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ABSTRACT Network is an abstract expression of subjects and the relationships among them in the real-
world system. Research on community detection can help people understand complex systems and identify
network functionality. In this paper, we present a novel approach to community detection that utilizes a
nonnegative matrix factorization (NMF) model to divide overlapping community from networks. The study
is based on the different physical meanings of the pair of matrices W and H to optimize the constraint
condition. Many community detection algorithms based on NMF require the number of known communities
as a prior condition, which limits the field of application of the algorithms. This paper handled the problem
by feature matrix preprocessing and ranking optimization, so that the proposed algorithm can divide the
network structure with unknown community number. Experiments demonstrated that the proposed algorithm
can effectively divide the community structure, and identify network overlay communities and overlapping
nodes.

INDEX TERMS Community detection, non-negative matrix factorization, orthogonal constraint, sparse
constraint, ranking optimization.

I. INTRODUCTION
Community structure is an important property of network,
which can reflect the functionality and features of network.
In a real-world network structure, each community can reflect
different functions, interests, behaviors, and so on. Communi-
ties can not only reveal the potential characteristic of complex
networks, but also uncover the underlying correlations among
their components [1]. An Accurate community structure is
very important for improving the relevance of search engine
results and the accuracy of recommender systems.

In a protein network, individual proteins in the same com-
munity have the same or similar functions [2]. It can detect
community belonging to the unknown protein to identify the
function of the unknown protein. In an academic cooperation
network, the scholars in the same community have the same
research field [3]. In a social network, the users in the same
community have the same interests or focus [4]. On theWorld

Wide Web, websites in the same community may have the
similar themes [5]. Therefore, community detecting plays an
important role in network analysis, users behavior recom-
mendation, and the organizational behavior of the real-word
system.

Cyber-Physical-Social Computing and Network has been
adapted to very different domains such as online social net-
works. The community detection is an important part of social
networks analysis. Hence, the research of community detec-
tion closely related to Cyber-Physical-Social Computing and
Network.

Many community detection algorithms have been
proposed in the literatures to identity complex community
structures in complex network. A prevalent measure, namely
modularity, has been extensively used for community detec-
tion, which is rooted from the seminal work of community
structure analysis by Girvan and Newman [6]. Modularity is
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often used to measure the quality of community detection,
and quantify how much difference between the density of the
edges inside identified communities and the expected edge
density of a network with the same number of nodes and
edges incident to each node, but randomly connected [7].
Thus, the higher the value of modularity, the more precise
communities detected in the network. In addition, numerous
techniques have been proposed for community detection in
bipartite network networks. Guimer et al. [8] proposed a new
modularity concept based on the number of heterogeneous
vertices that are joined together by homogeneous vertices.
Barber [9] proposed the BRIM algorithm which allowed
the two kinds of nodes to join in the same community.
Based on this point,Mutara [10] proposed another modularity
formula to reflect the relationship between the two kinds
of communities. Suzuki and Wakita [11] proposed an algo-
rithm that can quantify the degree of connectivity between
any two heterogeneous communities. Lancichinettiet et al.
proposed another algorithm which seeks a local maximum
of the community ‘‘fitness’’ function (based on internal link
density) by modifying nodes’ community ‘‘appropriateness’’
scores through a series of inclusion–exclusion moves. Some
researchers have introduced label propagation as bipartite
network network community detection, improving the per-
formance of the algorithm by optimizing leap attenuation,
penalty factors and so on [12]–[14].

Communities in networks often overlap such that nodes
simultaneously belong to several groups [15], [16]. In fact,
that many real networks have communities with pervasive
overlap, where allow node belongs to more than one group,
has the consequence that a global hierarchy of nodes can-
not capture the relationships between overlapping groups.
The work on detecting overlapping communities was pre-
viously proposed by Palla et al. [15] with the clique perco-
lation algorithm (CPM). CPM is based on the assumption
that a community consists of fully connected subgraphs and
detects overlapping communities by searching each subgraph
for adjacent cliques that share at least a certain number of
nodes with it. Kumpula et al. [17] have developed a fast
implementation of the CPM, called the Sequential Clique
Percolation algorithm (SCP). It consists in detecting k-clique
communities by sequentially inserting the edges of the graph
at study, one by one, starting from an initial empty graph.
LFM [18] expands a community from a random seed node
until the fitness function is locally maximal. LFM depends
significantly on a parameter of the fitness function that con-
trols the size of the communities. Gregory [19] proposed
an overlapping community method called GONGA, and it
extended Girvan and Newman’s well-known algorithm based
on the betweeness centrality measure. The algorithm per-
formed hierarchical clustering — partitioning a network into
any desired number of clusters — but allows them to over-
lap. COPRA [20] is an extension of the label propagation
algorithm for overlapping community detection. Each node
updates its belonging coefficients by averaging the coeffi-
cients over all its neighbors.

With the development of Internet technology, the scale
of users and networks has increased. Most belong to sparse
networks and satisfy the condition of a sparse network.
We can consider the network as users’ relationship matrix.
If a connection exists between users, the factor in the matrix
is 1; otherwise, it is 0. As the network has the sparse property,
the matrix will be a sparse matrix. Therefore, the matrix
shows high dimensional and sparse phenomena. The tradi-
tional algorithms have drawbacks for dealing with the phe-
nomenon. In this paper, we introduce (non-negative matrix
factorization) NMF to determine the based and membership
matrices using dimension reduction decomposition.

In this work, we propose a novel approach to community
detection based onNMF. The advantages of this methodology
are: i) the orthogonal and sparseness optimization strategy,
which can make an approximate factorization of the matrix
V into a pair of matrices W and H ; ii) ranking optimization
allows the community to share members and optimize the
community number; and iii) the method does not suffer from
the drawbacks of prior conditions, such as the community
number.

In the following section we present the theoretical foun-
dations of our approach in related work. In section III,
we propose the community detection algorithm using non-
negative matrix factorization with orthogonal and sparseness
constraint along with an illustrative example to provide intu-
ition behind the algorithm. Following the section, we test our
algorithm on a variety of artificial and real-world benchmark
problems and present our experimental results.

II. RELATED WORK
This research is motivated by the NMF technique, a machine-
learning algorithm based on decomposition by parts that can
uncover localized features in feature space [21].

The algorithm is a matrix factorization method that all the
elements in the matrix are under the non-negative constraints
condition. NMF can focus on the relationship among differ-
ent parts of the data, reduce the dimensionality and extract
the features efficiently, and the decomposition form and the
decomposition result are interpretable.

A. NON-NEGATIVE MATRIX FACTORIZATION MODEL
D.D.Lee and H.S.Seung presented the results of the study
of nonnegative matrix factorization on ‘‘Nature’’ in 1999.
Non-negative Matrix Factorization is a feature extraction
and dimensionality reduction technique in machine learning,
which has been adapted to community detection recently.
The technique decomposes the feature matrix into two matri-
ces with non-negativity constraints.

The network can be represented as a single matrix V of
size n × m. In community study the matrix is symmetric
to show the nodes connection with each other as n × n.
In this matrix, column and row both correspond to the simi-
larities from one node to all nodes because of the symmetry
of V . The major analytical method application of NMF is
an approximate factorization of the matrix V into a pair of
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matrices W and H .

V ' W × H (1)

The NMF is only an approximate factorization, not an
exact one [21]. The unique feature of the NMF algorithm is
every element in each is non-negative. The factorization is
carried out with a particular rank k so thatW is of dimension
n × k and H is k × m. Moreover, the factorization could be
viewed as a representation of the data in a new space of lower
dimensionality k . Most experiments show the matrix W can
reflect the final clustering partition and matrix H means the
membership correspondingly. In our research, we combined
the clustering partition and ranking membership to determine
the community structure finally.

The key of matrix factorization is iteratively updating
matrices W and H to improve the approximation to V while
maintaining non-negative matrix entries throughout [21].
Thus, the algorithm need a given value of the NMF dimen-
sionality k which is an important factor in matrix factor-
ization. It is also a technical challenge in most improved
algorithms for community discovery because the number
of communities is unknown in advance. NMF starts with
random initial matrices W and H which are chosen from a
normal distribution with mean 0, variance 1, and standard
deviation 1. The two matrices are iteratively updated using
the following rules:

Wia ← Wia
(VHT )ia
(WHHT )ia

(2)

Hau ← Hau
(W TV )au
(W TWH )au

(3)

NMF algorithm minimize the root-mean-square error
between the actual data V and the reduced dimension recon-
struction of the data WH . For a given k , the algorithm run
iteratively updating procedure and stop criterion until find a
good approximate factorization.

B. NMF APPLICATION IN COMMUNITY DETECTION
Many community detection algorithms based on NMF have
been proposed in the literatures to identity complex com-
munity structures in complex network. After ten years of
development, non-negative matrix decomposition has made
great progress, in addition to the standard NMF. In addi-
tion, it is mainly divided into constrained NMF, structured
NMF and generalized NMF [22]. Liu et al. [23] proposed
sparse NMF by Lagrangian multiplier method. Hoyer [24]
proposed sparse NMF which can make the basis matrix and
membership matrix sparseness. Li et al. [25] proposed an
NMF algorithm with orthogonal constraint to make the basis
matrix more orthogonal for reflecting the network feature.
In addition to the standard NMF, Ding et al. Proposed a
spectral clustering algorithm based on nonnegative matrix,
proposed an extended form of NMF - symmetric NMF
and weighted symmetric NMF. The symmetric matrix is
decomposed to obtain the mesh data of spectral clustering.

In addition, matrix operations can effectively solve multi-
label classification problems [26].

Many researchers proposed community detection algo-
rithms based on NMF, like Bayesian NMF, bounded NMF,
symmetric NMF. Jin utilized the NMF to preserve the
expected node degrees and enhance applicability to real-
world networks. Zarei found a novel NMF-based algorithm
to divide fuzzy communities. It is worth noting that the
mentioned above algorithms based on NMF can detect over-
lapping communities structure.

III. NON-NEGATIVE MATRIX FACTORIZATION WITH
ORTHOGONAL AND SPARSENESS CONSTRAINT
A. FEATURE MATRIX PREPROCESSING
Markov Cluster (MCL) is a fast graph clustering algo-
rithm proposed by Dongen. The advantage of MCL is fewer
prior conditions which do not need clustering numbers in
advance [27]. We use the random-walk way to supplement
sparse matrix information. This approach can reflect the pos-
sibility of a connection between users, which can consider the
users’ relationship weight. MCL not only simply simulates
the random walkway as reality, but also constantly modifies
the transition probability matrix. It repeats ‘‘expansion’’ and
‘‘inflation’’ until the state of the matrix reaches a definite
value. In this paper, we just need the matrix to cluster to fuzzy
classes, which will be defined as the initial community num-
ber. We use a sample model network as shown in Figure 1 to
introduce the improved MCL algorithm applications in this
paper.

FIGURE 1. Sample model network.

We can get the initial adjacency matrix as X

X =



0 1 0 1 1 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 1 1 0 0 0 0
1 0 1 0 1 0 0 0 0
1 1 1 1 0 1 0 0 0
0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1 0


First, we calculate the initial adjacencymatrix through self-

loop to reduce the effect from the null diagonal value when
expansion occurs with an odd and even power. The self-loop
adds an edge for the node self. Then, we can get the matrix
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infX∗ =



0.1659 0.1366 0.1366 0.1366 0.1393 0.0006 0.0000 0.0000 0.0000
0.1366 0.1659 0.1366 0.1366 0.1393 0.0006 0.0000 0.0000 0.0000
0.1366 0.1366 0.1659 0.1366 0.1393 0.0006 0.0000 0.0000 0.0000
0.1366 0.1366 0.1366 0.1659 0.1393 0.0006 0.0000 0.0000 0.0000
0.4229 0.4229 0.4229 0.4229 0.4361 0.0057 0.0017 0.0017 0.0017
0.0013 0.0013 0.0013 0.0013 0.0038 0.2897 0.2819 0.2819 0.2819
0.0001 0.0001 0.0001 0.0001 0.0009 0.2340 0.2388 0.2388 0.2388
0.0001 0.0001 0.0001 0.0001 0.0009 0.2340 0.2388 0.2388 0.2388
0.0001 0.0001 0.0001 0.0001 0.0009 0.2340 0.2388 0.2388 0.2388



X
′

= X + In, where In = diag(1, 1, · · · , 1). We normalize
the matrix X

′

as X∗.

X∗ =



1/
4

1/
4 0 1/

4
1/
4 0 0 0 0

1/
4

1/
4

1/
4 0 1/

4 0 0 0 0
0 1/

4
1/
4

1/
4

1/
4 0 0 0 0

1/
4 0 1/

4
1/
4

1/
4 0 0 0 0

1/
6

1/
6

1/
6

1/
6

1/
6

1/
6 0 0 0

0 0 0 0 1/
5

1/
5

1/
5

1/
5

1/
5

0 0 0 0 0 1/
4

1/
4

1/
4

1/
4

0 0 0 0 0 1/
4

1/
4

1/
4

1/
4

0 0 0 0 0 1/
4

1/
4

1/
4

1/
4


The matrix is no longer made up of 0 and 1 elements,

but is formed by the close relationship between nodes through
‘expansion’ and ‘inflation’. The ‘‘expansion’’ and ‘‘infla-
tion’’ process can result in prominent tight node relationships
and enlarge weak node relations. We consider the clustered
result as the initial community number used in NMF. There-
fore, the MCL clustering process should not cluster until
reaching a steady state. In this research, we set the MCL pro-
ceedings containing one ‘‘expansion’’ and two ‘‘inflation’’
factors. The matrix powX∗ is the ‘‘expansion’’ result of the
simple network.

powX∗

=



0.23 0.17 0.17 0.17 0.15 0.03 0 0 0
0.17 0.23 0.17 0.17 0.15 0.03 0 0 0
0.17 0.17 0.23 0.17 0.15 0.03 0 0 0
0.17 0.17 0.17 0.23 0.15 0.03 0 0 0
0.23 0.23 0.23 0.23 0.22 0.07 0.05 0.05 0.05
0.04 0.04 0.04 0.04 0.06 0.22 0.24 0.24 0.24
0 0 0 0 0.03 0.19 0.24 0.24 0.24
0 0 0 0 0.03 0.19 0.24 0.24 0.24
0 0 0 0 0.03 0.19 0.24 0.24 0.24


In the matrix powX∗, the nodes 5 and 6 can connect every

node in the network. In the real network, nodes 5 and 6 are
indirect neighbor nodes with each node in Figure 1, which
influence the community structure. Therefore, MCL can
make the indirect nodes relationship abundant in a sparse
matrix. With the inflation process, we can get matrix inf X∗,
as shown at the top of this page.
Analyzing the matrices above, we find the probability

always changes realistically. The probability between node 6

and nodes 1 to 5 is reduced because they belong to differ-
ent communities. The phenomenon shows that the nodes in
different communities have less influence than the nodes in
the same community that is fit for defining the community
structure.

B. NON-NEGATIVE MATRIX FACTORIZATION WITH
ORTHOGONAL AND SPARSENESS CONSTRAINT
We aim to improve the accuracy of NMF based on the physi-
cal meaning of matrix factorization. The factorization can be
considered that each data vector v (the row of V ) is approxi-
mated by a linear combination of the rows of H weighted by
the components of w (the row of W ): v = wH . We can see
that relatively few basis vectors are used to represent many
data vectors and the entries of w represent the weight of every
basis vector to produce the data vector v.
We can use matrixW to group the n objects into k clusters.

The entries inW can be viewed as the memberships of every
node to each community. The matrix W is the base matrix
reflecting the feature in the network. The more orthogonal
the vectors in the matrix, the clearer the matrix can express
the network characteristics. On the one hand, the orthogonal
constraint can normalize the elements of the base matrix; on
the other hand, it can make wTi wj = 0, i 6= j to ensure the
factor in matrix W reflects the network characteristics.
Matrix H is a basis that is optimized for the linear approx-

imation of the feature data in V . The matrix H can be
regarded as membership weight matrix which indicates the
probability of the node belonging to the community. Sparse
constraint refers to the use of a small number of elements
in a collection representing all elements of the data. The
application of sparse constraints in the NMF algorithm not
only reduces the interference of noise and the running time
of the algorithm, but also improves the recognition rate in the
classification.
We used inf X∗ as the matrix X for subsequent NMF

decomposition. In this research, we set the MCL proceedings
containing one ‘‘expansion’’ and two ‘‘inflation’’ factors,
because we need the outputs of MCL containing the commu-
nities number cursorily. We utilized the initial communities
number as the dimension of NMF decomposition. It is sig-
nificance to employ NMF with constrains to utilize the MCL
outputs because it can divide network structure without prior
community number.
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∂D
∂Wab

=
∂( 12

∑
ij (V

2
ij − 2Vij(WH )ij + (WH )2ij)+

1
4α
∑

i
∑

j
[
(WW T )ij − Iij

]2
)

∂Wab

=
∂( 12

∑
ij (WH )2ij − 2Vij(WH )ij + 1

4α
∑

i
∑

j
[
(WW T )ij − Iij

]2
∂Wab

(7)

NMFOSC modifies the existing NMF methods and adapts
them to large networks. Although NMF methods use l2 norm
as an objective function, l2 norm is not suitable for modeling
binary adjacency matrices. Thus, we combined l1 norm and
l2 norm and proposed the objective function as follows:

D =
1
2

∑
ij
(Vij − (WH )ij)2 −

α

4

∑
ij

∥∥∥∥(W TW
)
ij
− Iij

∥∥∥∥2
−
β

2

∑
ij
H2
ij ,

s.t. α≥0, β ≥ 0, W ≥0, H≥0, Iij =

{
1, i = j
0, i 6= j

(4)

where α and β are positive numbers, meaning the orthogonal
constraint and sparseness constraint are separate. We intro-
duced the sparseness function proposed by PO Hoyer to
balance the sparseness in matrixH . Based on the requirement
that the sum of non-negativity H elements vectors equal to 1,
maximizing ‖H‖22 can make vector h get higher sparsity.
Under the constraint with

∑
i Hij = 1, we make the decom-

position results as sparse as possible in order to get the main
features. The spares objective function is maximizing ‖H‖2ij.

sparseness(x) =

√
n− (

∑
|xi|)/

√∑
x2i

√
n− 1

(5)

where n is the dimension of x. We set the sparseness to
0.5 to avoid conforming a large sparseness matrix. To solve
this convex problem, we use a projected gradient ascent.
The gradient can be computed straightforwardly.

W n+1
ik ← W n

ik + λ1
∂D
∂W

, Hn+1
kj ← Hn

kj + λ2
∂D
∂H

(6)

where ∂D
∂W and ∂D

∂H are the partial derivative of matrix W and
H separately. The calculation process is as (7), as shown at
the top of this page, where

∂

∂Wab

∑
ij
(WH )2ij

=
∂

∂Wab

∑
j
((WabHbj)2 + 2WabHbj

∑
s6=b

(WasHsj))

=

∑
j
(2WabH2

bj + 2Hbj
∑
s6=b

(WasHsj))

= 2
∑

j
(Hbj

∑
s

(WasHsj)) (8)

∂

∂Wab

∑
i,j
(−2Vij(WH )ij)

= −

∑
j
2VajHbj (9)

∂

∂Wab
(
∑

i

∑
j

[
(WW T )ij − Iij

]2
)

=
∂

∂Wab

∑
ij

[
(WW T )2ij − 2Iij(WW T )ij

]
(10)

∂

∂Wab

∑
ij
(WW T )

2
ij

=
∂

∂Wab

∑
ij
(WibWjb +

∑
t 6=b

WitWjt )2

=
∂

∂Wab

∑
ij
(W 4

ab + 2W 2
ab

∑
t 6=b

W 2
at )+

∑
j 6=a

(W 2
abW

2
jb

+ 2WabWjb

∑
t 6=b

WatWjt )+
∑
i 6=a

(W 2
abW

2
ib

+ 2WabWib

∑
t 6=b

WitWat )

= 4
∑
i=1

∑
t=1

WatWitWib (11)

∂

∂Wab
(
∑

ij
−2Iij(WW T )ij)

=
∂

∂Wab
(
∑

ij
−2IijWibWjb)

= −4IabWab −

m∑
i 6=a

(2IiaWib)−
m∑
j 6=a

(2IajWjb) = −4Wab (12)

∂D
∂Wab

= (WHHT )ab − (VHT )ab + α(WW TW −W )ab (13)
∂D
∂Hxy

=
∂( 12

∑
i,y (Viy − (WH )iy)2 + 1

2β
∑

i,y H
2
iy)

∂Hxy

=
∂( 12

∑
i,y (−2Viy(WH )iy)+ (WH )2iy +

1
2β
∑

i,y H
2
iy)

∂Hxy

=
−∂

∑
i,y Viy(WH )iy
∂Hxy

+

1
2∂
∑

i,y (WH )2iy
∂Hxy

+
∂ 1
2β
∑

i,y H
2
iy

∂Hxy

=

∑
i
Wix(WH )iy −

∑
i
WiaViy + βHiy

= (W TWH )xy − (W TV )xy + βHxy (14)

Thus, we set the step size in the negative gradient direction
to λ1 and λ2:

λ1 =
Wab

(WHHT )ab. + α(WW TW )ab
(15)

λ2 =
Hxy

(W TWH )xy + βHxy
(16)
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For NMFOSC algorithm, the computational cost is gov-
erned chiefly by MCL process and formula (4). Notice that,
the time to calculate the processing of MCL,W n+1

ik andHn+1
kj

are O(n3), O(n2k) and O(n2k), respectively. Hence, the total
computational cost of NMFOSC is O(n3 + n2k), where k is
the number of communities.

C. FILE FORMATS FOR GRAPHICS
In network preprocessing, we can get the initial commu-
nity number by MCL. In this section, we update the num-
ber and attribution of network communities based on the
results of NMFOSC. The matrix H analyzes the probability
of each node belonging to every community, shown as hci.
We rank the membership probability to optimize the commu-
nity structure.

R(i, c) =
hci −min hci

max hci −min hci
(17)

where, min hci is the minimum non-zero membership prob-
ability of node i, and max hci is the maximum non-zero
membership probability of node i. We compared the ranking
with the threshold and found that the community c occupies
the weight of node i. The threshold defined as σ .

σ =
hci∑k
c=1 hci

(18)

If more than one R(i, c) is greater than the threshold σ ,
the node i is an overlapping node. Therefore, NMFOSC is an
overlapping community detection algorithm. If the R value is
less than the threshold σ , we delete the node i in community c.
This optimal algorithm can show the relationship among the
various communities for the node independently and division
of the network community accurately.

IV. EXPERIMENT
We test the performance of the method proposed here by
applying it to a class of artificial networks and some real-
world networks. We demonstrate the effectiveness of our
method on a range of networks from large different domains
and research areas. And if there is no special mention,
we choose α = 0.2 and β = 0.1 in the feature matrices in
our study. The language of choice for all implementations is
Java according to the JDK 1.6 standard, allowing us to use
object-oriented and functional programming concepts while
also compiling to native code. The experimental environment
showed as Table 1.

TABLE 1. Experimental environment.

A. DATASETS AND EVALUATION CRITERIA
The following list outlines the different types of graphics
published in IEEE journals. They are categorized based on
their construction, and use of color / shades of gray:

1) DATESETS
The following list shows the different kinds of datasets
in Table 2.

TABLE 2. Datasets.

2) EVALUATION CRITERIA
There are various standard measures that can be used to
measure the performance of community structure delivered
by the algorithm. This paper used average conductance (AC)
of communities with weights, which extends the conductance
used by Leskovec, mapping the weighted value of conduc-
tance for all the communities in a cover [28]. The conduc-
tance can be simply thought of as the ratio between the
number of edges inside the community and those leaving it.
More formally, the conductance is defined as follows:

φ(S) = CS
/
min(Vol(S),Vol(V\S)) (19)

where CS = |{(u, v) : u ∈ S,V /∈ S}|, Vol(S) =
∑

u∈S du,
and du is the degree of vertex u. Thus, more community-
like sets of vertices have lower conductance. Consequently,
the AC can be defined as

AC =

∑K
i=1 N (Ci)φ(Ci)∑K

i=1 N (Ci)
(20)

where K denotes the number of communities, Ci denotes
the ith community, and N (Ci) denotes the number of
vertices in Ci.

Another commonly used measure is normalized mutual
information (NMI) which has become a de facto standard for
the networks with known communities [29].

NMI (A,B) =
2I (A,B)

H (A)+ H (B)
(21)

where A and B denote the two partitions of the network. If the
found communities are identical to the real communities,
then NMI (A,B) takes its maximum value of 1. If the found
communities are totally independent of the real partition,
for example when the entire network is classified to be one
community, NMI (A,B) = 0.

In the experimental datasets, the SouthernWomen network
is a bipartite network. We used the modularity fit for the
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bipartite network community structure. Baber considered the
two types of nodes and proposed an improved modularity
called QB [9].

QB =
1
M

n∑
i=1

m∑
j=1

(A(i, j)− P(i, j))δ(gi, gj+n) (22)

whereP(i, j) is the expected value of the edges between node i
and node j. gi means the community to which node i belongs.
The bipartite network has two kinds of nodes, which one
contains n nodes and another contains m nodes. Hence, node
i means the node belongs to the one kind of node set. Node
j + n means the node belong to another kind of node set.
The function δ is used to judge whether node i and node j+n
are in the same community.

Murata proposed another modularity formula that
considered communities’ relationships from a different
perspective [10].

QM =
∑

l
(elm − alam),m = argmax(elk ) (23)

where m represents the closest connection between heteroge-
neous communities. elm means the actual number of edges
connecting community l with community m. al means the
expected value of the edges between community l and com-
munity m. The higher QM is, the more clearly divided the
community structure is.

B. ARTIFICIAL NETWORKS
The artificial network consists 128 nodes and 1024 edges.
It contains 4 communities, and each community contains
32 nodes. We can adjust the fuzzy parameter µ and over-
lap degree OM to change the network community structure.
We found that the accuracy of algorithms decreases as µ
increases. When µ ∈ [0.1, 0.2], the structure of the com-
munity is clear, and all algorithms can effectively divide the
community. In Figure 2, as µ increases until 0.5, our algo-
rithm becomes NMI = 1 on the network, but others begin to
decay. Even the mixing parameter increases to 0.7, and the
value of NMI is still greater than 0.8, which means a good
match with the community structure of the original network.

FIGURE 2. NMI with different mixing parameter in benchmark networks.

When µ = 0.7, the community structures are difficult to
successfully detect, because they have become indistinct in
these networks. Generally speaking, the performance of the
NMFOSC is still better than other baseline algorithms.

FIGURE 3. NMI with a function of number of members in Om benchmark
network (left: µ = 0.1 , right: µ = 0.3).

In order to assess the performance of detecting overlapping
communities, we compared the accuracy of various algo-
rithms on two types of overlapping benchmark networks with
different Om. The results are shown in Figure 3. It can be
observed that the NMFOSC can accurately identify the over-
lapping communities in networks. With the increase in Om,
the accuracy decreases especially when Om > 3. However,
our algorithm can decay more slowly than others and keeps
the highest NMI in these three algorithms. In addition, the
results of our algorithm are very stable.

The bipartite artificial network contains 8 communities,
and in each community, there are 32 users nodes and 14 target
nodes.We can adjust the homogeneity coefficient ρ to change
the network community detection. When ρ = 1, the users
connect only to the target nodes in the same community.
There is no connection between different communities.When
ρ = 0, the nodes connect with each other randomly, it is hard
to identify the community structure. Figure 4 shows the per-
formance of different algorithms in different networks. With
the increase of the ρ value, the NMI value increases gradually.
We can find the NMI value is low when ρ is less than 0.55.
However, NMFOSC can make the community divided MNI
value reach 0.6, which is greater than others. Meanwhile,
the NMI value raised by this algorithm is faster than other
algorithms.When ρ is bigger than 0.55, theNMI value caused
by NMFOSC is greater than 0.8 which means the community
structure detected is close to the real networks. TheNMFOSC
considered the community relationship weight ranking to
optimize the matrix factorization result to networks’ reality.

C. REAL-WORLD NETWORKS
We evaluated the performance of the algorithm NMFOSC
with other classical community detection algorithms using
some real-world networks. The methods compared include
the Louvain method, which is regarded as one of the

21272 VOLUME 6, 2018



N. Chen et al.: Overlapping Community Detection Using NMF With Orthogonal and Sparseness Constraints

FIGURE 4. NMI value in an artificial network.

best options for vertex partition; the clique percolation
method (CPM), which is the most prominent algorithm for
overlapping community detection; and BNMF and BNMTF,
which are both community detection methods based on NMF.

FIGURE 5. AC value in real-world network.

Figure 5 shows the results of different algorithms in
terms of average conductance. Generally, the performance of
NMFOSC is still better than the other four algorithms in terms
of the AC quality. To sum up, our algorithm is very effective
on real-world networks in terms of both accuracy and quality.
Therefore, as we can see, NMFOSC can not only detect three
types of vertices roles, providing richer information from
networks, but also find community results with high accuracy
and quality.

We experiment with NMFOSC in real-world bipartite
networks at the same time. The Southern Women Data
network contains 18 Southern women and 14 social activi-
ties used to verify the performance of community discovery
algorithms for bipartite networks widely. Figure 6 shows
the Southern Women activity relationship network, where
nodes 1-18 mean Southern Women and nodes 19–32 mean
activities.

From the perspective of ethnology, Davis et al. divided the
user nodes in two sub networks into two communities: {1-9}
and {9-18}, separately. BRIM algorithm divided the network
into 4 communities: {1-6,19-24}, {7,9,10,25,26}, {8,16-18,
27,29}, and {11-15,28,30-32}, separately. In Figure 6,

FIGURE 6. Numbered southern women bipartite network.

nodes 8 and 16 joined activities 26 and 27, but did not join
activity 29. However, the BRIM divided nodes 8 and 16 into
community {8,16-18,27,29}, which is obviously unreason-
able. We used NMFOSC to divide the network community
structure shown in Figure 7.

FIGURE 7. Community structure of southern women bipartite network.

FIGURE 8. Modularity of southern women bipartite network.

We also compared the communities’ results with QB and
QM in Figure 8. As node 9 is an overlapping node in Davis
research, we computed the results in two modes, such as
Davis 1 {1-9} and Davis 2 {9-18}.

To sum up, our method with iterative bipartition not only
has a higher clustering quality compared with other methods,
but can also determine the number of communities automat-
ically. Thus, it may be more suitable for use when detecting
communities on unexplored real networks.

V. CONCLUSION
In this paper, we present a method based on the NMF tech-
nique to divide community structure in complex networks.
The proposed algorithm combined MCL pretreatment and
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ranking optimization to solve the unknown community num-
ber in an advance problem. The NMFOSC algorithm used
orthogonal and sparseness constraints to optimize matrix
decomposition results. It makes the membership matrix more
orthogonal to reflect the network feature and the membership
weight matrix sparser to show the main relationship. As in
a real-world network, it is natural that some nodes belong
to more than one community. The ranking optimization pro-
cesses allows nodes to belong to different communities at
the same time. The experimental results demonstrate that the
proposed method has good performance on both the artificial
benchmark networks and some real-world networks.
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