the vector field at each point of the local surface to construct
the local feature. 3D-Div has been shown to achieve supe-
rior object recognition performance on low resolution data.
Hulin and Troyanov [21] derived the relationship between
the volume descriptor and the mean curvature, that was later
on used by Gelfand et al. [22] for surface matching and global
registration. Clarenz et al. [23], [24] used Principal Compo-
nent Analysis (PCA) of 3D patches for feature detection.
Their technique has been shown to achieve good performance
and robustness.

These existing hand-crafted feature based methods suf-
fer from low descriptiveness, require significant human
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intervention and the construction of a local reference axis
to achieve superior performance [25]. To overcome these
limitations, automatic feature learning methods have been
proposed.

B. AUTOMATIC FEATURE LEARNING
In automatic feature learning, a transformation of raw inputs
to a representation is learnt automatically [26]. The auto-
matically learnt representation is then exploited in several
tasks such as recognition. Feature learning using sparse
coding and deep networks has recently received significant
attention. Bo et al. [27] proposed Hierarchical Matching Pur-
suit (HMP) for automatic feature learning. In their proposed
technique, K-SVD algorithm [28] is used to learn dictio-
naries over image patches. These learned dictionaries are
then used to create feature hierarchies by using spatial pyra-
mid pooling and orthogonal matching pursuit [27]. In deep
network based approaches, the multiple layers of the deep
belief nets [29] are trained in hierarchical fashion using
the unsupervised Restricted Boltzmann Machine (RBM) for
automatic feature learning. This unsupervised training helps
to elude the problem of local minima. Next, the supervised
training is done to adjust the learnedweights. In convolutional
deep belief nets proposed by Lee et al. [30], the weights are
shared between the visible and hidden layers while a small
filter is used to automatically learn features from full-size
images. In the automatic feature learning approach proposed
by Munawar et al. [31], Deep Reconstruction Model (DRM)
is built by stacking autoencoders. The parameters of DRM
are initialized using Gaussian RBM. DRM is then trained
in a layer-wise fashion using hand-crafted Local Binary Pat-
tern (LBP) features [32] to reconstruct the input images. Deep
learning based DRM requires computationally expensive step
of data pre-processing e.g. PCA whitening to achieve good
object recognition performance. In addition, the performance
of DRM also relies on hand-crafted LBP features. Similar to
DRM, Convolutional Deep Network [33], denoising autoen-
coder [34] and deep Boltzmann machines [35] are other
examples of automatic feature learning techniques.

C. EA BASED METHODS
In human recognition method proposed by Ijjina and
Chalavadi [36], the weights of a Convolutional Neural Net-
work (CNN) are initialized by using an evolutionary algo-
rithm to minimize the classification error. They utilize the
global search capabilities of EAs to find the most optimal
solution. In a technique proposed by Fougerolle et al [37],
EA is used to recover 2D rational Gielis curves, which
can represent a wide range of shape and patterns. In their
proposed technique, they exploit EA to define a cost func-
tion based on shortest Euclidean distance. Their technique
has been shown to achieve good accuracy in the pres-
ence of noise and missing data. Stanhope and Daida [38]
proposed EA based approach for clutter classification in
synthetic aperture radar imagery. In their proposed tech-
nique, 10 different types of hand-crafted features are used.

These features are first normalized by the mean and stan-
dard deviation of the feature vectors generated on the
training data. These pre-processed/normalized features are
then passed to the EA for processing and classification.
In a craniofacial disorder estimation technique proposed by
Atmosukarto et al., [39], 2D histograms are formed for the
given facial region by computing azimuth and elevation
angles of surface normals. To optimize the classification,
Adaboost learning is used to select the histogram bins as
features. The latter are then combined using an EA which
also quantifies the abnormality for a given face. In a technique
proposed by Perez and Olague et al. [40], the EA synthesizes
the mathematical expressions that are required to improve
the well-known hand-crafted Scale Invariant Feature Trans-
form (SIFT) feature [41]. Their improved SIFT feature has
been shown to achieve better recognition compared to the
original SIFT. However, their performance is quite com-
parable with other invariants of SIFT that include GLOH,
DoG and SURF features. The main shortcoming of their
technique lies in that they assume 50% overlap between the
two images for accurate image match/recognition. In addi-
tion, their technique is only applicable to 2D gray scale
images.

D. DISCUSSION
From the above reported literature review, one can note
that: (i) Most existing hand-crafted and automatic feature
learning techniques are only geared towards 2D gray scale
images. (ii) EAs have been used either to improve or combine
hand-crafted features extracted from 2D images [40], [39].
(iii) Most feature learning methods (e.g. EA based
approach [38] and deep learning based [31]) require a large
set of parameters and a computationally expensive data pre-
processing step to improve the recognition performance.
(iv) High performance (e.g. in the case of deep learning
based [31] and EA based [39], [38]) also relies on hand-
crafted features.

This paper overcomes the aforementioned shortcomings
and proposes a novel evolutionary feature learning technique
for multi-class 3D object recognition. The proposed approach
does not require the pre-processing of the input images e.g.
PCA/ZCA whitening. It operates directly on raw 3D and
2D RGB images. Furthermore, unlike deep networks, it does
not require prior initialization of the parameters to achieve
optimal results. Rather, the proposed technique automatically
optimizes the candidate solution based on the fitness function
and selects the best feature for superior object recognition.
In the following, we describe our proposed evolutionary fea-
ture learning technique.

E. EA TERMINOLOGIES
In this section, we briefly define the EA terminologies, which
will be used interchangeably in this paper.

1) POPULATION
Population holds all the possible solution. It is a multi-set of
chromosomes.
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FIGURE 1. Illustration of the proposed EA based 3D object recognition system.

2) CANDIDATE SOLUTION/INDIVIDUAL
In the real world domain, candidate solution, individu-
als or genotype are used interchangeably to represent points
of the space of possible solutions.

3) CHROMOSOME/GENOTYPE
In the EA domain, chromosome, genotype and even indi-
vidual is used for the points in the space where EA process
actually takes place.

4) REPRESENTATION
Representation is used to link the real world with EA space.

III. PROPOSED EVOLUTIONARY FEATURE LEARNING
In this section, we describe our proposed evolutionary fea-
ture learning technique (illustrated in Fig. 1) for 3D object
recognition. Each individual in the population is represented
as an encoding of a ‘‘hypothesized image’’,2 and the fitness
function measures the difference between this hypothesized
image and the input image χ . Section III-B describes the rep-
resentation used. Section III-C describes the fitness function.
Sections III-D and III-E describe other relevant aspects of
the EFL. Algorithm 1 summarizes our evolutionary feature
learning based algorithm. The proposed evolutionary feature
learning is initialized by first linking the real world i.e. image
domain to the EA domain. The aim of a representation is to
set up a bridge between the original problem context and the
problem solving space where evolution will take place. Dur-
ing the representation, the genotype to phenotype mapping is
defined. We propose two types of representations to cater for
the type of input image i.e. 3D or RGB, we therefore propose
3D and 2D representations.

A. POPULATION AND GENERATIONS
In the proposed evolutionary feature learning technique,
the population of chromosomes P(t) = {9(1), · · · , 9(N )}
and number of generations, t = 1, · · · ,G are defined for
a given input image. The population size and number of

2The term hypothesized image refers to a reconstructed image. These two
terminologies have been used interchangeably in this paper.

Algorithm 1 Proposed Evolutionary Feature Learning
Algorithm

Input: Input Image I , Initial Population P(t) = {9(1),
· · · ·, 9(N )}

G←Maximum number of generations
1 for t = 1, · · · , G do
2 while NOT (Terminate condition for N) do

3 f (hI (9
(z)
i ))← E

[∥∥∥hI (9(z)
i )− I

∥∥∥2] (See Eq. 1)
4 Sort chromosomes 9i based on fitness function

f (hI (9
(z)
i ))

5 for i = 1,· · · , N do
6 Select best parent chromosomes with

minimum f (hI (9
(z)
i ))

7 (p1,p2)← ParentSelection(P(t))
8 (c1,c2)← crossover(p1,p2)
9 (c1)← mutation(c1)
10 P(t)← P(t) ∪ {c1}
11 end
12 Select best chromosomes with minimum

f (hI (9
(z)
i ))

13 9i← arg min
hI (9

z
i )
f (hI (9

z
i ))

14 end
15 end

Output: Evolutionary Feature← 9i

generations are set to N = 100 and G = 1000 respectively,
based on empirical tests.

B. PROPOSED REPRESENTATION
1) PROPOSED 3D REPRESENTATION
For each input depth image I of size a × b (Fig. 2(a)),
a hypothesized image hI (9

(z)
i ), i = 1, · · · ,K and z =

1, · · · ,N , of the same size is initialized in the EA space
for a given zth chromosome, and i represents the ith class
of the input image. As opposed to intensity values in 2D
images, the depth images contain depth(d) information about
an object which is the distance from the point on the surface

VOLUME 6, 2018 2437



S. A. A. Shah et al.: Evolutionary Feature Learning for 3-D Object Recognition

FIGURE 2. 3D Representation in EA domain. Each chromosome/individual of the population (dimension 40 × 32)
represents a possible solution. Each chromosome consists of 32 genes, each of 1 × 40.

FIGURE 3. 2D Representation in EA domain. Each chromosome/individual
of the population (dimension 56 × 32) represents a possible solution.
Each chromosome consists of 32 genes, each with a 1 × 56 dimension.

of the object to the sensor (3D scanner). Depth contains 3D
information about the object’s geometry. Next, a candidate
solution, of dimension 40 × 32, is defined by generating a
chromosome (Fig. 2(b)), comprising of 32 genes. Each gene
has a dimension 1 × 40, as shown in Fig. 2(c). Each gene
consists of 5 data items, namely depth d and 4 coordinate
values, that is, the locations of the upper left (xl ; yl) and
lower right corners (xr ; yr ) of the image window, as shown
in Fig. 2(e). Each of these 5 data items are further described
by 8 bit binary integers (therefore the gene has a size of
1 × 40), as in Fig. 2(d). These 32 genes are then used to
reconstruct the input image in EA space, by randomly plac-
ing 32 semi-transparent (overlapping) depth windows in the
hypothesized image hI (9

(z)
i ) (Fig. 2(e)). Each gene therefore

encodes the parameters of the depth window and specifies a
portion of the original image that will be used to reconstruct
a similar image in the EA domain. As a result, our evolu-
tionary information describing one individual would require
32 genes × 5 data items × 8 bits = 1280 bits. The genes and
the resulting depth windows are then modified, using an EFL
(Sec. III-E), to improve the 3D representation of the image in
EA domain.

FIGURE 4. Reconstruction of Image in EA domain. Left. Input image.
Right. The input image is reconstructed in each generation and compared
with the input image. The chromosome, which reconstructs the image
with minimum error qualifies as the best individual of that population.
Figure best viewed in color.

2) PROPOSED 2D REPRESENTATION
To demonstrate that our technique is generic and can also
be applied to 2D data, we also propose a 2D representation.
For 2D color (RGB) images, the following changes are made
to represent RGB information of the input image in the EA
space. A candidate solution of dimension 56× 32 is defined
that also includes 32 genes, each having a slightly large
dimension of 1 × 56 as shown in Fig. 3. In this case, each
gene consists of 7 data items, namely three color channels
R, G, B and 4 coordinate values, that is, the locations of the
upper left (xl ; yl) and lower right corners (xr ; yr ) of the image
window. As in the case of 3D representation, each of these
7 data items are further described by 8 bit binary integers,
as can be seen in Fig. 3. In this case, our RGB evolutionary
information would require 32 genes × 7 data items × 8 bits
= 1792 bits to describe one individual.
Fig. 4 illustrates the reconstruction of the hypothesized

image in the EA domain. Only the images reconstructed using
the best chromosomes are displayed here. The hypothesized
images are generated using all the chromosomes of the pop-
ulation in a given generation. The hypothesized images are
compared with the input image. The hypothesized image with
minimum error is selected and the chromosome which recon-
structs this image with a minimum fitness score qualifies as
the best individual of that population.

C. FITNESS FUNCTION
For each candidate solution 9(z)

i , the fitness is evaluated as:

f (hI (9
(z)
i )) = E

[∥∥∥hI (9(z)
i )− I

∥∥∥2] (1)

where hI (9
(z)
i ) is the hypothesized image, reconstructed in

the EA domain using the zth chromosome 9(z)
i . Note that

a perfect solution would have fitness 0, and that low fitness
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scores are better than high ones. The chromosomes are ranked
on their fitness, so the best chromosome 9i is given by,

9i = arg min
hI (9

(z)
i )

f (hI (9
(z)
i )) (2)

D. PARENT SELECTION
The role of parent selection is to distinguish among indi-
viduals based on their quality (computed using the fitness
function), in particular to allow the better individuals to
become parents to the next generation. An individual is a
parent if it has been selected to undergo variation in order
to create offspring. Based on the fitness values, high quality
individuals have a higher chance to become parents than those
with low quality. This, however, can cause the whole search
(for the best solution) to become too greedy and get stuck in
a local minimum.

In order to avoid this local minimum problem, instead of
selecting the best parents for mating, we probabilistically
select two parents p1 and p2 from a subset of the population
i.e. {9(1)

i , · · · , 9(N−2)
i }. Thus, low quality individuals are

also given a small but positive chance to become parents:
each individual is assigned a probability that depends on
its quality, i.e. on its fitness value. The parents (p1, p2) are
then used for crossover and mutation to define new offspring,
which replace individuals 9(N−1)

i and 9(N )
i to form a new

population of chromosomes.

E. CROSSOVER AND MUTATION
During crossover, the parents p1 and p2 are recombined by
randomly selecting the crossover points. The two chromo-
somes are then interchanged. This gives rise to two new child
genes c1 and c2 for the next generation. c1 and c2 then replace
9

(N−1)
i and 9(N )

i i.e. chromosomes with low quality (high
fitness scores) in the previous generation.

Next, mutation is applied to one randomly selected chro-
mosome and it results in a slightly modified mutant (i.e. the
child or offspring of the selected chromosome). A random bit
is selected in the chromosome and flipped to accomplish the
mutation process.

IV. OBJECT RECOGNITION ALGORITHM
In this section, we describe our proposed object recognition
algorithm. The algorithm consists of two parts: 1) evolution-
ary learning to learn class specific features in a supervised
way and 2) recognition to decide on the identity of a query
image.

Given m training images and their corresponding labels
L ∈ [1, 2, · · ·K ] where K < m, a genotype to phenotype
mapping, the population size P(t), and the number of gener-
ations t are defined for each training image. During the evo-
lutionary learning process, feature representations are learnt
by optimizing the fitness function for each training image to
select the best individual/feature 9i for each training image.
During recognition, given a test image Itest , we first learn

evolutionary features for the test image and select the best

feature 9̃, using the procedure stated above. We next calcu-
late the error between the test (9̃) and the training (9(t)

i ) EFs:

di(9) =
∥∥9̃ −9i

∥∥
2 , i = 1, . . . ,K (3)

and rule in favour of the class with minimum distance i.e.,

min
i
di(9) (4)

V. EXPERIMENTAL RESULTS
We evaluated and compared the performance of the proposed
technique with existing state-of-the-art approaches for the
task of 3D object recognition. The performance evaluation is
presented for four popular publicly-available object datasets:
• Washington RGB-D (low resolution) [42]
• CIN 2D3D [43]
• Willow 2D3D [44]
• ETH-80 [45]
The detailed description of each of these datasets and our

experimental results are reported in Sec. V-A.

A. DATASETS AND RESULTS
1) WASHINGTON RGB-D DATASET
This dataset is the largest available low resolution 3D video
dataset. The dataset contains 300 objects in 51 different cate-
gories. There are roughly 600 images for each object captured
from three different angles with respect to the horizon. Fig. 5
shows sample images of the objects from the Washington
RGB-D dataset. The low resolution of the dataset makes the
task of 3D object recognition challenging. We used the same
experimental setup as [27], and the provided 10 random splits
for the test sets. For experimental evaluation, every 5th video
frame was subsampled, leaving a total of 120 images per
object. In addition, 51 test objects were used by sampling
one object per category, each object having 120 images. Our
training set therefore consisted of 34,000 images. To better
generalize the results, our experiments were run 10-folds.
The achieved performance in terms of recognition rates and
standard deviations of our method and the compared meth-
ods is presented in Table 1. The results in [33] for other
methods are reported here for comparison purposes. The
results show that the proposed method achieves a higher
performance of 83.2%, 82.7% and 88.7% for RGB, Depth
only and RGBD object recognition, respectively, and outper-
forms other reported methods. The second best is achieved by
unsupervised dictionary learning based technique, SP+HMP,
with a recognition rate of 87.5% for RGBD object recogni-
tion. The results suggest that evolutionary algorithm based
evolutionary feature learning provides a higher performance
even when applied to low resolution 3D data. Note that the
proposed technique uses raw 3D images for feature learning,
while the method in [27] uses surface normals and gray scale
images as additional features. These features are learnt with
unsupervisedmethods based on sparse coding. The shortcom-
ing of sparse coding is that for large input dimensions, it does
not scale well in terms of speed.
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FIGURE 5. Sample images of the objects from the Washington RGB-D (low resolution) dataset. The first row shows RGB
images, while the second row shows the corresponding 3D images.

TABLE 1. Comparison of our proposed EFL technique on Washington
RGBD Object dataset with state-of-the-art methods.

FIGURE 6. Sample images of the objects from CIN 2D3D dataset.

2) CIN 2D3D OBJECT RECOGNITION DATASET
The CIN dataset contains 3 to 14 household objects in 18 dif-
ferent categories. Fig. 6 shows sample images of the objects
from the CIN 2D3D object dataset. For performance eval-
uation, we follow an experimental setup similar to [27]
and [43]. The training and test images are randomly selected.
Six objects from each category are used as training set, while
remaining objects are used for testing. In addition, 18 views
per object are selected for training and testing. The training
set contains a total of 1476 views of 82 objects. The test set
consists of 1332 views of 74 objects. For better generalization
of the results, our experiments were run 10-folds. The recog-
nition results and comparison with the recent state-of-the-art
methods are reported in Table 2. The results in [27] for other
methods are reported here for comparison purposes. It can
be noted that the proposed technique outperforms the other

FIGURE 7. Sample images of the objects from Willow 2D3D dataset.

TABLE 2. Comparison of our proposed EFL technique on CIN dataset with
state-of-the-art methods.

methods by achieving a higher performance of 75.2% for
3D object (Depth) recognition and 83.6% for RGBD object
recognition. These results clearly demonstrate the discrim-
inative properties of the automatically learnt evolutionary
features.

3) WILLOW 2D3D OBJECT DATASET
This dataset contains rigid and textured household objects
from the Willow and Challenge for training and testing,
respectively. There are 35 objects in the training and test data
set. Objects have been captured from different views [44].
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FIGURE 8. Sample images of the objects from ETH-80 dataset.

TABLE 3. Comparison of our proposed EFL technique on willow dataset
with state-of-the-art methods.

Fig. 7 shows example images of objects from the Willow
2D3D dataset. For performance evaluation, we follow an
experimental setup similar to [27] and [44]. To better gen-
eralize the results, our experiments were run 10-folds.

Table 3 reports the recognition results in terms of preci-
sion/recall and comparison with recent state-of-the-art meth-
ods. The results in [27] for other methods are reported here
for comparison purposes. It can be noted that the achieved
precision is comparable with other methods, whilst recall is
on par with [27].

a: ETH-80 OBJECT DATASET
The ETH-80 dataset contains images of eight object cate-
gories which include apples, cars, cows, cups, dogs, horses,
pears and tomatoes. Fig. 8 shows eight object categories in
the ETH-80 dataset. Each object category further includes
ten subcategories such as different types of cups or different
breeds of horses and cows. Each subcategory has images
under 41 orientations. For performance evaluation, we fol-
lowed the experimental setup outlined in [47] and [48]. For
each object, five subcategories are selected for training and
the remaining five are used for testing. The achieved perfor-
mance in terms of recognition rates and standard deviations
against other reported methods is presented in Table 4. The
results in [48] for other methods are reported here for com-
parison purposes. The proposed EFL technique achieves a
comparable performance on ETH-80 dataset which is in par
with BCF [48] and Kernel-edit [49].

TABLE 4. Performance evaluation of state-of-the-art techniques on
ETH-80 dataset.

VI. ABLATIVE ANALYSIS
The two parameters that determine the performance and the
computational complexity of the proposed EFL algorithm are
the number of generations t and size of the population P(t).
This is because their product yields the number of fitness
function evaluations. In the following, we study the effect of
these two parameters using an ablative analysis on the ETH-
80 object dataset.

A. EFFECT OF GENERATIONS
To study the effect of the number of generations t on the
performance of the proposed algorithm, we varied the gener-
ation size from 100 to 1000 for population P(t) sizes ranging
from 20 to 100 individuals. Fig. 9 shows the fitness values
computed as a function of P(t) and t . Note that for t equal
to or above 700, the fitness function starts to converge for
all P(t). A population size of 100 achieves the lowest fitness
score at the end of G computations. The results suggest that
the generation size is an important element of the proposed
algorithm, as smaller values of G result into higher fitness
scores for the individuals.

B. EFFECT OF POPULATION SIZE
We also studied the effect of population size P(t) on the
performance of the proposed algorithm. With the number of

VOLUME 6, 2018 2441



S. A. A. Shah et al.: Evolutionary Feature Learning for 3-D Object Recognition

FIGURE 9. Fitness score computed as a function of the the number of
generations t and the population size P(t). Note that a population size
of 100, achieves the lowest fitness score for G=1000. Figure best viewed
in color.

FIGURE 10. Recognition rate computed as a function of the population
size P(t). Note that a population size of 100, achieves the highest
recognition performance.

generations set to 1000 (Sec. VI-A), the population size P(t)
was varied from 20 to 120 and recognition rate computed
for each P(t). Fig. 10 shows the recognition performance
achieved by the proposed technique for different population
sizes. The recognition rate is seen to increase as the popula-
tion size is varied from 20 to 100. The proposed technique
achieves the highest recognition rate of 99% for the pop-
ulation size of 100. Note that the recognition rate starts to
decrease for the population sizes above 100. These results
suggest that the selection of accurate population size plays
an important role on the performance of the proposed EFL
technique.

C. COMPUTATIONAL COMPLEXITY OF EFL
From a computational complexity point of view, the most
expensive part of the proposed algorithm is the evaluation of
the fitness function for a given individual. N such evaluations
are performed in each generation. Thus the product N · G

determines the computational complexity of the proposed
technique. It should be noted that within each generation,
the computations for each individual are independent of the
other individuals. This inherent computational parallelism
can be exploited to achieve very efficient implementations
with GPU architectures.

VII. CONCLUSION
In this paper, we propose a novel Evolutionary Feature Learn-
ing (EFL) algorithm for the challenging task of 3D object
recognition. The proposed EFL adopts a smart search strat-
egy to learn the best features in a large feature space from
raw 3D data. Irrelevant and redundant features are omitted
based on their fitness score. Only the best candidate solution,
termed here as Evolutionary Feature (EF), is selected for
each input image. In contrast to existing automatic feature
learning methods, the proposed EFL requires neither data
pre-processing, defining a large sets of parameters or addi-
tional features to achieve superior performance. This has been
validated through an extensive evaluation on three publicly-
availableWashington RGB-D (low resolution 3D video), CIN
2D3D,Willow 2D3D and ETH-80 object datasets. Our exper-
imental evaluations against existing state-of-the-art methods
show that the proposed method consistently achieves good
performance on all these datasets.
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