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ABSTRACT Due to the current structure of digital factory, it is necessary to build the smart factory to
upgrade the manufacturing industry. Smart factory adopts the combination of physical technology and cyber
technology and deeply integrates previously independent discrete systems making the involved technologies
more complex and precise than they are now. In this paper, a hierarchical architecture of the smart factory was
proposed first, and then the key technologies were analyzed from the aspects of the physical resource layer,
the network layer, and the data application layer. In addition, we discussed the major issues and potential
solutions to key emerging technologies, such as Internet of Things (IoT), big data, and cloud computing,
which are embedded in the manufacturing process. Finally, a candy packing line was used to verify the key
technologies of smart factory, which showed that the overall equipment effectiveness of the equipment is
significantly improved.

INDEX TERMS Smart factory, big data, cloud computing, cyber-physical systems, industrial Internet of
Things.

I. INTRODUCTION
With the rapid development of electric and electronic tech-
nology, information technology and advanced manufacturing
technology, the production mode of manufacturing enter-
prises is being transferred from digital to intelligent. The new
era that combines virtual reality technology based on the
Cyber-Physical System (CPS) is coming [1]–[4]. Due to
the new challenges, the advantages of traditional manufac-
turing industries have been gradually diminished. Conse-
quently, the intelligent manufacturing technology is one of
high technology areas where industrialized countries highly
pay more attention to. Europe 2020 strategy [5], Industry
4.0 strategy [6] and China manufacturing 2025 [7] have
been proposed. United States has gradually accelerated the
speed of reindustrialization and manufacturing reflow [8].
The transformation of intelligent manufacturing intrigued
the profound and lasting effect on the future manufacturing
worldwide.

In the context of intelligent manufacturing, it is important
to establish the smart factory to achieve advanced manu-
facturing based on network technologies and manufacturing
data. In addition, the implementation of smart factory should
take into account the status quo and manufacturing require-
ments. Due to the different characteristics of manufacturing
field and information field, there are still many technical
problems to be solved in order to accelerate the path of smart
factory. The main goals of this paper are summarized as
follows:
• In the physical resources layer, physical equipment
needs to have support for real-time information acqui-
sition, and communication devices should provide a
high-speed transmission of heterogeneous information.
The workshop should ensure fast reconfiguration and
adaptability. In addition, the intelligence of underlying
equipment should be enhanced in order to meet the
requirements of Internet of Things (IoT).
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• In the network layer, Industrial Internet of Things (IIoT)
should support new protocols and new data format
with high flexibility and scalability, whereas the Indus-
trial Wireless Sensor Networks (IWSNs) bring new
opportunities for development of industrial network.
Additionally, the other relevant technologies (e.g., OLE
for Process Control Unified Architecture (OPC UA),
Software defined Networks (SDNs), and Device-to-
Device (D2D) communication) should be introduced
to guarantee Quality-of-Service (QoS) of the net-
work, reliable communication, and cooperation among
equipment.

• In the data application layer, the cloud platform should
be able to analyze the semantics of various data. There-
fore, ontology is being employed in modeling of the
smart factory, which can provide the abilities of self-
organization, self-learning and self-adaption. Moreover,
data analysis could provide the scientific basis for
decision-making, while data mining could be used to
ensure design optimization and active maintenance.

In general, we developed and analyzed the hierarchical archi-
tecture of smart factory with the focus on key technologies
of every layer. The remainder of the paper is organized
as follows. In Section II, the architecture of smart factory
is presented, and approaches for implementation of smart
factory based on hierarchical architecture are discussed.
In Section III, the key technologies of physical resource layer
are studied. In Section IV, technologies related to the network
layer are given. The methods used for data processing in
data application layer are presented in Section V. Its research
results and development trends of these technologies are also
presented. In Section VI, the implementation of smart factory,
namely the prototype platform of candy packing line, was
introduced, wherein the key technologies of the smart fac-
tory were employed and verified in practice. In Section VII,
main issues and challenges of key technologies are presented.
Finally, in Section VIII a brief conclusion and envisions of
further development of smart factory are given.

II. SMART FACTORY ARCHITECTURE
In the context of Industry 4.0, the intelligent manufacturing
attracts enormous interest from government, enterprises and
academic researchers [9]. Therefore, the construction pat-
terns of smart factory are widely discussed. However, the
standards for smart factory implementation have not been
established yet. Benkamoun et al. [10] proposed a class
diagram which can be used to represent the manufacturing
system from different perspectives of entities and functions.
Radziwon et al. [11] expounded former research from the
concept of smart factory, and they pointed out that smart
factory is actually an exploring of adaptive and flexible
manufacturing. Lin et al. [12] proposed an architecture for
cloud manufacturing systems oriented to aerospace conglom-
erate, which facilitates optimal configuration of manufac-
turing resources. The above-mentioned authors provided a
guidance architecture for smart factory. In summary, the

smart factory, which is based on digital and automated
factory, uses information technology (e.g., cloud platform
and IIoT) to improve the management of manufacturing
resources and QoS [13], [14]. In order to build the smart fac-
tory, manufacturing enterprises should improve production
andmarketing, enhance controllability of production process,
and reduce manual intervention in workshop. Through the
analysis of manufacturing data, the smart factory can realize
flexible manufacturing, dynamic reconfiguration, and pro-
duction optimization, which are aimed to adapt the system
to the changes of business model and consumer shopping
behavior [15].

In the implementation of smart factory, the IIoT is
employed to integrate the underlying equipment resources.
Accordingly, the manufacturing system has abilities of per-
ception, interconnection and data integration. The data anal-
ysis and scientific decision are used to achieve production
scheduling, equipment service and quality control of products
in smart factory. Further, the Internet of services is intro-
duced to virtualize the manufacturing resources from a local
database to the cloud server. Through the human-machine
interaction, the global collaborative process of intelligent
manufacturing oriented to the order-driven market is built.
Therefore, the smart factory represents an engineering system
that mainly consists of three aspects: interconnection, collab-
oration and execution. As shown in Fig. 1, the architecture of
smart factory [16], [17] includes four layers, namely physical
resource layer, network layer, data application layer, and
terminal layer. With the aim to convert modern factory into
smart factory, key technologies involved in all layers have to
be studied in detail.

III. PHYSICAL RESOURCES LAYER
The physical resources include all manufacturing resources
involved in the entire life cycle of manufacturing, which rep-
resent the basis for achievement of intelligent manufacturing.
The efficient manufacturing of customized products puts for-
ward new demands on manufacturing equipment, production
line and data acquisition. Therefore, to meet the requirements
of smart factory, present problems of key technologies should
be solved.

A. RECONFIGURABLE MANUFACTURING UNIT
Due to the lack of flexible and configurable construction,
current manufacturing equipment in workshop has strong
specificity and relatively narrow application range, which
results in weak adaptation to manufacturing environment
changes. The manufacturing unit, which is modularized by
manufacturing equipment (e.g., industrial robot, mechanical
arm, and machining center), improves dynamic scheduling.
Moreover, the controller is reconfigurable and provides an
extension of manufacturing equipment functions.

1) MODULAR MANUFACTURING UNITS
From the aspect of modular manufacturing units,
Fiasché et al. [18] proposed a modular-adaptive and
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FIGURE 1. Hierarchical architecture of smart factory.

self-contained reconfigurable robotic island to improve
assembly capacity of the workshop, where flexible manu-
facturing ability was also enhanced by integrated manage-
ment framework which controls and organizes the modular
manufacturing unit. Piranda and Bourgeois [19] proposed
a distributed algorithm for reconfiguration of lattice-based
modular self-reconfigurable robots, which drastically sim-
plifies complexity of robots configuration through iterative
approach. Further, Valente [20] proposed a vertical cyber
physical integration of cognitive robots in manufacturing.
The cognitive robots, which were vertically integrated into
the manufacturing industry, and coordinated with the man-
ufacturing execution system. In the context of intelligent
manufacturing, the cognitive robots can perceive information
uncertainty, change scheduling management and adjust man-
ufacturing behavior to independently cope with a complex
manufacturing problem. The intelligent level of smart factory
is closely related to the modular manufacturing unit, and
the above-mentioned literature describes the intelligent robot
units from different perspectives. Themodularmanufacturing
units can work independently and deal with a changeable
scheduling of smart factory.

Therefore, it is very important to enhance the intelligence
of robots units. Several suggestions for construction of mod-
ular manufacturing units are proposed as follows:
• Modular manufacturing units should cooperate with
each other to accomplish the common tasks, where
the emphasis is on the mutual perception and the
collaboration mechanism between intelligent modules.

In addition, heterogeneity of interaction should be took
account.

• The functions of different modular manufacturing units
may be redundant for a certain product, therefore it is
crucial to make an optimal or suboptimal combinatorial
scheme.

• Each manufacturing unit can not only meet the manu-
facturing requirements of products, but also improve the
smart factory efficiency in a self-organized way.

In the intelligent manufacturing, small quantities of vari-
ous products enter into manufacturing system disorderly,
which certainly leads to the deadlock phenomenon. Currently,
approach for deadlock prevention in flexible manufacturing
systems is a hot research topic [21], [22].

2) CONFIGURABLE CONTROLLER
The configurability of the control system refers to the ability
to integrate, extend, replace, and reuse hardware or software
components of the system. Proper configuration of controller
can improve configurability of manufacturing unit, which
expands unit’s function in multi-application scenarios. In this
way, manufacturing unit would be able to adapt swiftly to
operation condition changes [23], [24].

Short and Burn [25] upgraded robot function using
available software components, which were used to adapt
the robot to changeable operating conditions. Moreover,
they introduced an advanced design of robot controller
which can be used in the new generation of robots.
Morales-Velazquez et al. [26] developed a new multi-agent
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distributed controller system to meet the requirements
of intelligent reconfigurable Computer Numerical Control
(CNC). Specifically, they proposed an open architecture for
reconfigurable applications based on a Field Programmable
Gate Array (FPGA) and utilized an eXtensible Markup Lan-
guage (XML) structure to describe system files. Since the
component models of a control system can improve the
reconfiguration processes by standardization and universal-
ity, the embedded design tools such as Ptolemy II have
been matured for component model. The service oriented
technology with the semantic web theory is employed to
adapt external demand on industry control domain. However,
this static-related reconfigurable technology cannot meet
dynamic requirements. Lepuschitz et al. [27] proposed an
automation agent-based architecture which subdivides the
control layer into two layers, where the high-level layer is
combinedwith the ontologywhile the low-level layer is based
on the IEC 61499 standard. The low-level control is modified
by the reasoning and initiating reconfiguration processes of
high-level layer. Hence, the control system provides the self-
reconfiguration and self-adaption services. However, the cur-
rent research still lacks the validation techniques for the strict
background. Based to normalized structure of reconfigurable
logic controller, Adamski and Tkacz [28] proposed a hierar-
chical modular control logic described by a petri net where
the formal reasoning method is used to predict results of a
logic design. With the development of equipment computing
ability, it has become a trend to apply the multi-agent technol-
ogy, knowledge modeling, and reasoning technology in the
control system.

The research of configurable controller mainly focuses on
its structure and function. General, an information model
is built in the control system to perceive operation con-
dition, while reasoning decision is made according to the
information of evaluation module. Moreover, the controller
system completes reconfiguration planning and implements
processes automatically for specific needs. However, lack
of support for interoperable technology, such as interactive
interface, results in poor flexibility. The basic theory from
reconfigurable aspect (e.g., ontology modeling and verifica-
tion) is still weak.Moreover, dynamic re-configurationmech-
anism is not perfect and research results are only applicable
to the specific scenarios. Thus, more attention should be
paid to the embedded component model in real-time run-
ning framework. Therefore, the knowledge-driven adaptive
re-configuration is crucial for the implementation of recon-
figurable service.

B. RECONFIGURABLE PRODUCTION LINE
Nowadays the manufacturing products in the market are
characterized by small batches and multiple varieties. There-
fore, the production-line should reconfigure its process paths
and recombine manufacturing units dynamically. Accord-
ingly, the smart factory should adjust product type and pro-
duction capacity in real-time. Kim et al. [29] proposed an
application service based on information and communication

technology convergence to support the re-configurability of
door trim assembly line, where the emphases is on mini-
mization of reconstruction complexity and maximization of
workbench recyclability. Järvenpää et al. [30] proposed an
ontology model and a description concept for manufacturing
resources based on XML, and developed a set of integrated
tools to reconfigure production system rapidly and auto-
matically. Gyulai et al. [31] introduced a hierarchical plan-
ning decision workflow to assign products to dedicated and
reconfigurable production lines, which denotes an integrated
way to optimize system configuration and production plan.
Goyal and Jain [32] divided the optimization design of
reconfigurable production line into two stages. In the
first stage, a multiple-objective particle swarm algorithm
was proposed to optimize cost, machine utilization, oper-
ational capability, and configuration convertibility. At the
next stage, a maximum deviation method was used to
choose an optimal scheme from the alternatives in order to
avoid both subjectivity and uncertainty in decision-making
process.

The reconfigurable production line can generate a large
range of different products due to its variability, scalability
and schedulability, which is the basis of flexible manufac-
turing in smart factory. Presently, the problem of production
line is strong specialty, which can be enhanced by advance
planning and control methods. Here, we build a reconfig-
urable system to simulate the production line and propose
a scheme for reconfiguration. The feasibility of proposed
scheme is verified by the manufacturing scenario. With the
aim to respond timely to the market requirements, it is nec-
essary to implement a reconfigurable production line in the
smart factory.

C. INTELLIGENT DATA ACQUISITION
The manufacturing resource data denote basic information
for workshop scheduling and intelligent service in smart
factory. The wireless sensor networks (WSNs) are employed
in smart factory for data monitoring, acquisition and logging.
Based on data analysis and using an intelligent equipment in
manufacturing scenarios, the manufacturing execution sys-
tem can properly implement production scheduling. Themost
common types of wireless sensor networks are Radio Fre-
quency Identification (RFID) [33], ZigBee, and Bluetooth.
Zhong et al. [34] proposed a RFID-enabled real-time man-
ufacturing execution system for mass-customization produc-
tion, where RFID identifies anomalous information and feeds
it back to the decision-making production system in real-
time, thus the smart factory hasmore efficient execution plans
and makes accurate scheduling decisions. Zhang et al. [35]
proposed a new data cleaning algorithm based on WSNs and
RFID, where WSNs and RFID system provide an excellent
infrastructure for data acquisition, distribution, and process-
ing. With the development of RFID, the Near-Field Commu-
nication (NFC) has been studied as an access to manufactur-
ing resources [36]. Further, both Bluetooth and ZigBee meet
the requirements for cost of industrial automation of wireless
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FIGURE 2. Dynamic electrocardiogram system.

communication technologies (e.g., low price and low energy
consumption) [37].

Various kinds of special sensors are used to collect data
in manufacturing area, wherein devices are independent of
each other. The collected data are heterogeneous with uneven
quality. Therefore, the communication interface of intelli-
gent equipment should be compatible with a series of com-
munication protocols. For instance, it should be compatible
with OPC, Open Database Connectivity (ODBC), RS232,
Dynamic data exchange (DDE), etc., which are used to con-
nect control systems such as Supervisory Control and Data
Acquisition (SCADA), Distributed Control System (DCS),
and Process Control System (PCS). In addition, data acquisi-
tion devices should be easily set up and their interfaces should
be flexible and scalable. The manufacturing resources should
support a fine-grained data acquisition in process visibility
system. As show in Fig. 2, the equipment operating state is
similar to the human heart beating. The equipment health
management system, which is based on themonitoring equip-
ment status obtained by the ‘‘electrocardiograph (EGC)’’, can
predict system failure and arrange necessary maintenance
activity in advance. However, current pattern of data acqui-
sition is still a bottleneck of intelligent manufacturing.

IV. NETWORK LAYER
Industrial networks represent the integration of various kinds
of network technologies such as field bus and sensor net-
works. The network layer, which is characterized by per-
ception and control, plays an important role in the smart
factory. Due to the improvements of cloud computing tech-
nology [38], real-time and reliable network techniques are
required for data transmission, information sharing between
intelligent equipment, and manufacturing cloud platform.
The advanced information technologies (e.g., IWSNs and
field bus) and their related technologies provide an impor-
tant way to meet above mentioned requirements. Field buses
(e.g., Foundation Fieldbus (FF), Profibus, and Hart) grad-
ually meet enterprise requirements of open, universal and
compatible networks, and most of them have already been

standardized [39], [40]. However, there are still many issues
such as routing, congestion control, errors handling and seg-
mentation technology in network layer. The IWSNs and the
other related technologies involved in the smart factory are
discussed in the following.

A. INDUSTRIAL WIRELESS SENSOR NETWORKS
The Industrial Wireless Sensor Networks (IWSNs) represent
the expansion and promotion of the existing wireless com-
munication technology intended for industrial application
and they lead to the revolution of measurement and control
mode in the traditional industrial field. In the meantime,
the deployment of industrial networks has become flexible,
reliable, and low-cost. Currently, the universal and mature
wireless network communication standards mainly include
wireless HART, WIA-AP, and ISA100.11a. The application
of industrial networks is complex, and it is difficulty to intro-
duce a generic wireless network communication standard.
The industrial wireless network technology should have low
latency, high reliability, and high synchronous accuracy when
dealing with a control service, and should have high access
density and low power consumption in data acquisition. The
networks should also have a high transmission rate of inter-
active service.

Reliability and latency are the core requirements of indus-
trial wireless network communication [41], [42]. Thewireless
network technology has gradually permeated into the indus-
trial field including data acquisition and production control.
The workshop is characterized by a complicated electro-
magnetic environment. Meanwhile, data transmission may
be unsynchronized with the clock causing packet loss and
delay or some other interference factors, which have negative
effect on QoS of IWSNs. Niu et al. [43] presented a reli-
able reactive routing enhancement to increase the resilience
of WSNs/IWSNs to link dynamics, which provides reliable
and energy-efficient packet delivery regardless the unreliable
wireless links. Therefore, both high reliability and low deliv-
ery latency are guaranteed. Dobslaw et al. [44] proposed a
generic heuristic scheduling algorithm extension to improve
the end-to-end reliability of WSNs. In summary, IWSNs
are complex dynamical networks which couple real-time
control with high-speed communication using a multi-node
collaboration.

Energy efficiency is an important factor that affects adapt-
ability of wireless sensor networks [45]. Due to the large
number of nodes in IWSNs, a dynamic scheduling is needed
in intelligent manufacturing. Gao et al. [46] improved energy
efficiency with the coded preambles in low-power sensor
networks. Lee et al. [47] proposed FlexiCast which uses an
energy-efficient method to check the integrity of software
objects, and it significantly reduces energy consumption for
both software object updating and modification checking.
Luo et al. [48] achieved energy saving using an opportunistic
routing algorithm that ensures a minimal-power low-residual
energy, and which is focused on minimization of energy con-
sumption and maximization of network lifetime of data relay
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in one-dimensional queue networks. The current researches
on energy efficiency are mainly based on following aspects:
improvement of data forwarding mechanism of sensor itself,
optimization of deployment of network nodes, and devel-
opment of new energy-saving algorithms. Along with the
expanded deployment of IWSNs to enhance energy efficiency
more attention should be paid to continuity.

Since the wireless communication has a character of radio
broadcasting, wireless networks are easily accessed by both
authorized users and unauthorized visitors. For that reason,
IWSNs are more vulnerable than industrial wire networks,
and invasive intrusion may lead to serious consequences for
smart factory. Sun et al. [49] proposed a fountain-coding (FC)
aided relaying scheme, where a secure cooperative transmis-
sion is guaranteed by accumulating the required number of
FC packets. Zou and Wang [50] proposed an optimal sensor
scheduling scheme to improve the physical-layer security of
industrial WSNs against the eavesdropping attack, and they
also conducted an asymptotic intercept probability analy-
sis to characterize diversity gains of round-robin scheduling
and optimal sensor scheduling. Dong and Liu [51] proposed
robust and secure time-synchronization protocol to defend
from Sybil attacks to the sensor networks. Due to limited
computing power and networks resources, it is impossible to
apply generic security protocols and mechanisms directly to
the IWSNs. Therefore, IWSNs are faced with greater security
challenges than public networks.

The equipment monitoring and information interaction are
convenient for smart factory with IWSNs because they accel-
erate the progress of intelligent manufacturing. The IWSNs
should meet the requirements for reliability and real-time
data transmission. Because of uncertainty of position, energy
efficiency of IWSNs constrains its expansion. When a large-
scale equipment accesses to the industrial networks, network
security is very important. In the IWSNs scenarios such as
mass connection, low-power consumption, and wide cover-
age, newwireless communication technologies (e.g., NB-IoT,
5G, LTE, and 3GPP) provide low latency and high reliabil-
ity. However, certain measures should be taken to improve
robustness of signal propagation in complex electromagnetic
environment and extend working hours of networks nodes.
Accordingly, networks standardization and security defense
need further improvement.

B. RELATED TECHNOLOGIES
The application of network technology in smart factory pro-
vides reliable and supportable information service. However,
the implementation of industrial internet still faces with many
problems such as information interaction between equipment,
flexible configuration of networks, and transmission delay.
Some of key related technologies are described in detail in
the following.

1) OPC UA-BASED INTERACTION IN MULTI-AGENT SYSTEMS
The intelligent manufacturing system is a multi-agent system
which consists of task-driven intelligent equipment, where

agent is characterized by autonomy, heterogeneity and decen-
tralization [22]. Leitão et al. [52] pointed out that OPC UA
is transferred from the original communication architecture
(e.g., the Component Object Model (COM) standard) to the
service-oriented architecture with a cross platform, in which
way the communication among equipment and intelligent
manufacturing system is provided. With the standardization
of OPC UA, a new opportunity for multi-agent technology
is created. Girbea et al. [53] designed a service-oriented
architecture for optimization of industrial application, where
OPC UA is used to connect everysub-manufacturing system
and ensure real-time communication between devices in stan-
dardized and unifiedmanner. Fernbach et al. [54] proposed an
OPC UA information modelling framework which provides a
holistic information base. Hence, the multi-agent architecture
can integrate agent-based system into the existing manufac-
turing site using a semantic method.

The multi-agent system is a system of coordinated solving
of large-scale complex problems with the cooperation of
every agent. Besides data transmission, the OPC UA can be
used to integrate production data into manufacturing environ-
ment and provide semantic annotation for every agent. Due
to the construction of data source and receiver, the OPC UA
can allocate all manufacturing resources including embedded
system to the specific areas and extensible computing nodes
through the address space and pre-defined model. Further,
the OPC UA solves the problem related to unified access
to the information of different systems. The OPC UA-based
interaction in multi-agent systems makes all agent coordinate
with each other to solve problems in a parallel manner, which
effectively improves the problem solving efficiency. Thus,
the development of OPC UA is of high importance because
of redundancy, which is featured with adjustable overdue
settings, error detection, and automatic correction. Therefore,
the communication tools which are in accordance with the
OPC UA standard can deal with the communication errors
and failures easily.

2) SOFTWARE DEFINED INDUSTRIAL NETWORKS
Network technology is used to integrate internal and exter-
nal resources in smart factory in order to form compre-
hensive, unified, and high covering manufacturing resource.
Therefore, it is crucial to achieve network scalability and
adaptive transmission [55], [56]. Making network config-
uration flexible is a key issue for researchers. The SDNs
simplify the required hardware with centralized control
by a software, which facilitates network management and
satisfies requirements of dynamic networks for intelligent
manufacturing [57], [58].

As the IIoT advances, the network becomes overloaded
due to a large number of connections between heterogeneous
equipment. Bizanis and Kuipers [59] supposed that SDNs
and networks virtualization technology provide scale and
versatility necessary for IoT service, and they pointed out that
SDNs could be used together with machine learning tech-
nology to make network more intelligent and self-adaptive.
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Wan et al. [60] proposed a software-defined IIoT architec-
ture which can determine network resource allocation and
accelerate information exchange by an easily customizable
networking protocol. Using this architecture, some innovative
industrial applications can be realized through well-defined
APIs. The OpenFlow [61], [62], which is a novel switched
internetwork model, promotes implementation of SDNs [63].
The application of OpenFlow drastically reduces complexity
of control plane, increases programmability and extensibility,
and provides a gradual adoption path [64]. Though the Open-
Flow is not a sole standard that supports SDN technology, its
rules have been generally accepted. Namely, the OpenFlow-
based SDN deployment has been already used in industrial
scenarios, such as intranets and data center.

Currently, the basic network system of manufacturing
enterprises is consisted of different types of communica-
tion devices (e.g., routers, switches, and services). There-
fore, present network management problems are as follows:
(1) work-flow of network security is complex [65], and it is
difficult to locate network failure; (2) traditional networks
cannot effectively support a real-time cloud manufacturing;
in addition, it is crucial to establish the coordination in multi-
layer network; and lastly, (3) it is difficult to adjust net-
work bandwidth in real time according to the flow demand
of data acquisition, which leads to low utilization of net-
work resources. The solutions to the above problems require
an intelligent network management. The SDNs framework,
which makes network programmable by separating the con-
trol layer from the data transmission layer is presented in
Fig. 3. This separation meets demand on centralized control
of network and increases flexibility of configuration and
operation of data center. The OpenFlow-based SDNs pro-
vide a good platform for innovative network applications and
development of IIoT.

FIGURE 3. The SDN framework in smart factory.

3) DEVICE TO DEVICE COMMUNICATION
The contradictions between rapid growth of intelligent equip-
ment and limited bandwidth of industrial networks become
increasingly prominent in smart factory [66], [67]. The D2D
communication refers to the communication wherein devices
directly exchange information with neighbors under the

control of communication system. In common cellular net-
works, an intelligent equipment can use D2D communication
technology for direct communication via an isotropic antenna
at every base station. This technology provides a new way
for low-latency communication, large data transmission, and
massive access to the mobile terminal. Holfeld et al. [68]
stated that LTE-based wireless technology can provide new
services for factory automation. On the other hand, 5G com-
munication technology brings new opportunities to the auto-
mated wireless communication technology. Liu et al. [69]
described the challenges and potential solutions to the imple-
mentation of machine-type communication system and pre-
sented a roadmap of current cellular technologies toward
5G mobile systems capable of fully-machine type commu-
nication(MTC). Pratas and Popovski [70] proposed network-
assisted D2D schemes that enable the cooperation between
machine-type devices and standard cellular devices, and meet
the MTC outage requirement by maximizing the rate of
broadband services. Bagaa et al. [71] proposed an opti-
mal solution that uses D2D communication to reduce the
overhead of MTC devices in 5G networks, and which aims
to decrease energy consumption and data transfer delay at
eNodeBs. Yu et al. [72] proposed a D2D-communication-
based system underlying cellular networks to improve local
services, where optimal resource allocation and power con-
trol between cellular and D2D connections were analyzed for
different resource sharing modes.

FIGURE 4. The D2D communication in smart factory.

Once the D2D communication link is established in com-
munication network, data transmission is free of core device
and interference from the middleware, which can reduce
pressure on core network in communication system, improve
spectrum utilization and networks throughput, and expand
network capacity. The D2D-based communication in smart
factory is presented in Fig. 4. The D2D communication tech-
nology brings high-quality network services to the intelli-
gent manufacturing. Although, a small-scale distribution of
data packets is more convenient, there are still many chal-
lenges related to the introduction of D2D communication
technology into cellular networks. For instance, it is difficult
to switch network interaction from D2D communication to
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cellular communication, and spectrum reuse in D2D commu-
nication causes interference.

4) EDGE COMPUTING
Edge computing denotes an open platform with many fea-
tures such as networking, computing, storage, and appli-
cation. Edge computing is performed at the network edge
near to device or data source. Moreover, edge computing
provides intelligent services that meet key requirements of
intelligent manufacturing for agile connection, real-time pro-
cessing, data cleaning, and privacy protection [73], [74].
Brito et al. [75] supposed that deployment of programmable
fog nodes, which is attributed to inter-node Peer-to-Peer
(P2P) communication and services orchestrationwithout cen-
tralized control, could increase flexibility, reliability and effi-
ciency. Pizoń et al. [76] argued that edge computing enables
dynamic monitoring and control of manufacturing process.
Meanwhile they pointed out that edge computing requires
special IT ecosystem to build dynamic systems for transfer
of production data. Georgakopoulos et al. [77] presented a
manufacturing roadmap of IoT and edge cloud computing to
address elastic and virtual manufacturing resources, which
provides opportunities for real-timemonitoring of production
KPIs and smart inventory management.

In the context of distributed computing based on hetero-
geneous networks, the concept of edge computing is closely
related to distributed autonomy in industry. Edge computing
combines disperse treatment with centralized upload. This
mode provides an effective use of network bandwidth and
ensures autonomy, security and robustness of manufactur-
ing system. Fig. 5 shows the generic architecture of edge
computing. The middle layer is edge computing platform.
The lower layer controls manufacturing equipment with the
characteristics of low latency, interoperability, autonomy, and
adaptability.

FIGURE 5. The generic architecture of edge computing.

The upper layer reduces pressure to the core network,
optimizes data transmission, and provides support for appli-
cation extension. The edge computing integrates opera-
tion technology with ICT, while its distributed control

system interacts with physical system with high stability.
Additionally, edge computing makes a full use of embed-
ded computing of terminal-side equipment, which provides
autonomy of equipment with a disperse treatment. Mean-
while, the edge computing that is coordinated with cloud
computing increases intelligence of the entire manufacturing
system. As edge intelligence advances, communication and
computing performances in distributed perception, decision-
making and control will change significantly.

V. DATA APPLICATION LAYER
The semantic association between manufacturing data is
established by ontology model [78]. The essence of data
application is to discover knowledge from data resources
and build the industrial value chain. The industrial big data
mainly include structured data and semi-structured data.
As data mining technology advances, data-driven innovation
will further promote intelligent manufacturing.

A. ONTOLOGY-BASED MANUFACTURING MODEL
Considering the large amount of manufacturing resources,
resources concept may vary among different perspectives.
A formal description is presented by ontology for domain
knowledge. Namely, ontology is a semantic representation of
related concepts and their relationship in intelligent manufac-
turing. It is significant to construct the ontology for knowl-
edge sharing, reuse, and reasoning. Chungoora et al. [79]
presented a model-driven method with ontology to achieve
the interoperability and the knowledge sharing for manufac-
turing system across multiple platforms in product lifecycle.
Usman et al. [80] supposed that a verifiable formal semantic
base could solve the problem of inappropriate interpretation
of manufacturing concepts, and that formal manufacturing
reference ontology is a key component of future interoperable
manufacturing system. Wang et al. [81] proposed a cloud-
based manufacturing semantic model which can be used
to obtain general task ontology construction and task sub-
ontology matching. Alsafi and Vyatkin [82] proposed an
approach for fast reconfiguration of modular manufacturing
systems, which is based on the reconfiguration agent with
ontology. The ontology-based model achieves standardized
terms and semantic knowledge for decision-making or other
applications in intelligent manufacturing [83].

The ontology-based modeling of manufacturing resources
provides a novel technical reference for construction of smart
factory. Due to the improvement of manufacturing system
configuration, the ontology-based model promotes event-
driven interoperability in smart factory. Ontology- based
applications are able to optimize scheduling for manufac-
turing resources and provide a semantic basis for consistent
description of interactions between different applications.
The modeling language for manufacturing ontology (e.g., the
Web Ontology Language) has rich semantic expression
ability and support reasoning mechanism. Additionally,
the ontology-based modeling for intelligent manufactur-
ing should align the following criteria: clarity, consistency,
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FIGURE 6. Ontology-based domain modeling method.

extendibility, coding minimum deviation, and ontology min-
imum commitment.

As shown in Fig. 6, the ontology-basedmodeling combines
knowledge base with database to achieve semantic reasoning,
and this method decouples data processing from specific
applications. The data-centric architecture has both flexibility
and universality. The ontology-based manufacturing model
provides a new research direction in fault diagnosis, equip-
ment health prediction, and active preventive maintenance in
smart factory.

B. APPLICATIONS OF BIG DATA IN MANUFACTURING
The big data in smart factory mainly include real-time
sensor data, machine log, and manufacturing process data,
which have large volume, multiple sources, and spare value.
In the context of intelligent manufacturing, the applications
of big data develop rapidly in industrial supply chain anal-
ysis and optimization, product quality control, and active
maintenance [84]–[87].

1) ACTIVE MAINTENANCE BASED ON BIG DATA
Proper operation of intelligent equipment is a guarantee
of continuous production in the smart factory, where oper-
ation conditions have an important impact on equipment
utilization and productivity. Data mining technology brings
new breakthroughs to failure prediction and active main-
tenance. Wan et al. [88] proposed a manufacturing big
data solution for active preventive maintenance in manu-
facturing environment, which combines a real-time active
maintenance mechanism with an off-line prediction method.
Regev and Benson-Karhi [89] proposed a segmented model
for preventive maintenance of semiconductor manufac-
turing equipment, namely they presented both paramet-
ric and non-parametric models for preventive maintenance.
Hashemian and Bean [90] discussed the limitations of time-
based equipment maintenance methods and advantages of
predictive and online maintenance techniques for early iden-
tification of equipment failure. Xiong et al. [91] used data
mining to identify bearing faults in wind turbines, and they

FIGURE 7. Open application architecture for active maintenance based on
manufacturing big data.

built models for bearing faults prediction based on historical
wind turbine data.

The regular maintenance in traditional mode just wastes
resource and time. In contrast, active maintenance based on
big data can provide necessary maintenance service. The
active maintenance reduces machine downtime, optimizes
resource utilization, and increases production. In the mean-
time, the maintenance cost is also reduced. The open appli-
cation architecture of active maintenance based on manufac-
turing big data is presented in Fig. 7. The requirements for
active maintenance of production facilities are as follows:
(1) improve intelligence of workshop equipment; (2) coop-
erate with domain experts; and (3) express knowledge pro-
fessionally. The machine learning and statistical analysis
are the mainstream approaches of active maintenance.
However, many factors should be considered. Such as uncer-
tainty of production process, integration of different meth-
ods and model applicability. Presently, active maintenance
of complex equipment still lacks the effective methods, thus
further improvement is needed.

2) PRODUCT DESIGN OPTIMIZATION BASED ON
MANUFACTURING BIG DATA
With the development of IoT technology, it becomes conve-
nient to collect the product data. At present, the optimization
based on big data in manufacturing is effective on the stages
of logistics, warehousing, and selling. Analysis technology
based on big data is used in product design, which takes
advantage of knowledge discovery and trend prediction of
data. Graening and Sendhoff [92] proposed a shape mining
as a framework, based on engineering design data, which
was applied to the passenger car design. Williams et al. [93]
developed a big data management infrastructure with seman-
tic technologies, which provides unified data access layer and
consistent approach to analytic execution. Bae and Kim [94]
proposed the apriori and C5.0 algorithms for data mining,
and mining results were attributed as knowledge to provide
the suggestions for product design and marketing. However,
if data receiver and feedback mechanism are added to the
traditional product, the product itself will become the data
source for design optimization without affecting its use.
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In addition, the product logs, maintenance data, and user data
will become the valuable resources to build product informa-
tion model. The scientific and reasonable product evaluation
results can be obtained by data fusion and data mining, thus
these technologies represent the basis for design of a next-
generation product.

Data mining helps designers to transform big data into
enlightening knowledge using selection, analysis and mod-
eling methods. The data fusion technology can analyze the
same object based on multiple data resource. The data mining
technology is introduced in optimization of product design
because it can deal with fuzzy and uncertain reasoning results
caused by a designer. However, the product optimization
design based on big data lacks the knowledge discovery
tools. Therefore, we cannot take full advantage of potential
information from design examples. The decision-making,
which is based on existing knowledge, is less flexible in
design optimization. The product design optimization based
on big data requires multidisciplinary knowledge. Therefore,
the other interdisciplinarities associated with big data, such as
deep learning and artificial intelligent, have become impor-
tant research directions in product design optimization.

VI. APPLICATION CASE STUDY
From the view of intelligent manufacturing, manufacturing
equipment should be equipped with the abilities of edge com-
puting, environment perception, and coordination between
equipment. The smart factory, which is a cyber-physical
production system (CPPS), integrates intelligent sensors,
embedded terminal systems, intelligent control system, and
communications facilities. The peer to peer interaction
(e.g., person to equipment, equipment to equipment, service
to service) is achieved by CPPS. Therefore, building of smart
factory should take into consideration manufacturing char-
acteristics to meet rapidly-changing market needs [95], [96].
In the following, we use the laboratory prototype platform as
an example to explore typical characteristics of smart factory.
The laboratory prototype platform, which represents a candy
packing production line, is shown in Fig. 8.

FIGURE 8. Prototype platform for the validation of key technologies.

According to the smart factory architecture, the prototype
platform had four layers including the physical resources
layer, the cloud service layer, the terminal layer, and the
network layer. The prototype layers were as follows.

• The physical resources layer was consisted of intelli-
gent equipment, conveyor equipment, packing products.
It was mainly responsible for execution of tasks such as
processing, monitoring, and assembling. The manufac-
turing process information was the primary data source
for upper application.

• The cloud service layer contained the cloud platform
(a service cluster system based on the Hadoop archi-
tecture) which provided data storage and computing
resource for data application. The ontology model of
packing line was built on the cloud platform, and a
relationship between objects was established in two
dimensions: structure and interaction. The Protégé was
used to build application-oriented ontology, and com-
plex constraints were expressed by semantic web rule
language. The manufacturing data were uploaded to the
cloud platform to form a semantic data model. Based on
the knowledge base, the Jena tool was used to reason
the equipment operating mode. This layer provides sup-
ports for the fault alarm, the resource allocation, and the
scheduling optimization.

• The terminal layer mainly included end-user devices,
such as smart phones, desktop computers and electri-
cal boards, which were distributed in workshop, office,
monitoring center and other regions. Terminal devices
were used to visualize the results of cloud processing,
and they supported remote monitoring of operation and
maintenance. Moreover, customers were able to check
the order in real time using the intelligent terminal.

• The network layer was used to connect layers within
smart factory. According to the distributed control,
the connection between controller and actuator was
implemented by field bus, Modbus, and EtherCAT. The
connection between equipment was achieved by
the combination of Ethernet and DDS, which formed
the self-organized network. The connection between
equipment and cloud platform was implemented by
integration of Ethernet and OPC UA, which provided
data interaction.

The basic flow of candy packing is as follows. Firstly, cus-
tomers choose candy and purchase it online. Then, the order
information is sent directly to the manufacturing system.
Finally, the completed order is automatically transported by
logistical system of smart factory. The candy packaging line
has typical characteristics of smart factory, such as high
interconnection, dynamical reconfiguration, deep integration,
and so on.

In the experiment, we took into account factors such as
equipment availability, equipment performance, and qual-
ified rate of products. Next, we developed a cloud-aided
manufacturing system, which gave suggestions on schedul-
ing optimization of self-organized equipment. The six-month
experiment was performed on the equipment of candy pack-
aging line. The smart meter is used to measure the total
electrical energy for the equipment in the lab. We calculated
the related parameter every day, and the average was took
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FIGURE 9. The overall effectiveness and influential factors of prototyping
platform.

as the value of the month. As shown in Fig. 9, the Over-
all Equipment Effectiveness (OEE) of tested equipment is
improved from 0.42 to 0.82 using the cloud-aided manu-
facturing system. Compared to the centralized scheduling,
the self-organized scheduling with the cloud-aided manufac-
turing system has more remarkable effect. In general, the
candy packing line is an example which was used to explore
flexibility, efficiency, and transparency of smart factory.

VII. ISSUES AND CHALLENGES
Due to the rapid progress of manufacturing, smart factory
should be flexible and reliable, and satisfy the high qual-
ity standards. The technological breakthroughs bring many
opportunities for the implementation of intelligent manufac-
turing. However, there are still some issues and challenges.

A. INTELLIGENT REQUIREMENTS OF EQUIPMENT
Due to the foundation place of the underlying equipment,
it is crucial to monitor and control the underlying man-
ufacturing resource for reconfiguration of production line,
dynamic scheduling, and information fusion in smart fac-
tory. Therefore, it is necessary to improve the intelligence
level of manufacturing equipment. The configurable con-
troller and self-reconfigurable robots can provide potential
solutions to function expansion of manufacturing units. In the
context of hybrid production, the coordination and informa-
tion interaction among the multi-module manufacturing units
should be explored. The optimized combination of programs
should be made to enhance the workshop efficiency. The
intelligent equipment should be able to collect production
information, provide compatible data interface, and support
generic communication protocol. In addition, the equipment
could perceive manufacturing environment and cooperate
with other equipment in smart factory. Flexible manufactur-
ing is a typical feature of smart factory, but there are still
many problems such as strong proprietary of production line,
dynamic scheduling, and tight coupling between functions
and devices.

In the context of intelligent manufacturing, the data
generated by intelligent equipment is mostly unstructured.

The high-speed operation inworkshop needs higher standards
of data acquisition. Namely, data acquisition is the basis of big
data analytics, where physical resource should: (1) support
fine-grained and efficient data acquisition, and achieve visi-
bility of manufacturing process; (2) integrate heterogeneous
data in a unified system by generic protocols (e.g., RFID,
ZigBee, and NFC); and (3) improve extensibility of controller
for access to the core industrial networks.

B. DEEP INTEGRATION NETWORKS
The IIoT facilitates a deep integration of information and
industrialization. The advanced IIoT technology is important
for the implementation of the smart factory. The mature and
generic standards have not been formed yet in the field of
IWSNs, and the standardization process of IWSNs should be
promoted continuously. In the complicated electromagnetic
environment, data transmission should meet the requirements
of reliability and real time equipment control. Due to the
limited energy, energy efficiency is a key issue that affects
the deployment of IWSNs. Moreover, because of the access
of large-scale devices, network security also becomes very
important. As the information technologies have advanced
(e.g., NB-IoT, 5G, LTE-Advanced, and 3GPP), a signifi-
cant progress has been made in industrial wireless networks.
These progress has provided new solutions for key issues
of IWSNs, such as reliability, real-time performance, energy
efficiency, and security strategy.

Development of information technologies has brought
opportunities to the intelligent manufacturing. The OPC
UA-based interaction facilitates the coordination between
intelligent agents because a multi-agent system can solve
problems in a parallel way. The OpenFlow-based SDN tech-
nology provides more flexible solution for network config-
uration, which enhances network management ability. The
D2D technology makes communication between devices
more efficient and expands network capacity. The edge com-
puting equips terminal system with decision-making ability
and autonomy. Additionally, high transmission rate of data,
low duty cycle, and IP network availability are the require-
ments of network layer which denote the foundation for
ubiquitous communication in smart factory.

C. KNOWLEDGE-DRIVEN MANUFACTURING
The large amount of manufacturing data provides a com-
prehensive description of the smart factory, but manufactur-
ing data cannot be utilized directly due to high dimension,
variable metric, and high noise. Consequently, it is impor-
tant to define the data semantic through the manufacturing
glossary. The domain ontology provides a potential solution
to data semantic for data application. Using the big data of
intelligent manufacturing, the active maintenance of equip-
ment, the optimization design for manufacturing product,
and the optimization of production line is achieved in the
smart factory. The knowledge-driven manufacturing brings
opportunities to transformation from traditional industry to
intelligent industry, meanwhile the data mining technology is
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a serious challenge to enterprises. Moreover, the data-based
optimization of product design needs to add data receiver and
feedback mechanism to the traditional product, and then the
product itself will become the data source. Consequently, the
product will become a participant in the process of data col-
lection, which provides technical information to the product
designer.

In order to achieve a knowledge-based intelligent manu-
facturing, the manufacturing entity should be able to provide
data collection, data fusion, and extraction of manufacturing
resource characteristics. The smart factory should integrate
data resources (e.g., supply chains, product data, and logistic
data) into service platform, which provides product services
such as sales forecasting and quality analysis. In general, data
mining and knowledge discovery provide a scientific decision
for planning and scheduling of manufacturing product.

VIII. CONCLUSIONS
The smart factory is an intelligent production system which
utilizes the integration of manufacturing and services. It inte-
grates communication process, computing process, and con-
trol process to meet the industrial demands. In this paper,
we proposed the hierarchical architecture of smart factory
according to the newly research. Then the main issues of
key technologies involved in the physical resource layer, the
network layer, and the data application layer in the smart
factory are analyzed, and some application cases were dis-
cussed to explore potential solutions for key technologies.
Finally we established verification platform by means of the
proposed key technologies, which showed that theOEE ration
is improved. The compound talents and multi-field coopera-
tion is required for the implementation of smart factory. The
research of key technologies not only refers to the integration
of information technology as a main body, but also includes
the traditional disciplines such as control theory, mechanical
technology, and materials and energy. As the big data tech-
nology advances, the data-based virtual manufacturing mode
will improve product quality, increase production efficiency,
and reduce energy consumption. Furthermore, the intelligent
manufacturing based on big data will lead to the revolution of
traditional industry.

REFERENCES
[1] M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg, ‘‘How virtu-

alization, decentralization and network building change the manufacturing
landscape: An industry 4.0 perspective,’’ Int. J. Mech., Ind. Sci. Eng., vol. 8,
no. 1, pp. 37–44, 2014.

[2] F. Li, J. Wan, P. Zhang, D. Li, D. Zhang, and K. Zhou, ‘‘Usage-specific
semantic integration for cyber-physical robot systems,’’ ACM Trans.
Embedded Comput. Syst., vol. 15, no. 3, 2016, Art. no. 50.

[3] J. Wan, D. Zhang, Y. Sun, K. Lin, C. Zou, and H. Cai, ‘‘VCMIA: A novel
architecture for integrating vehicular cyber-physical systems and mobile
cloud computing,’’ Mobile Netw. Appl., vol. 19, no. 2, pp. 153–160, 2014.

[4] J. Wan, H. Yan, D. Li, K. Zhou, and L. Zeng, ‘‘Cyber-physical systems
for optimal energy management scheme of autonomous electric vehicle,’’
Comput. J., vol. 56, no. 8, pp. 947–956, 2013.

[5] Europe 2020: A Strategy for Smart, Sustainable and Inclusive Growth,
European Commission, Brussels, Belgium, 2010.

[6] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, ‘‘Industry
4.0,’’ Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.

[7] J. Zhou, ‘‘Intelligent manufacturing-main direction of ‘Made in China
2025,’’’ China Mech. Eng., vol. 26, no. 17, pp. 2273–2284, 2015.

[8] J. P. Holdren, T. Power, G. Tassey, A. Ratcliff, and L. Christodoulou,
‘‘A National strategic plan for advanced manufacturing,’’ US Nat. Sci.
Technol. Council, Washington, DC, USA, Tech. Rep., 2012. [Online].
Available: http://www.docin.com/p-391856652.html

[9] J. Wan, M. Yi, D. Li, C. Zhang, S. Wang, and K. Zhou, ‘‘Mobile services
for customization manufacturing systems: An example of industry 4.0,’’
IEEE Access, vol. 4, pp. 8977–8986, 2016.

[10] N. Benkamoun, W. ElMaraghy, A.-L. Huyet, and K. Kouiss, ‘‘Architecture
framework for manufacturing system design,’’ Procedia CIRP, vol. 17,
pp. 88–93, 2014.

[11] A. Radziwon, A. Bilberg, M. Bogers, and E. S. Madsen, ‘‘The smart fac-
tory: Exploring adaptive and flexible manufacturing solutions,’’ Procedia
Eng., vol. 69, pp. 1184–1190, Jan. 2014.

[12] J. Lin et al., ‘‘Application technology of cloud manufacturing for
aerospace complex products,’’ Comput. Integr. Manuf. Syst., vol. 22, no. 4,
pp. 883–896, 2016.

[13] J. Wan, S. Tang, Q. Hua, D. Li, C. Liu, and J. Lloret, ‘‘Context-
aware cloud robotics for material handling in cognitive industrial Inter-
net of Things,’’ IEEE Internet Things J., to be published, doi: 10.1109/
JIOT.2017.2728722.2017.

[14] J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V. Vasilakos,
‘‘Cloud robotics: Current status and open issues,’’ IEEE Access, vol. 4,
pp. 2797–2807, 2016.

[15] Y. Lyu and J. Zhang, ‘‘Big-data-based technical framework of smart
factory,’’ Comput. Integr. Manuf. Syst., vol. 22, no. 11, pp. 2691–2697,
2016.

[16] D. Zhang, J. Wan, C.-H. Hsu, and A. Rayes, ‘‘Industrial technologies and
applications for the Internet of Things,’’ Comput. Netw., vol. 101, pp. 1–4,
Jun. 2016.

[17] Z. Shu, J. Wan, D. Zhang, and D. Li, ‘‘Cloud-integrated cyber-physical
systems for complex industrial applications,’’Mobile Netw. Appl., vol. 21,
no. 5, pp. 865–878, 2016.

[18] M. Fiasché, G. Ripamonti, F. G. Sisca,M. Taisch, andA.A.Valente, ‘‘Man-
agement integration framework in a shop-floor employing self-contained
assembly unit for optoelectronic products,’’ in Proc. IEEE 1st Int. Forum
Res. Technol. Soc. Ind. Leveraging Better Tomorrow (RTSI), Turin, Italy,
Sep. 2015, pp. 569–578.

[19] B. Piranda and J. Bourgeois, ‘‘A distributed algorithm for reconfigura-
tion of lattice-based modular self-reconfigurable robots,’’ in Proc. 24th
Euromicro Int. Conf. Parallel, Distrib., Netw.-Based Process. (PDP),
Heraklion, Greece, Feb. 2016, pp. 1–9.

[20] A. Valente, ‘‘Reconfigurable industrial robots—An integrated approach to
design the joint and link modules and configure the robot manipulator,’’
in Advances in Reconfigurable Mechanisms and Robots II, vol. 36. Cham,
Switzerland: Springer, 2016, pp. 779–794.

[21] S. Wang, C. Zhang, and J. Wan, ‘‘A smart factory solution to hybrid
production of multi-type products with reduced intelligence,’’ in Proc.
IEEE Inf. Technol., Netw., Electron. Autom. Control Conf., Chongqing,
China, May 2016, pp. 848–853.

[22] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, ‘‘Towards smart fac-
tory for Industry 4.0: A self-organized multi-agent system with big data
based feedback and coordination,’’ Comput. Netw., vol. 101, pp. 158–168,
Jun. 2016.

[23] W. Dai, V. Vyatkin, J. H. Christensen, and V. N. Dubinin, ‘‘Bridging
service-oriented architecture and IEC 61499 for flexibility and interoper-
ability,’’ IEEE Trans. Ind. Informat., vol. 11, no. 3, pp. 771–781, Jun. 2015.

[24] M. G. Valls, I. R. Lopez, and L. F. Villar, ‘‘ILAND: An enhanced middle-
ware for real-time reconfiguration of service oriented distributed real-time
systems,’’ IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 228–236, Feb. 2013.

[25] M. Short and K. Burn, ‘‘A generic controller architecture for intelli-
gent robotic systems,’’ Robot. Comput.-Integr. Manuf., vol. 27, no. 2,
pp. 292–305, 2011.

[26] L. Morales-Velazquez, R. de J. Romero-Troncoso, R. A. Osornio-Rios,
G. Herrera-Ruiz, and E. Cabal-Yepez, ‘‘Open-architecture system based
on a reconfigurable hardware–software multi-agent platform for CNC
machines,’’ J. Syst. Archit., vol. 56, no. 9, pp. 407–418, 2010.

[27] W. Lepuschitz, A. Zoitl, M. Vallée, and M. Merdan, ‘‘Toward self-
reconfiguration of manufacturing systems using automation agents,’’ IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 41, no. 1, pp. 52–69,
Jan. 2011.

[28] M. Adamski and J. Tkacz, ‘‘Formal reasoning in logic design of recon-
figurable controllers,’’ IFAC Proc. Volumes, vol. 45, no. 7, pp. 1–6,
2012.

6516 VOLUME 6, 2018

http://dx.doi.org/10.1109/JIOT.2017.2728722.2017
http://dx.doi.org/10.1109/JIOT.2017.2728722.2017


B. Chen et al.: Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges

[29] H. J. Kim, Y. K. Lee, Y. A. Jeon, and J. Y. Son, ‘‘ICT convergence-
based application service development to support the re-configurability
of door trim assembly line,’’ in Proc. Int. Conf. Inf. Commun. Technol.
Converg. (ICTC), Jeju, South Korea, Oct. 2016, pp. 1126–1128.

[30] E. Järvenpää, N. Siltala, and M. Lanz, ‘‘Formal resource and capability
descriptions supporting rapid reconfiguration of assembly systems,’’ in
Proc. IEEE Int. Symp. Assembly Manuf. (ISAM), Fort Worth, TX, USA,
Aug. 2016, pp. 120–125.

[31] D. Gyulai, B. Kádár, A. Kovács, and L.Monostori, ‘‘Capacity management
for assembly systems with dedicated and reconfigurable resources,’’ CIRP
Ann., vol. 63, no. 1, pp. 457–460, 2014.

[32] K. K. Goyal and P. K. Jain, ‘‘Design of reconfigurable flow lines using
MOPSO and maximum deviation theory,’’ Int. J. Adv. Manuf. Technol.,
vol. 84, nos. 5–8, pp. 1587–1600, 2016.

[33] D. Zhang, Y. Qian, J. Wan, and S. Zhao, ‘‘An efficient RFID search
protocol based on clouds,’’ Mobile Netw. Appl., vol. 20, no. 3,
pp. 356–362, 2015.

[34] R. Y. Zhong, Q. Y. Dai, T. Qu, G. J. Hu, and G. Q. Huang, ‘‘RFID-
enabled real-time manufacturing execution system for mass-customization
production,’’ Robot. Comput.-Integr. Manuf., vol. 29, no. 2, pp. 283–292,
2013.

[35] D. Zhang, Z. He, Y. Qian, J. Wan, D. Li, and S. Zhao, ‘‘Revisiting unknown
RFID tag identification in large-scale Internet of Things,’’ IEEE Wireless
Commun., vol. 23, no. 5, pp. 24–29, Oct. 2016.

[36] V. Coskun, B. Ozdenizci, and K. Ok, ‘‘A survey on near field commu-
nication (NFC) technology,’’ Wireless Pers. Commun., vol. 71, no. 3,
pp. 2259–2294, 2013.

[37] S. Choudhury, P. Kuchhal, R. Singh, and Anita, ‘‘ZigBee and Bluetooth
network based sensory data acquisition system,’’ Procedia Comput. Sci.,
vol. 48, pp. 367–372, Jan. 2015.

[38] M. Chen, Y. Ma, Y. Li, D. Wu, Y. Zhang, and C.-H. Youn, ‘‘Wearable 2.0:
Enabling human-cloud integration in next generation healthcare systems,’’
IEEE Commun. Mag., vol. 55, no. 1, pp. 54–61, Jan. 2017.

[39] R. A. Gupta and M.-Y. Chow, ‘‘Networked control system: Overview
and research trends,’’ IEEE Trans. Ind. Electron., vol. 57, no. 7,
pp. 2527–2535, Jul. 2010.

[40] T. Sauter, ‘‘The three generations of field-level networks—Evolution
and compatibility issues,’’ IEEE Trans. Ind. Electron., vol. 57, no. 11,
pp. 3585–3595, Nov. 2010.

[41] X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, ‘‘A review of
industrial wireless networks in the context of industry 4.0,’’Wireless Netw.,
vol. 23, no. 1, pp. 23–41, 2017.

[42] C. Zou, J. Wan, M. Chen, and D. Li, ‘‘Simulation modeling of cyber-
physical systems exemplified by unmanned vehicles with WSNs navi-
gation,’’ in Proc. 7th Int. Conf. Embedded Multimedia Comput. Technol.
Service, Gwangju, South Korea, Sep. 2012, pp. 269–275.

[43] J. Niu, L. Cheng, Y. Gu, L. Shu, and S. K. Das, ‘‘R3E: Reliable reactive
routing enhancement for wireless sensor networks,’’ IEEE Trans. Ind.
Informat., vol. 10, no. 1, pp. 784–794, Feb. 2014.

[44] F. Dobslaw, T. Zhang, and M. Gidlund, ‘‘End-to-end reliability-aware
scheduling for wireless sensor networks,’’ IEEE Trans. Ind. Informat.,
vol. 12, no. 2, pp. 758–767, Apr. 2016.

[45] D. Zhang, J. Wan, Q. Liu, X. Guan, and X. Liang, ‘‘A taxonomy of
agent technologies for ubiquitous computing environments,’’ KSII Trans.
Internet Inf. Syst., vol. 6, no. 2, pp. 547–565, 2012.

[46] Y. Gao, W. Dong, L. Deng, C. Chen, and J. Bu, ‘‘COPE: Improving energy
efficiency with coded preambles in low-power sensor networks,’’ IEEE
Trans. Ind. Informat., vol. 11, no. 6, pp. 1621–1630, Dec. 2015.

[47] J. Lee, L. Kim, and T. Kwon, ‘‘Flexicast: Energy-efficient software
integrity checks to build secure industrial wireless active sensor networks,’’
IEEE Trans. Ind. Informat., vol. 12, no. 1, pp. 6–14, Feb. 2016.

[48] J. Luo, J. Hu, D. Wu, and R. Li, ‘‘Opportunistic routing algorithm for relay
node selection in wireless sensor networks,’’ IEEE Trans. Ind. Informat.,
vol. 11, no. 1, pp. 112–121, Feb. 2015.

[49] L. Sun, P. Ren, Q. Du, and Y. Wang, ‘‘Fountain-coding aided strat-
egy for secure cooperative transmission in industrial wireless sensor
networks,’’ IEEE Trans. Ind. Informat., vol. 12, no. 1, pp. 291–300,
Feb. 2016.

[50] Y. Zou and G. Wang, ‘‘Intercept behavior analysis of industrial wireless
sensor networks in the presence of eavesdropping attack,’’ IEEE Trans.
Ind. Informat., vol. 12, no. 2, pp. 780–787, Apr. 2016.

[51] W. Dong and X. Liu, ‘‘Robust and secure time-synchronization against
sybil attacks for sensor networks,’’ IEEE Trans. Ind. Informat., vol. 11,
no. 6, pp. 1482–1491, Dec. 2015.

[52] P. Leitão, V. Marík, and P. Vrba, ‘‘Past, present, and future of indus-
trial agent applications,’’ IEEE Trans. Ind. Informat., vol. 9, no. 4,
pp. 2360–2372, Nov. 2013.

[53] A. Girbea, C. Suciu, S. Nechifor, and F. Sisak, ‘‘Design and implemen-
tation of a service-oriented architecture for the optimization of industrial
applications,’’ IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 185–196,
Feb. 2014.

[54] A. Fernbach, W. Kastner, S. Mätzler, and M. Wollschlaeger, ‘‘An OPC UA
information model for cross-domain vertical integration in automation sys-
tems,’’ in Proc. IEEE Emerg. Technol. Factory Autom. (ETFA), Barcelona,
Spain, Sep. 2014, pp. 1–8.

[55] Z. Shu et al., ‘‘Traffic engineering in software-defined networking: Mea-
surement and management,’’ IEEE Access, vol. 4, pp. 3246–3256, 2016.

[56] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu, ‘‘A scalable
and quick-response software defined vehicular network assisted by mobile
edge computing,’’ IEEE Commun. Mag., vol. 55, no. 7, pp. 94–100,
Jul. 2017.

[57] Y. Li and M. Chen, ‘‘Software-defined network function virtualization:
A survey,’’ IEEE Access, vol. 3, pp. 2542–2553, 2015.

[58] J. Liu, Q. Wang, J. Wan, J. Xiong, and B. Zeng, ‘‘Towards key issues of
disaster aid based on wireless body area networks,’’ KSII Trans. Internet
Inf. Syst., vol. 7, no. 5, pp. 1014–1035, 2013.

[59] N. Bizanis and F. A. Kuipers, ‘‘SDN and virtualization solutions for the
Internet of Things: A survey,’’ IEEE Access, vol. 4, pp. 5591–5606, 2016.

[60] J. Wan et al., ‘‘Software-defined industrial Internet of Things in the con-
text of industry 4.0,’’ IEEE Sensors J., vol. 16, no. 20, pp. 7373–7380,
Oct. 2016.

[61] Flowgrammable: Driving the Next SDN Generation. Accessed:
Jul. 15, 2015. [Online]. Available: http://flowgrammable.org/
sdn/openflow/

[62] The ONF is an Operator Led Consortium. Accessed: Jun. 21, 2017.
[Online]. Available: http://www.opennetworking.org

[63] K. Lin, W. Wang, X. Wang, W. Ji, and J. Wan, ‘‘QoE-driven spec-
trum assignment for 5g wireless networks using SDR,’’ IEEE Wireless
Commun., vol. 22, no. 6, pp. 48–55, Dec. 2015.

[64] S. Das, G. Parulkar, and N. McKeown, ‘‘Why OpenFlow/SDN can suc-
ceed where GMPLS failed,’’ in Proc. Eur. Conf. Exhib. Opt. Commun.,
Amsterdam, Netherlands, Sep. 2012, pp. 1–3, paper Tu.1.D.1.

[65] Z. Shu, J. Wan, D. Li, J. Lin, A. V. Vasilakos, and M. Imran, ‘‘Security
in software-defined networking: Threats and countermeasures,’’ Mobile
Netw. Appl., vol. 21, no. 5, pp. 764–776, 2016.

[66] M. Chen, J. Wan, S. Gonzalez, X. Liao, and V. C. M. Leung, ‘‘A survey
of recent developments in homeM2M networks,’’ IEEE Commun. Surveys
Tuts., vol. 16, no. 1, pp. 98–114, 1st Quart., 2014.

[67] L. Kong, D. Zhang, Z. He, Q. Xiang, J. Wan, and M. Tao, ‘‘Embracing
big data with compressive sensing: A green approach in industrial wireless
networks,’’ IEEE Commun. Mag., vol. 54, no. 10, pp. 53–59, Oct. 2016.

[68] B. Holfeld et al., ‘‘Wireless communication for factory automation: An
opportunity for LTE and 5G systems,’’ IEEECommun.Mag., vol. 54, no. 6,
pp. 36–43, Jun. 2016.

[69] J. Liu et al., ‘‘High-efficiency urban traffic management in context-aware
computing and 5G communication,’’ IEEE Commun. Mag., vol. 55, no. 1,
pp. 34–40, Jan. 2017.

[70] N. K. Pratas and P. Popovski. (2013). ‘‘Low-rate machine-type commu-
nication via wireless device-to-device (D2D) links.’’ [Online]. Available:
https://arxiv.org/abs/1305.6783

[71] M. Bagaa, A. Ksentini, T. Taleb, R. Jantti, A. Chelli, and I. Balasingham,
‘‘An efficient D2D-based strategies for machine type communications
in 5G mobile systems,’’ in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Doha, Qatar, Apr. 2016, pp. 1–6.

[72] C.-H. Yu, K. Doppler, C. B. Ribeiro, and O. Tirkkonen, ‘‘Resource shar-
ing optimization for device-to-device communication underlaying cellular
networks,’’ IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2752–2763,
Aug. 2011.

[73] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[74] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya.
(2016). ‘‘Fog computing: Principles, architectures, and applications.’’
[Online]. Available: https://arxiv.org/abs/1601.02752

[75] M. S. De Brito, S. Hoque, R. Steinke, and A. Willner, ‘‘Towards pro-
grammable fog nodes in smart factories,’’ in Proc. IEEE Int. Workshops
Found. Appl. Self Syst., Augsburg, Germany, Sep. 2016, pp. 236–241.

[76] J. Pizoń and J. Lipski, ‘‘Perspectives for fog computing in manufacturing,’’
Appl. Comput. Sci., vol. 12, no. 3, pp. 37–46, 2016.

VOLUME 6, 2018 6517



B. Chen et al.: Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges

[77] D. Georgakopoulos, P. P. Jayaraman, M. Fazia, M. Villari, and R. Ranjan,
‘‘Internet of Things and edge cloud computing roadmap for manufactur-
ing,’’ IEEE Cloud Comput., vol. 3, no. 4, pp. 66–73, Jul. 2016.

[78] P. Shvaiko and J. Euzenat, ‘‘Ontology matching: State of the art and future
challenges,’’ IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 158–176,
Jan. 2013.

[79] N. Chungoora et al., ‘‘A model-driven ontology approach for manufactur-
ing system interoperability and knowledge sharing,’’Comput. Ind., vol. 64,
no. 4, pp. 392–401, 2013.

[80] Z. Usman, R. I. M. Young, N. Chungoora, C. Palmer, K. Case, and
J. A. Harding, ‘‘Towards a formal manufacturing reference ontology,’’ Int.
J. Prod. Res., vol. 51, no. 22, pp. 6553–6572, 2013.

[81] T. Wang, S. Guo, and C.-G. Lee, ‘‘Manufacturing task semantic model-
ing and description in cloud manufacturing system,’’ Int. J. Adv. Manuf.
Technol., vol. 71, nos. 9–12, pp. 2017–2031, 2014.

[82] Y. Alsafi and V. Vyatkin, ‘‘Ontology-based reconfiguration agent for intel-
ligent mechatronic systems in flexible manufacturing,’’ Robot. Comput.-
Integr. Manuf., vol. 26, no. 4, pp. 381–391, 2010.

[83] X. Chang, R. Rai, and J. Terpenny, ‘‘Development and utilization of
ontologies in design for manufacturing,’’ J. Mech. Des., vol. 132, no. 2,
p. 021009, 2010.

[84] J.-F. Wan, D. Li, H.-H. Yan, and P. Zhang, ‘‘Fuzzy feedback scheduling
algorithm based on central processing unit utilization for a software-based
computer numerical control system,’’ Proc. Inst. Mech. Eng., B, J. Eng.
Manuf., vol. 224, no. 7, pp. 1133–1143, 2010.

[85] Z. Song, Y. Sun, J. Wan, and P. Liang, ‘‘Data quality management
for service-oriented manufacturing cyber-physical systems,’’ Comput.
Elect. Eng., vol. 64, pp. 34–44, Nov. 2017, doi: 10.1016/j.compeleceng.
2016.08.010.2016.

[86] W. Yuan, P. Deng, T. Taleb, J. Wan, and C. Bi, ‘‘An unlicensed taxi iden-
tification model based on big data analysis,’’ IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 6, pp. 1703–1713, Jun. 2016.

[87] Y. Xu, Y. Sun, J. Wan, X. Liu, and Z. Song, ‘‘Industrial big data for
fault diagnosis: Taxonomy, review, and applications,’’ IEEE Access, to be
published, doi: 10.1109/ACCESS.2017.2731945.2017.

[88] J. Wan et al., ‘‘A manufacturing big data solution for active preventive
maintenance,’’ IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 2039–2047,
Aug. 2017.

[89] I. Regev and D. Benson-Karhi, ‘‘Segmentation models for the duration
of expected preventive maintenance in semiconductor fabs,’’ IEEE Trans.
Semicond. Manuf., vol. 29, no. 3, pp. 223–229, Aug. 2016.

[90] H. M. Hashemian and W. C. Bean, ‘‘State-of-the-art predictive main-
tenance techniques,’’ IEEE Trans. Instrum. Meas., vol. 60, no. 10,
pp. 3480–3492, Oct. 2011.

[91] J. Xiong, Q. Zhang, J. Wan, L. Liang, P. Cheng, and Q. Liang, ‘‘Data
fusion method based on mutual dimensionless,’’ IEEE/ASME Trans.
Mechatronics, to be published, doi: 10.1109/TMECH.2017.2759791.2017.

[92] L. Graening and B. Sendhoff, ‘‘Shape mining: A holistic data mining
approach for engineering design,’’ Adv. Eng. Informat., vol. 28, no. 2,
pp. 166–185, 2014.

[93] J. W. Williams et al., ‘‘Semantics for big data access & integration:
Improving industrial equipment design through increased data usability,’’
in Proc. IEEE Int. Conf. Big Data (Big Data), Santa Clara, CA, USA,
Oct./Nov. 2015, pp. 1103–1112.

[94] J. K. Bae and J. Kim, ‘‘Product development with data mining techniques:
A case on design of digital camera,’’ Expert Syst. Appl., vol. 38, no. 8,
pp. 9274–9280, 2011.

[95] S. Wang, J. Wan, D. Li, and C. Zhang, ‘‘Implementing smart factory
of industrie 4.0: An outlook,’’ Int. J. Distrib. Sensor Netw., vol. 2016,
Jan. 2016, Art. no. 3159805, doi: 10.1155/2016/3159805.

[96] S.Wang, J.Wan,M. Imran, D. Li, and C. Zhang, ‘‘Cloud-based smart man-
ufacturing for personalized candy packing application,’’ J. Supercomput.,
to be published, doi: 10.1007/s11227-016-1879-4.2016.

BAOTONG CHEN received the B.A. degree in
mechanical engineering from the Nanyang Insti-
tute of Technology, China, 2014. He is currently
pursuing the Ph.D. degree with the School of
Mechanical and Automotive Engineering, South
China University of Technology, China. His
research interests include cyber-physical systems,
industrial wireless networks, Internet of Things,
and embedded control systems.

JIAFU WAN (M’11) has been a Professor with
the School of Mechanical and Automotive Engi-
neering, South China University of Technology,
since 2015. He has directed 16 research projects,
including the National Key Research and Develop-
ment Project, the National Natural Science Foun-
dation of China, the High-level Talent Project
of Guangdong Province, and the Natural Science
Foundation of Guangdong Province. Thus far, he
has published over 140 scientific papers, includ-

ing over 80 SCI-indexed papers, over 20 IEEE transactions/journal papers,
12 ESI Highly Cited Papers, and 4 ESI Hot Papers. His research inter-
ests include cyber-physical systems, industry 4.0, smart factory, indus-
trial big data, industrial robot and Internet of Vehicles. His research
results have been published in several famous journals, such as the IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, the IEEE COMMUNICATIONS SURVEYS

ANDTUTORIALS, the IEEECommunicationsMagazine, the IEEETRANSACTIONS

ON INTELLIGENT TRANSPORTATION SYSTEMS, the IEEE Network, the IEEE
WIRELESS COMMUNICATIONS, the IEEE SYSTEMS JOURNAL, the IEEE SENSORS

JOURNAL, the IEEE INTERNET OF THINGS JOURNAL, and the ACM Transac-
tions on Embedded Computing Systems. He is a Senior Member of CMES
and CCF. He is the General Chair of the 2016 International Confer-
ence on Industrial IoT Technologies and Applications and the 7th EAI
International Conference on Cloud Computing (CloudComp 2016). He is
currently an Associate Editor for the IEEE ACCESS and on the Editorial
Board of PLOS One. He is also a Managing Editor for the International
Journal of Autonomous and Adaptive Communications Systems and the
International Journal of Arts and Technology and a Leading Guest Edi-
tor for several SCI-indexed journals, such as the IEEE SYSTEMS JOURNAL,
the IEEE ACCESS, the Computer Networks (Elsevier), the Mobile Net-
works and Applications, the Computers and Electrical Engineering, and
the Microprocessors and Microsystems. According to Google Scholar, his
published work has been cited over 3800 times (H-index = 31). His SCI
other citations (sum of times cited without self-citations) reached 1104
(H-index = 19) times according to Web of Science Core Collection.

LEI SHU (SM’16) is currently a Lincoln Profes-
sor with the University of Lincoln, U.K., and a
Distinguished Professor with Nanjing Agricultural
University, China. He is also the Director of the
NAU-Lincoln Joint Research Center of Intelligent
Engineering. He has authored over 350 papers in
related conferences, journals, and books in the
area of sensor networks. His main research field is
wireless sensor networks. He was a recipient of the
GlobeCom 2010 and ICC 2013 Best Paper Award

and the IEEE Systems Journal 2017 Best Paper Award. He has served as a
TPC member for over 150 conferences, such as ICDCS, DCOSS, MASS,
ICC, GlobeCom, ICCCN, WCNC, and ISCC. He has also served as the
Co-Chair for over 50 international conferences and workshops, such as
IWCMC, ICC, ISCC, ICNC, and Chinacom, the Symposium Co-Chair for
IWCMC 2012 and ICC 2012, the General Co-Chair for Chinacom 2014,
Qshine 2015, CollaborateCom 2017, and Mobiquitous 2018, and as the
Steering Chair and the TPC Chair for InisCom 2015. He has been serving as
an Editor-in-Chief for the EAI endorsed Transactions on Industrial Networks
and Intelligent Systems and as anAssociate Editor for the IEEETRANSACTIONS

ON INDUSTRIAL INFORMATICS, the IEEE Communications Magazine, the IEEE
SYSTEMS JOURNAL, and the IEEE ACCESS.

PENG LI received the bachelor’s and master’s
degrees in process automation from the Technical
University of Dresden, Germany, in 2013. He is
currently a Research Assistant with the Institute
Industrial IT, Ostwestfalen-Lippe University of
Applied Science, Lemgo, Germany. His research
focuses on machine learning, data mining, infor-
mation modeling, and their application in the
cyber-physical-production-systems.

6518 VOLUME 6, 2018

http://dx.doi.org/10.1016/j.compeleceng.2016.08.010.2016
http://dx.doi.org/10.1016/j.compeleceng.2016.08.010.2016
http://dx.doi.org/10.1109/ACCESS.2017.2731945.2017
http://dx.doi.org/10.1109/TMECH.2017.2759791.2017
http://dx.doi.org/10.1155/2016/3159805
http://dx.doi.org/10.1007/s11227-016-1879-4.2016


B. Chen et al.: Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges

MITHUN MUKHERJEE (S’10–M’16) received
the B.E. degree in electronics and communication
engineering from the University Institute of Tech-
nology, Burdwan University, India, in 2007, the
M.E. degree in information and communication
engineering from the Indian Institute of Engineer-
ing Science and Technology at Shibpur, Shibpur,
India, in 2009, and the Ph.D. degree in electrical
engineering from IIT Patna, Patna, India, in 2015.
He is currently a specially assigned Researcher

with the Guangdong Provincial Key Lab of Petrochemical Equipment Fault
Diagnosis, Guangdong University of Petrochemical Technology, China. His
research interests include wireless sensor networks, wireless communica-
tions, energy harvesting, and fog computing. He was a recipient of the
EAI WICON 2016 and IEEE SigTelCom 2017 Best Paper Award. He was a
Guest Editor of the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, the IEEE
ACCESS, the Mobile Networks and Applications (ACM/Springer), and the
Sensors. He has been serving as a Special Issue Editor for the EAI endorsed
Transactions on Industrial Networks and Intelligent Systems.

BOXING YIN received the B.A. degree from the
School of Electrical Engineering and Automation,
Zhejiang University of Science and Technology,
China, in 2016. He is currently pursuing the M.S.
degree with the School of Jiangxi Electrical Engi-
neering and Automation, University of Science
and Technology of China, China. His research
interests include industrial big data and machine
learning.

VOLUME 6, 2018 6519


	INTRODUCTION
	SMART FACTORY ARCHITECTURE
	PHYSICAL RESOURCES LAYER
	RECONFIGURABLE MANUFACTURING UNIT
	MODULAR MANUFACTURING UNITS
	CONFIGURABLE CONTROLLER 

	RECONFIGURABLE PRODUCTION LINE
	INTELLIGENT DATA ACQUISITION

	NETWORK LAYER
	INDUSTRIAL WIRELESS SENSOR NETWORKS
	RELATED TECHNOLOGIES
	OPC UA-BASED INTERACTION IN MULTI-AGENT SYSTEMS
	SOFTWARE DEFINED INDUSTRIAL NETWORKS
	DEVICE TO DEVICE COMMUNICATION
	EDGE COMPUTING


	DATA APPLICATION LAYER
	ONTOLOGY-BASED MANUFACTURING MODEL
	APPLICATIONS OF BIG DATA IN MANUFACTURING
	ACTIVE MAINTENANCE BASED ON BIG DATA
	PRODUCT DESIGN OPTIMIZATION BASED ON MANUFACTURING BIG DATA


	APPLICATION CASE STUDY
	ISSUES AND CHALLENGES
	INTELLIGENT REQUIREMENTS OF EQUIPMENT
	DEEP INTEGRATION NETWORKS
	KNOWLEDGE-DRIVEN MANUFACTURING

	CONCLUSIONS
	REFERENCES
	Biographies
	BAOTONG CHEN
	JIAFU WAN
	LEI SHU
	PENG LI
	MITHUN MUKHERJEE
	BOXING YIN


