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ABSTRACT Chromosomal structural changes known as copy number alterations–aberrations (CNAs)
result in gains or losses in copies of deoxyribonucleic acid sections, which are typically associated with
different types of cancer. An intensive noise inherent to modern technologies of CNAs probing often causes
inconsistency between the estimates provided by different methods. Therefore, testing estimates by the
confidence masks is recommended to guarantee an existence of genomic changes within certain regions.
In known masks, jitter in the CNA’s breakpoints is expected to be distributed with the skew Laplace
law, which is sufficiently accurate when the segmental signal-to-noise ratio (SNR) exceeds unity. In this
paper, we extend the confidence masks to low and very low SNRs often observed in subtle chromosomal
changes. The modified masks employ several proposed approximations of the segmental noise variance
as a function of the departure step from the candidate breakpoint. Because approximations are accurate in
jitter computation only for specified SNR regions, we suggest using hybrid masks to achieve the maximum
available accuracy. Confidence masks are tested experimentally by genome CNA profile data obtained using
the single nucleotide polymorphism array.

INDEX TERMS Genome, copy number alterations, breakpoints, jitter distribution, confidence masks.

I. INTRODUCTION
It is known that detection of structural aberrations called
copy number alterations (CNAs) may be used to help
diagnose a genetic disorder [1], [2] in the deoxyribonu-
cleic acid (DNA) of a genome present in all forms of
life [3], [4]. High-resolution techniques called next gener-
ation sequencing (NGS) have been developed to obtain the
profiles of genetic structures. The NGS approach has gener-
ated an extensive development of the CNAs detection meth-
ods [7]–[9] at a resolution of 0.8–6 kb, which were recently
reviewed in [10]. The single nucleotide polymorphism (SNP)
arrays are nowadays one of the most efficient technolo-
gies for the CNAs identification [11]. Nevertheless, the
CNAs data obtained using the SNP array and other tech-
nologies are still affected by several factors: 1) nature of
biological material (tumor is contaminated by normal tis-
sue, relative values and unknown baseline for copy num-
ber estimation), 2) technological biases (quality of material

and hybridization/sequencing), and 3) intensive random
noise [5], [6]. Moreover, modern technologies do not allow
for multiple probing of the same chromosome that makes
statistical simulation the only tool to determine confidence
limits for the CNAs estimates.

A simulated measurement of the CNAs with one break-
point and two constant segments is exampled in Fig. 1a.
Here, the al and al+1 segmental levels are contaminated with
zero mean white Gaussian noise (WGN) [14], [15] having
the variances σ 2

l and σ 2
l+1. The segmental signal-to-noise

ratios (SNRs) in the lth and (l + 1)th segments are specified
as in [13], respectively,

γ−l =
12
l

σ 2
l

, γ+l =
12
l

σ 2
l+1

, (1)

where 1l = al+1 − al is the segmental difference, which
corresponds to the breakpoint il at n = 200. The fac-
tors described above do not grant a precise detection of il .
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Such a phenomenon is called ‘‘jitter’’ [16], which denotes a
deviation from the true breakpoint location and causes the
detection uncertainty. In fact, the segmental levels are most
accurately estimated by simple averaging between the break-
points, which reduces the variance of the segmental noise by
the number of the segmental probes that can be small for short
segments. On the other hand, in spite of a certain progress
in developing methods to refine the breakpoints [17]–[19],
detecting the true breakpoint location is often difficult due
to high segmental variances. In view of that, the problem
of denoising while preserving edges in stepwise signals and
thereby estimate the CNAs with highest precision has been
extensively studied during decades [20]–[23].

FIGURE 1. Simulated CNAs with a single breakpoint at n = 200 and
segmental noise standard deviations σl = σl+1 = 0.854 corresponding to
segmental SNRs of γ−l ≈ γ

+

l = 1.37: (a) CNA profile and (b) jitter
distributions. Jitter histogram (circled) is obtained experimentally in the
ML sense over 50× 103 runs, SkL (solid) is the skew Laplace density (2),
and MBA (dashed) is the modified Bessel function-based approximation
proposed in [6].

It has been shown in [25] that the skew Laplace distribution
depicted in Fig. 1b as SkL can approximate the jitter distri-
bution in the breakpoints [24]. It has also been shown [25]
that the SkL allows for a sufficient accuracy only when the
SNR values exceed unity. Otherwise, if the SNR is low, γ−l ,
γ+l < 1, and when it is extremely low, γ−l , γ

+

l � 1, the SkL
is inaccurate and improvements are required. That can be seen
in Fig. 1b, where the experimentally measured distribution
(circles) goes away from the SkL as the departure of |k| from
the breakpoint location (k = 0) increases. That means that for
low SNRs the SkL-based confidence masks will be insuffi-
ciently accurate and the actual breakpoint may appear beyond
the region predicted for the given probability. In Fig. 1b, we
show an approximation MBA derived in [6] based on the
modified Bessel function as a preliminary improvement to the
confidence masks. Note that data in Fig. 1a were simulated
with no relation to the actual genomic position, i.e., the step
k in not equivalent to the number of the basepairs.

In this paper, we propose and investigate several other
approximations of the jitter distribution in the CNA’s break-
points for low and extra low SNRs. We use these approxima-
tions to specify the lower bound (LB) and upper bound (UB)
confidence masks and suggest using the hybrid masks for
predicting possible breakpoint locations and segmental levels
with a highest precision. All confidence masks are experi-
mentally tested by the SNP array data. The rest of the paper
is organized as follows. In Section II, we discuss the jitter in
the CNA breakpoints and errors in the jitter confidence limits
caused by the SkL. A parametrization of the SkL distribution
by the k-varying segmental noise variances is provided in
Section III using several approximations. Experimental test-
ing of the modified confidence UB and LBmasks by the SNP
array probing is provided in Section IV and conclusions can
be found in Section V.

II. JITTER REPRESENTATION IN THE BREAKPOINTS
In view of large probe noise, jitter typically exists in all
CNA breakpoints. When (γ−l , γ

+

l ) > 1, the jitter can be
small and its distribution approximated with the SkL [30].
If (γ−l , γ

+

l ) < 1, an actual breakpoint may appear several
points apart from the candidate one detected by an estima-
tor. Subtle chromosomal changes are often observed with
(γ−l , γ

+

l ) � 1 and, for the required high confidence proba-
bility, the actual breakpoint can be found tens of points apart
to the left or to the right from the candidate one. In the latter
case, the SkL becomes highly inefficient.

The following conjectures were made in [26] to arrive
at the jitter distribution. Assume that a set of probes to the
left of the breakpoint il in Fig. 1a belongs to segment al
(event Al) and a set of probes to the right of the breakpoint
belongs to segment al+1 (event Bl). The jitter probability is
defined as the probability that one or more probes belong to
another segment or event. It has been demonstrated in [26]
that, under such a supposition, the jitter probability in the
CNA breakpoints measured in WGN can be approximated
with the discrete SkL probability density function (pdf) [27],

p(k|dl, ql) =
(1− dl)(1− ql)

1− dlql

{
dkl , k > 0,

q|k|l , k 6 0,
(2)

where 0 < dl = e−
κl
νl = P(Bl)−1−1 < 1, 0 < ql = e−

1
κl νl =

P(Al)−1 − 1 < 1, κl =
√

ln xl
ln(xl/µl )

, νl = −
κl
ln xl

, and

xl =
φl(1+ µl)
2(1+ φl)

(
1−

√
1+

4µl(1− φ2l )

φ2l (1+ µl)
2

)
, (3)

µl =
P(Al)[1− P(Bl)]
P(Bl)[1− P(Al)]

, (4)

φl =
P(Al)+ P(Bl)− 1

[1− 2P(Al)][1− 2P(Bl)]
, (5)

where P(Al) is the probability of event Al and P(Bl) is the
probability of event Bl .

For our purpose, we now discuss Fig. 1 in more detail.
The breakpoint il and segments al and al−1 are detected here
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FIGURE 2. A flowchart to approximate the jitter distribution in the CNA breakpoints by simulating a stepwise signal in the presence of WGN with different
segmentsl SNRs: A1 provides the jitter histogram and A2 provides the jitter distribution approximation by minimizing the MSE. An example of signal yn is
given in Fig. 1.

using the maximum likelihood (ML) estimator based on the
ordinary least squares (OSL). The mean square error (MSE)
produced by the ML estimator is minimized for the stepwise
signal, in which al , al−1, and il are used as variables. The
breakpoint location is detected when the MSE in the ML esti-
mate reaches aminimum. In our simulation, theML estimates
were repeated 50× 103 times for different noise realizations
with constant SNR and then averaged. For each SNR value, a
histogramwas plotted as a number of the events in the k scale.
To smooth ripples, such a procedure was repeated 9 times
and the estimates were averaged. The histogram obtained
in such a way was further normalized and accepted as an
experimental jitter pdf, which is depicted in Fig. 1b with
circles.

A. ERRORS OF SkL-BASED APPROXIMATION
An extensive analysis of the SkL pdf (2) in applica-
tions to jitter in the CNA-like signals measured in WGN
has allowed making the following statements [26]. The
SkL-based approximation (2) is:

• Acceptable when γ−l , γ
+

l > 1 and very accurate if
γ−l , γ

+

l � 1;
• Also acceptable if at least one of the SNRs exceeds unity,
γ−l > 1 or γ+l > 1, and very accurate if γ−l � 1 or
γ−l � 1;

• Inaccurate when γ−l , γ
+

l < 1 and unacceptable if
γ−l , γ

+

l � 1.

An overall conclusion that can be made follow-
ing [13], [25] is that the SkL-based approximation (2) fits
only easily seen breakpoints. If chromosomal changes are not
brightly pronounced, the SkL should not be used to make
decisions about the CNAs structures [28], [30]. Therefore
more accurate approximations are required, which will be
discuss next.

III. PARAMETRIZATION OF LAPLACE DENSITY
The SkL pdf (2) still can be applied in a parameterized
form as follows. An increase in the discrete-step index k
diminishes the effect of the segmental noise on jitter in the
breakpoint. For example, noise at l − 10 has a smaller effect
on il that noise at l − 1. To provide the same effect of noise
at any point l ± k on il as required by the derivation of
the SkL-based approximation [26], the noise variances must
be increased with k . That makes the variances, σ 2

l (k) and
σ 2
l+1(k), k-variant and the SkL pdf (2) parameterized with k .

Because exact analytical functions are unavailable for σ 2
l (k)

and σ 2
l+1(k), in this paper we investigate them numerically

and find reasonable approximations in the minimum MSE
sense based on simulations.

To this end, we redefine the k-varying segmental
SNRs as

γ−l (k) =
12

σ 2
l (k)

, γ+l (k) =
12

σ 2
l+1(k)

, (6)
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FIGURE 3. The one-sided jitter probability densities obtained by simulations using sub-diagram A1 in Fig. 3 for identical segmental SNRs in the region
of 0.1 6 γ−l = γ

+

l 6 1.37. A chromosomal segment is generated at M = 400 points with a single breakpoint at n = 200. The simulated density
functions are found using a ML estimator. The jitter histogram is build over 1× 105 runs repeated 10 times and then averaged.

where σ 2
l , σ 2

l (0), σ
2
l+1 , σ 2

l+1(0), γ
−

l , γ−l (0), and γ+l ,
γ+l (0). Otherwise, when k 6= 0, we assign

σ 2
l (k) = σ

2
l [1+ fl(k)],

where fl(k) is a function to be specified later.

A. SIMULATION OF JITTER DISTRIBUTION
Modern technologies do not allow for multiple probing of the
same chromosome and simulation remains the only way to
investigate jitter in the CNA breakpoints. The first relevant
results were presented in [6]. Here, theMATLAB-based algo-
rithm [6] was run using a computer based on Intel Core i5,
2.5 GHz. The computation time required to produce a his-
togram was about 12.7 hours. To make it possible to operate
faster, in this paper we removed ‘‘for’’ cycles and did not save
variables in RAM memory. Thereby, the computation time
was significantly reduced and the jitter histogram computed
with a higher accuracy in a wide range of k .

The modified algorithm is shown in Fig. 2. Its left part
(Fig. 2,A1) allows getting the jitter histogram. Here, xn is an
idealized CNA signal with a single breakpoint at n = 200,
νn is a vector of WGN with the variance σ 2 correspond-
ing to the given γ , and yn is the CNA probe. To find the
ML estimate using OLS, the breakpoint location has been
changed with respect to its actual position at n = 200 on
−100 6 k 6 100 points. The output is taken when the
likelihood reaches a maximum. Then the jitter histogram Hk
is computed and normalized to produce the discrete jitter pdf
depicted as jitter_pdfk . To reduce errors,Hk was created over
105 times repeated measurements. The simulated one-sided

TABLE 1. Computation Time, in sec, Consumed by Algorithm [6] (A0) and
Proposed SkL-Based Algorithm (A1) Parameterized with (8), (9), and (10).

jitter distributions provided by the sub-algorithmA1 for equal
segmental values of SNR are shown in Fig. 3.

Referring to the necessity of estimating the CNAs with
low segmental SNRs [5] and taking into account that the
Laplace distribution (2) is sufficiently accurate when the SNR
values exceed unity [6], we next investigate jitter in the region
of 0.1 6 γ−l = γ+l 6 1.37. As can be seen in Fig. 4,
a decrease in the SNRsmakes the actual jitter distribution less
straight in the logarithmic scale and the SkL has thus limited
applications for low segmental SNRs.

1) COMPUTATIONAL COMPLEXITY
In view of massive data and the necessity to average the esti-
mates over a big number of runs, the algorithm A0 designed
in [6] consumes large time. Themodified algorithmA1 devel-
oped in this paper and shown in Fig. 2 is computationally
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TABLE 2. Typical MSEs produced by the algorithm designed in [6] and proposed algorithm given in Fig. 3. Both algorithms are exploited using the SkL
density (2) and (2) parameterized with (8), (9) and (10).

FIGURE 4. The proposed k-varying variance functions σ2
l (k) used to

parameterize the SkL pdf (2) for equal low (γ = 0.1), normal (γ = 1), and
large (γ = 5) SNRs: (8) is dashed, (9) is solid, and (10) is circled and
dotted.

much more efficient that is illustrated in Table 1. In average,
the algorithm A1 operates about 28 times faster than A0 and
requires about 27 min to produce one histogram in Fig. 4.

B. JITTER DISTRIBUTION APPROXIMATION
In this section, we provide three efficient approximations of
the jitter distribution in the CNA breakpoints based on the
modified Bessel function and a power function.

1) FIRST BESSEL-BASED APPROXIMATION
Testing several non–conventional functions has revealed that
the modified Bessel equation Kν(x) of the second kind and
fractional order ν = 0.5 is a good candidate to approximate
the measured jitter histogram, because it is positive-valued
for x(k) > 0, smooth, and decreases with x to zero. We use

TABLE 3. SNR regions for MBA [6], Laplace pdf (2), and (2) parameterized
with (8), (9), and (10) to detect the right jitter k− and the left jitter k+ in
the ML sense.

the following representation of Kν(x),

Kν[x(k)] =

∞∫
0

cos[x(k) sinh t] dt

=

∞∫
0

cos[x(k)t]
√
t2 + 1

dt > 0, x(k) > 0, (7)

where x(k) is k-varying.
Based on simulations, it has been found that the following

parameterizing function makes the SkL pdf (2) accurate in
fitting the jitter histogram for any k ,

σ 2
l (k) = σ

2
l

[
1+ K−11/2

(
log

a(γ−l )b

k+1

)]
, (8)

if to assign a = 0.6951 and b = −0.1296. In fact, k = 0
turns the parameterized SkL to (2) and, by γ−l , γ

+

l � 1,
it also converges to (2). An important property of the SkL
parameterized with (8) is that it shows that when γ+l → 0
and γ−l → 0 then σ 2

l (k) −→ ∞ and σ 2
l+1(k) −→ ∞ and il

thus cannot be localized or, most likely, does not exists.
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TABLE 4. Left jitter k−l and right jitter k+l detected by different masks in the CNA breakpoints of the 13th chromosomal sample ‘‘BLC_B1_T37.txt’’ in the
3σ sense with the confidence probability of P = 99.73%. The chromosome is associated with breast cancer and all values are given for Log2 Ratio.
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TABLE 4. (Continued.) Left jitter k−l and right jitter k+l detected by different masks in the CNA breakpoints of the 13th chromosomal sample
‘‘BLC_B1_T37.txt’’ in the 3σ sense with the confidence probability of P = 99.73%. The chromosome is associated with breast cancer
and all values are given for Log2 Ratio.

2) SECOND BESSEL-BASED APPROXIMATION
The second approximation was obtained employing the same
Bessel function (7), but with another variable,

σ 2
l (k) = σ

2
l

[
1+ K 1

2

(
1

(k + 1)β(γ
−

l )
− 1

)]
, (9)

where β(γ−l ) =
√
2/γ 0.1734

l . Testing (9) by simulations
has shown that this function can produce more accuracy for
certain values of SNR and that (8) can be more accurate
otherwise, although both (8) and (9) can be applied to any k .

3) FUNCTIONAL APPROXIMATION
A simple approximation has appeared by using a power
function of

σ 2
l (k) = σ

2
l
1
2

[
1+ ka(γ

−

l )b
]2
, (10)

where a = 0.436 and b = −0.1575. An analysis has shown
that (10) is about 10 times more accurate than (8) and (9)
when k > 1, but cannot be applied to k = 0 or k = 1.
Functions (8) (dashed), (9) (solid), and (10) (circled and

dotted) are sketched in Fig. 4 for γ = 0.1, 1.0, 5.0 in the
range of 0 6 k 6 50. As can be seen, the proposed k–varying
variances are consistent, but produce different errors in the
k-domain. Note that an exact function σ 2

l (k) is still
unavailable.

4) APPROXIMATION ERRORS
Based on the results illustrated in Fig. 3, the jitter distribution
can now be approximated by the SkL pdf (2) parameter-
ized by (8)–(10) using the sub-diagram A2 in Fig. 2. The
approximation of the histogram jitter_pdfk obtained by sub-
diagramA1 in Fig. 2 has been provided iteratively by decreas-
ing the approximation MSE produced by the parameterized
SkL pdf in each cycle as represented in sub-diagram A2 in
Fig. 2. Thereby, several approximations were obtained for
functions (8)–(10).

Table 2 summarizes typical approximation MSEs pro-
duced by the SkL pdf (2) and parameterized SkL pdf using
k-varying noise variances (8), (9) and (10). As can be
seen, the parametrization by (8), (9), and (10) allow for
much smaller errors than the SkL pdf (2) for low and extra

low SNRs. One can see the goodness of fit in Fig. 5a and
Fig. 5b obtained for γ−l = γ+l = 0.1, which suggest
that an essential difference between the SkL law (2) and (2)
parameterized with (8)–(10) exists for all k .
In turn, Fig. 5c and Fig. 5d sketch the approximations for

a normal SNR of γ−l = γ+l = 1.37. Analysing this figure,
one may conclude that the SkL pdf (2) is reasonably accurate
when |k| < 5 and that the parameterized (2) should be used
otherwise. An overall conclusion that comes up from this
analysis is that the parameterized SkL pdf represents jitter in
the CNA breakpoints with much more accuracy and should
thus be used in the design of the confidence masks that we
will discuss next.

C. IMPROVING CONFIDENCE UB AND LB MASKS
It follows from an analysis of errors produced by the proposed
approximations that the most reliable results can be achieved
if to develop the confidence masks worked out in [28] to be
hybrid by using different approximations in diverse regions
of the segmental SNRs.

Based on the MSEs produced by the approximations
(Table 1), in Table 3we select several segmental SNR regions,
within which the MBA developed in [6], SkL pdf (2), and
SkL pdf (2) parameterized with (8), (9), and (10) are most
successful in detecting the right jitter k− and the left jitter k+

in the minimum MSE sense.
Table 3 suggests that for γ−l = γ

+

l and |k| > 0, the SkL pdf
(2) parameterized with (8) is most accurate in the SNR region
of 0.9 . . . 1.37, while (9) gives a better accuracy in 0.1 . . . 0.9.
The parametrization with (10) is also accurate when 0.1 <
SNR < 1.37, but it cannot be applied to k = 0 and
k = 1. When γ−l 6= γ+l , the MBA is preferable in the SNR
region of 0.1 . . . 1.37 and (2) can be used otherwise for any
step-index k .

It then follows that the best accuracy for the confidence UB
and LB masks designed in [6] can be achieved if to make the
masks hybrid. The difference between the hybrid masks and
the basic ones [6] is in the parametrization of (2) and in the
conditions introduced for the SNR values γ−l and γ+l . With
such modifications, the basic masks can be used straightfor-
wardly and we refer the reader to [6] for a detailed description
of the basic algorithm.
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FIGURE 5. Measured jitter pdf functions (circles) and the approximations
by the SkL law (2) and by the SkL law parameterized with (8), (9), and (10)
for equal segmental SNRs γl = γ

−

l = γ
+

l : (a) low SNR γl = 0.1, (b)
zoomed for γl = 0.1, (c) normal SNR γl = 1.37, and (d) zoomed for
γl = 1.37. Measurement points (circles) are obtained using the ML
estimator over 104 runs.

IV. APPLICATIONS TO SNP ARRAY PROBING
In this section, we experimentally test the parameterized SkL
pdf (2) and several confidence masks by the SNP array-based
CNAs probe data taken from the database BLC_BI_T31
available from the project GAP [5].

FIGURE 6. Testing the ML estimate of the breakpoint i5 location of the
sample BLC_BI_T31 in the 13th Chromosome [5] by the confidence masks:
(a) ML estimate (solid) with the UB and LB masks and (b) jitter
distribution approximated with the SkL law (2) and with (2)
parameterized by (10) and MBA [6].

A. CONFIDENCE OF THE BREAKPOINT LOCATION
To emphasize again on a practical importance of the hybrid
confidence masks, in Fig. 6 we examine a part of the 13rd
chromosome [5] consisting of a single breakpoint i5 and two
segments with the segmental SNR values of γ−5

∼= 1.46 and
γ+5
∼= 1.5, as investigated in [5].

The candidate breakpoint was detected using the ML esti-
mator and then the ML estimates were tested by different
masks based on the SkL pdf (2), SkL pdf parameterized
with (10), and the one proposed in [6] for the confidence
probability of P = 99.73%. The MBA and (2) parameterized
with (10) demonstrate in Fig. 6b more accurate approxima-
tions. Therefore, the regions of possible breakpoint locations
produced by these approximations (Fig. 6a) must be accepted
as more realistic. As can be seen, these regions are wider than
produced by the SkL pdf (2).

B. CHROMOSOME PROBING BY SNP ARRAY
We now apply the confidence masks to the estimates of the
breakpoint locations in the complete chromosome 13th of the
profile BLC_BI_T31 taken from the series of basal-like car-
cinomas (BLCs) available from the project GAP [5]. These
series are included to the study of primary breast carcinomas
(40 cases) and two cell lines measured on a 300K Illumina
SNP-arrays (Human Hap300-Duo). The CNA profile is rep-
resented by the Log R ratios (LRRs) centered at zero for each
sample. The estimates were obtained using the circular binary
segmentation algorithm cghcbs [29], which suggests that the
chromosome has 59 segments and 58 breakpoints as shown
in Fig. 7.

It follows from Fig. 7 that the confidence intervals are
wider for the segmental levels than for the breakpoints. There-
fore, we supply this figure with Table 4, in which the left jitter
k−l and the right jitter k+l are estimated for the confidence
probability P = 99.73% in the 3σ sense [28]. Here symbol
‘‘−’’ means that the jitter cannot be calculated by the masks.
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FIGURE 7. Probes (points), CNAs estimates (solid), and confidence regions (dashed) provided by the hybrid masks for the 13th chromosome taken
from BLC_BI_T 37 of GAP [5]. The breakpoint locations are detected using the algorithm cghcbs [29].

Table 4 suggests that themasks often produce unequal jitter
estimates and that the difference between the estimates can
be in several points, as in the case of l = 7 or l = 27. Large
jitter in i1, i40, i43, and i44 was detected only by the MBA.
But the MBA was unsuccessful in detecting any jitter in a
larger number of the breakpoints such as i8, i9, i14, i18–i20,
i26, i48–i51, i57, and i58, while other masks provided it with
near similar errors. One can also notice that the extra low SNR
values make the jitter unavailable for bounding by any of the
masks, as in the cases of i4, i5, and i41.

Jitter computed by the hybrid masks is put to two last
columns of Table 4. Because the hybrid masks combine the
most accurate outputs of the particular masks, the left and
right jitter computed by the hybrid masks can be considered
as most reliable. What the hybrid masks suggest is that jitter
in the breakpoints of this chromosome ranges from 1 point to
tens of points and thus an actual breakpoint may be found tens
points apart from the candidate one provided by an estimator.

V. CONCLUSION
The confidence masks are intended to bound regions of exis-
tence for the CNA segments and breakpoints with a given
confidence probability in the presence of intensive probe
noise. The parametrization of the SkL density provided by
several approximations of the k-varying segmental noise vari-
ance has demonstrated much higher accuracy in bounding the
breakpoints jitter for a given probability. The parametrization
has appeared to be especially efficient for low and extra
low segmental SNR values, when the breakpoints cannot be
localized visually. The hybrid confidence masks combining
best outputs of the particular masks have demonstrated an
ability to bound the jitter with a high accuracy for practically
all segmental SNR values observed in chromosomal probing.

That was confirmed by testing the masks with a chromosome
sample having 59 segments and 58 breakpoints and associ-
ated with breast cancer.

It has also been revealed that the left and right jitter in the
breakpoints correlate each other. The parametrization of the
SkL density can be provided with more accuracy if to account
for the correlation properties of the k-varying segmental noise
variances. This problem is now under investigation and we
plan to report the results in near future.

Acknowledgment
This paper was presented at the 13th International Conference
on Electrical Engineering, Computing Science and Auto-
matic Control, September 26–30, 2016, Mexico City [12].

REFERENCES
[1] R. Redon et al., ‘‘Global variation in copy number in the human genome,’’

Nature, vol. 444, no. 7118, pp. 444–454, Nov. 2006.
[2] P. J. Hastings, J. R. Lupski, S. M. Rosenberg, and G. Ira, ‘‘Mechanisms

of change in gene copy number,’’ Nature Rev. Genet., vol. 10, no. 8,
pp. 551–564, Aug. 2009.

[3] A. Reymond, C. N. Henrichsen, and L. Harewood, ‘‘Side effects of genome
structural changes,’’ Current Opinion Genet. Develop., vol. 17, no. 5,
pp. 381–386, Oct. 2007.

[4] C. Alkan, B. P. Coe, and E. E. Eichler, ‘‘Genome structural varia-
tion discovery and genotyping,’’ Nature Rev. Genet., vol. 12, no. 5,
pp. 363–376, May 2011.

[5] T. Popova, V. Boeva, E. Manié, Y. Rozenholc, E. Barillot, and M. H. Stern,
‘‘Analysis of somatic alterations in cancer genome: From SNP arrays to
next generation sequencing,’’ inGenomics I: Humans, Animals and Plants.
Hong Kong: iConcept, 2013, pp. 133–154.

[6] J. Muñoz-Minjares and Y. S. Shmaliy, ‘‘Improving estimates of the
breakpoints in genome copy number alteration profiles with confi-
dence masks,’’ Biomed. Signal Process. Contr., vol. 10, pp. 238–248,
Jan. 2017.

[7] C. Xie and M. T. Tammi, ‘‘CNV-seq, a new method to detect copy number
variation using high-throughput sequencing,’’ BMC Bioinf., vol. 10, p. 80,
Mar. 2009.

3384 VOLUME 6, 2018



J. Munoz-Minjares et al.: Accurate Jitter Computation in CNA Breakpoints Using Hybrid Confidence Masks

[8] S. Ivakhno, T. Royce, A. J. Cox, D. J. Evers, R. K. Cheetham, and
S. Tavaré, ‘‘CNAseg—A novel framework for identification of copy num-
ber changes in cancer from second-generation sequencing data,’’ Bioinfor-
matics, vol. 26, no. 24, pp. 3051–3058, 2010.

[9] V. Boeva et al., ‘‘Control-free calling of copy number alterations in deep-
sequencing data usingGC-content normalization,’’Bioinformatics, vol. 27,
no. 2, pp. 268–269, 2011.

[10] J. Duan, J.-G. Zhang, Y.-P. Wang, and H. W. Deng, ‘‘Comparative studies
of copy number variation detection methods for next-generation sequenc-
ing technologies,’’ PLoS ONE, vol. 8, no. 3, p. e59128, 2013.

[11] L. J. Engle, C. L. Simpson, and J. E. Landers, ‘‘Using high-throughput
SNP technologies to study cancer,’’ Oncogene, vol. 25, pp. 1594–1601,
Mar. 2006.

[12] J. Muñoz-Minjares, Y. S. Shmaliy, R. Olivera-Reyna, and O. Vite-Chavez,
‘‘Improving approximation of jitter probability in the breakpoints of sim-
ulated copy number alterations,’’ in Proc. 13th Int. Conf. Elect. Eng.,
Comput. Sci. Autom. Control (CCE), Mexico City, Mexico, Sep. 2016,
pp. 1–5.

[13] Y. S. Shmaliy, ‘‘On the multivariate conditional probability density of a
vector perturbed by Gaussian noise,’’ IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4792–4797, Dec. 2007.

[14] J. Muñoz-Minjares, Y. S. Shmaliy, and J. Cabal-Aragon, ‘‘Noise studies
in measurements and estimates of stepwise changes in genome DNA chro-
mosomal structures,’’ in Proc. Int. Conf. Pure Math., Appl. Math., Comput.
Methods (PMAMCM), Santorini Island, Greece, Jul. 2014, pp. 212–221.

[15] R. Pique-Regi, A. Ortega, A. Tewfik, and S. Asgharzadeh, ‘‘Detection
changes in DNA copy number: Reviewing signal processing techniques,’’
IEEE Signal Process. Mag., vol. 29, no. 1, pp. 98–107, Dec. 2011.

[16] A. Joshi, ‘‘Speech emotion recognition using combined features of HMM
&SVM algorithm,’’ Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no. 8,
pp. 387–393, 2013.

[17] P. Hupé, N. Stransky, F. Radvanyi, E. Barillot, and J.-P. Thiery, ‘‘Analysis
of array CGH data: From signal ratio to gain and loss of DNA regions,’’
Bioinformatics, vol. 20, no. 18, pp. 3413–3422, 2004.

[18] C. Lemaitre, E. Tannier, M.-F. Sagot, and C. Gautier, ‘‘Precise detection of
rearrangement breakpoints in mammalian chromosomes,’’ BMC Bioinf.,
vol. 9, no. 1, p. 286, 2008.

[19] K. Wong, T. M. Keane, J. Stalker, and D. J. Adams, ‘‘Enhanced structural
variant and breakpoint detection using SVMerge by integration of multiple
detection methods and local assembly,’’ Genome Biol., vol. 11, no. 12,
p. R128, 2010.

[20] D. L. Donoho, ‘‘De–noising by soft-thresholding,’’ IEEE Trans. Inf.
Theory, vol. 41, no. 3, pp. 613–627, May 1995.

[21] O.V. Lepski, E.Mammen, andV.G. Spokoiny, ‘‘Optimal spatial adaptation
to inhomogeneous smoothness: An approach based on kernel estimates
with variable bandwidth selectors,’’ Ann. Stat., vol. 25, pp. 929–947,
Jun. 1997.

[22] Y. Li, Y. Ding, and T. Li, ‘‘Nonlinear diffusion filtering for peak-preserving
smoothing of a spectrum signal,’’Chemometrics Intell. Lab. Syst., vol. 156,
pp. 157–165, Aug. 2016.

[23] G. Deng, ‘‘Guided wavelet shrinkage for edge-aware smoothing,’’ IEEE
Trans. Image Process., vol. 26, no. 2, pp. 900–914, Feb. 2017.

[24] F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J.-J. Daudin, ‘‘A statis-
tical approach for array CGH data analysis,’’ BMC Bioinf., vol. 6, no. 1,
pp. 27–37, Jan. 2012.

[25] J. Muñoz-Minjares and Y. S. Shmaliy, ‘‘Approximate jitter probability
in the breakpoints of genome copy number variations,’’ in Proc. 10th
Int. Conf. Elect. Eng., Comput. Sci. Autom. Control (CCE), Mexico City,
Mexico, Sep./Oct. 2013, pp. 128–131.

[26] J. Muñoz-Minjares, J. Cabal-Aragon, and Y. S. Shmaliy, ‘‘Effect of noise
on estimates of stepwise changes in genome DNA chromosomal systems,’’
WSEAS Trans. Biol. Biomed., vol. 11, pp. 52–61, Apr. 2014.

[27] T. J. Kozubowski and S. Inusah, ‘‘A skewLaplace distribution on integers,’’
Ann. Inst. Stat. Math., vol. 58, pp. 555–571, Sep. 2006.

[28] J. Muñoz-Minjares, J. Cabal, and Y. S. Shmaliy, ‘‘Confidence masks for
genome DNA copy number variations in applications to HR-CGH array
measurements,’’ Biomed. Signal Process. Control, vol. 13, pp. 337–344,
Sep. 2014.

[29] A. B. Olshen, E. S. Venkatraman, M. Wigler, and R. Lucito, ‘‘Circular
binary segmentation for the analysis of array-based DNA copy number
data,’’ Biostatistics, vol. 5, no. 4, pp. 557–572, 2004.

[30] J. Muñoz-Minjares, Y. S. Shmaliy, and J. Cabal-Aragón, ‘‘Confidence lim-
its for genome DNA copy number variations in HR-CGH array measure-
ments,’’ Biomed. Signal Process. Control, vol. 10, pp. 166–173, Mar. 2014.

JORGE MUNOZ-MINJARES was born in Zacate-
cas, Mexico, in 1987. He received the B.S. degree
in communications and electronics engineering
from the Universidad Autonoma de Zacatecas in
2010 and the M.S. degree in electrical engineer-
ing from DICIS, Universidad de Guanajuato, in
2012, where he is currently pursuing the Ph.D.
degree. His research interests include digital signal
e-image processing, optimal filtering, and proba-
bility and statistics.

YURIY S. SHMALIY (M’96–SM’00–F’11) was
born in Beltsy, Moldova, in 1953. He received the
B.S., M.S., and Ph.D. degrees from the Kharkiv
Aviation Institute, Ukraine, in 1974, 1976, and
1982, respectively, all in electrical engineering,
and the D.Sc. degree from the Kharkiv Railroad
Institute in 1992. From 1985 to 1999, he was with
Kharkiv Military University. He was a Full Pro-
fessor with Kharkiv Military University in 1986.
In 1992, he founded the Scientific Center Sichron,

where he was the Director in 2002. Since 1999, he has been with the
Universidad de Guanajuato of Mexico. From 2012 to 2015, he was the Head
of the Department of Electronics Engineering, Universidad de Guanajuato
of Mexico. He was a Visiting Professor–Researcher with City University
London from 2015 to 2016. He has 399 journal and conference papers and
81 patents. He has authored the books Continuous-Time Signals (Springer,
2006), Continuous-Time Systems (Springer, 2007), GPS-Based Optimal FIR
Filtering of Clock Models (New York: Nova Science Publishers, 2009),
and Probability: Interpretation, Theory and Applications ( New York: Nova
Science Publishers, 2012) and contributed to several books with invited
chapters. His current interests include optimal estimation, statistical signal
processing, and stochastic system theory. He was rewarded a title, Honorary
Radio Engineer of the USSR, in 1991. He was listed in Outstanding People
of the 20th Century, Cambridge, U.K., in 1999. He has received the Royal
Academy of Engineering Newton Research Collaboration Program Award
in 2015. He is currently an associate editor and an editorial board member
in several journals. He was invited many times to give tutorial, seminar, and
plenary lectures.

LUIS J. MORALES-MENDOZA was born in
Veracruz, Mexico, in 1974. He received the
B.S. and M.S. degrees in electrical engineering
from Guanajuato University, Mexico, in 2001
and 2002, respectively, and the Ph.D. degree in
electrical engineering from the Research Center
(Cinvestav), National Polytechnical Institute of
Mexico, Guadalajara, in 2006. From 2006 to 2009,
he was an Assistant Professor with the Electronics
Department, Guanajuato University ofMexico. He

is currently an Associate Professor with the Electronics Department, Univer-
sidadVeracruzana. He has authored or co-authored 23 journal and conference
papers. His scientific interests are in the artificial neural networks applied
to optimization problems, image restoration and enhancing, and ultrasound
image processing.

VOLUME 6, 2018 3385



J. Munoz-Minjares et al.: Accurate Jitter Computation in CNA Breakpoints Using Hybrid Confidence Masks

MIGUEL VAZQUEZ-OLGUIN (M’16) was born
in Mexico in 1982. He received the B.S. degree
in electronics and communications from the Uni-
versidad Iberoamericana de Leon, Leon, Mex-
ico, in 2005, and the M.S. degree in electronics
and communications from the Center for Scien-
tific Research and Higher Education of Ensenada,
Ensenada, Mexico, in 2009. He is currently pur-
suing the Ph.D. degree with the Universidad de
Guanajuato, Salamanca, Mexico. His current areas

of interest are consensus filtering, wireless sensor networks, and optimal
estimation.

CARLOS LASTRE-DOMINGUEZ was born in
Sincé, Colombia, in 1987. He received the B.S.
degree from the Universidad de Pamplona, Colom-
bia, in 2011, and theM.I. degree from theUniversi-
dad Industrial de Santander, Santander, Colombia,
in 2016. He is currently pursuing the Ph.D. degree
in electrical engineering with the Universidad de
Guanajuato. His scientific interests are machine
learning, digital signal processing, and optimum
filter applied to biomedical signals. He has also

participated in various congresses about the mentioned topics.

3386 VOLUME 6, 2018


	INTRODUCTION
	JITTER REPRESENTATION IN THE BREAKPOINTS
	ERRORS OF SkL-BASED APPROXIMATION

	PARAMETRIZATION OF LAPLACE DENSITY
	SIMULATION OF JITTER DISTRIBUTION
	COMPUTATIONAL COMPLEXITY

	JITTER DISTRIBUTION APPROXIMATION
	FIRST BESSEL-BASED APPROXIMATION
	SECOND BESSEL-BASED APPROXIMATION
	FUNCTIONAL APPROXIMATION
	APPROXIMATION ERRORS

	IMPROVING CONFIDENCE UB AND LB MASKS

	APPLICATIONS TO SNP ARRAY PROBING
	CONFIDENCE OF THE BREAKPOINT LOCATION
	CHROMOSOME PROBING BY SNP ARRAY

	CONCLUSION
	REFERENCES
	Biographies
	JORGE MUNOZ-MINJARES
	YURIY S. SHMALIY
	LUIS J. MORALES-MENDOZA
	MIGUEL VAZQUEZ-OLGUIN
	CARLOS LASTRE-DOMINGUEZ


