
SPECIAL SECTION ON HUMAN-CENTERED SMART SYSTEMS AND TECHNOLOGIES

Received October 5, 2017, accepted December 2, 2017, date of publication December 13, 2017, date of current version March 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2782880

A UI-DSPL Approach for the Development of
Context-Adaptable User Interfaces
THOURAYA SBOUI 1, MOUNIR BEN AYED2, AND ADEL M. ALIMI1
1REGIM Laboratory, National Engineering School of Sfax, Sfax 3038, Tunisia
2REGIM Laboratory. Faculty of Science of Sfax, Sfax 3038, Tunisia

Corresponding author: Thouraya Sboui (sboui.thouraya@gmail.com)

ABSTRACT Unlike adaptive interfaces which use sensors to adapt themselves, adaptable interfaces need the
intervention of end users to adapt their different aspects according to user requirements. These requirements
are commonly expressed according to the context of use. This latter was defined by the triplet <platform,
environment, user>where the platform refers to the physical device and the device software, the environment
refers to the physical environment in which the application is used and the user element refers to the user
preferences and user profile. In this paper, we define a dynamic software product line (DSPL) approach for
the development of a family of context-adaptable user interfaces. TheDSPL paradigm exploits the knowledge
acquired in software product line engineering to develop systems that can be context-aware, or runtime
adaptable. Our approach satisfies a set of contributions which will be validated by implementing and
evaluating them according to an illustrative case study.

INDEX TERMS Context-adaptation, DSPL approach, UI adaptation.

I. INTRODUCTION
Tomake user interfaces (UIs) more usable and more efficient,
it is essential to adapt these interfaces to the context of use
change. In order to develop a family of context-adaptable
user interfaces, some proposals [4], [6], [23], [35], [36]
have opted to use the Model Based User Interface Devel-
opment (MBUID) paradigm. This paradigm defines a set
of models [17] to generate multiple interfaces for different
context of use. Other proposals [3], [5], [12], [14], [19],
[24], [26], [29], [30] have opted to use the Software Product
Line Engineering (SPLE) paradigm [17], [18]. The SPLE
paradigm consists of a set of software-intensive systems that
share a common, managed set of features satisfying the spe-
cific needs of a particular market segment or mission and
that are developed from a common set of core assets in a
prescribed way. Furthermore and unlike SPLE, the Dynamic
Software Product Line (DSPL) paradigm [7], [16] continues
to configure and adapt at the runtime. The DSPL paradigm
exploits the knowledge acquired in SPLE to develop systems
that can be context-aware or runtime adaptable.

In this context, the present paper describes a UI-DSPL
approach dedicated for the development of a family of
context-adaptable user interfaces. Our approach (CAUI)
includes two phases, a design phase for the development

of initial interfaces and a runtime phase for the interface
adaptation.

The paper is organized as follows; Section 2 presents
related works and their gaps. Section 3 describes the con-
tributions of the CAUI approach. Section 4 highlights the
illustrative example. Section 5 presents the design phase and
its implementation. Section 6 presents the runtime phase
and its implementation. Section 7 presents an evaluation of
the proposed approach and a discussion of obtained results.
Section 8 presents the related works and Section 9 presents
the conclusion and a presentation of perspectives.

II. RELATED WORKS
This section presents an overview of existing UI-SPL
approaches. The comparative analysis (table 1) is based on
the following criteria:

• Approach Type: specifies the proposed approach type.
It can be a conventional SPL approach, a dynamic
SPL approach, or a model driven software product line
approach (MD-SPL approach);

• Approach concepts: specifies the concepts used to
implement the SPL approach. Among these concepts,
is component, aspect, model or any other concepts
(e.g. document [19], [20]);

7066
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-5065-2849

T. sboui et al.: UI-DSPL Approach for the Development of CAUI

TABLE 1. Comparative analysis of existing UI-SPL approaches. the dimensions were ranked regarding their support. ‘‘+’’ fully explicitly supported,
‘‘−’’ when it is not supported or there is no information.

• The context of use: it denotes what dimensions of the
context of use are supported. The context of use is a
triplet: platform, user and environment;

• Adaptation Time: specifies the type of the supported
adaptation. Does adaptation was supported by the design
time phase, the runtime phase or by both phases;

• Adaptation model: does the approach propose an adap-
tation model?

Schlee and Vanderdonckt [30] automatically generates the
C++ code of a MS Windows user interface that can be
adapted at design time by (un)selecting features subject to
adaptation from a feature diagram. The designer is responsi-
ble for deciding which features, e.g., a command, a button,
an icon, should be incorporated in the adapted UI. Therefore,
there is no other way for taking the context of use into
account, which may result into Meyer seven specification
sins: noise, silence, contradiction, sur-specification, etc.

Garcés et al. [14] propose a semi-automatic Model Driven
Software Product Line approach (MD-SPL). MDA concepts

are combined with SPL concepts in order to develop a graph-
ical user interfaces (GUIs). The defined approach is a layered
approach; each layer is related to a specific domain (e.g.
business, architectural or technological). For each domain,
the authors define the metamodel, the correspondent model
and the feature model. To move from one level to another,
the approach levels are connected by means of transforma-
tions. Themajor defect of [14] is that the developed interfaces
are not context-adaptable and are only generated for the Java
platform.

Quinton et al. [29] propose an automatic software prod-
uct line approach that generates UIs for mobile devices by
merging the feature model (FM) assets. To bridge the gap
between application feature diagram (FD) and the device FD,
authors propose a pruning process which creates a reduced
application metamodel. The role of this metamodel is to
check if the product being derived can be executed in a given
hardware. The Quinton approach mainly generates mobile
devices, furthermore, there is neither context management
nor interface adaptation.

VOLUME 6, 2018 7067

T. Sboui et al.: UI-DSPL Approach for the Development of CAUI

Gabillon et al. [12] combinesMBUID and SPL concepts to
develop the graphical user interfaces. In his proposal, Müller
put the focus on the layout (disposition of widgets in the
container) design. The Müller approach is too theoretical,
furthermore, it don’t deal neither with interface adaptation
nor with context sensitivity.

Boucher et al. [5] mention that the direct configuration of
FMs is not suitable and apply a concern separation between
FMs and UI configurations. To generate the feature model,
Boucher used the UI configuration views, the feature config-
uration workflow and the property sheet. After the FM gen-
eration, the features are implemented using the AUI model.
The CUI model is generated from the AUI. Boucher et al. [5]
don’t generate the final UIs, they only present the interface
sketches. Furthermore, there is neither context management
nor interface adaptation.

Pleuss et al. [26] propose an approach which includes only
a design phase in which the target context element was the
customer. Pleuss et al. [27] used the Model-Based User Inter-
face Design (MBUID) models [17] to support their approach:
a task model representing what the end-user wants to achieve,
a domain model representing the data manipulated by the
tasks, anAbstract User Interface (AUI)model, and a Concrete
User Interface (CUI)model to develop a family of customized
UIs. Pleuss et al. [27] also used MBUID models to imple-
ment the domain and the application engineering levels of a
UI-SPL process. In Pleuss approaches, the context was con-
sidered only at the design phase. At this phase, the interface
was customized/adapted according to the interface customer
during its configuration.

Arboleda et al. [3] use a model driven approach based on
a decision model to derivate a specific product. The decision
model takes as input the transformation model (defining the
relationship between the feature model, the domain concepts
metamodel and the architecture metamodel) and the feature
model. The decision model is used with the product model
and feature model configuration to generate the final product.
The Arboleda approach is a generic approach which is not
dedicated nor for UI development neither for UI adaptation.
The UI case study was used just to validate the approach.

Logre et al. [22] propose an SPL approach for the develop-
ment of a family of dashboards. In their approach, the authors
propose a metamodel which defines dashboards concepts.
The meta-model will serve to generate the feature model.
This later is implemented using aspects. The presented pro-
totype implements the link between the metamodel and the
feature model and provides a semi-automated support for the
approach. In [22], there is nor context management neither
UI adaptation.

Kramer [19] and Kramer et al. [20] uses a DSPL process
to develop a platform-adaptive UI. The context of use was
considered at the design phase and at the runtime phase.
To implement UI variability, the author had used GUI docu-
ments as source elements for initiating the process. Kramer
deals only with sensed context and adapts the generated
interfaces according to the device characteristics.

Gabillon et al. [12] propose an automatic Dynamic Soft-
ware Product Line (DSPL) process that generates a UI able
to adapt its behavior when the context changes during the run-
time. To generate an adaptive UI, authors used the configured
feature model, the current context of use and components for
features implementation. Like Kramer, Gabillon deals only
with sensed context. Furthermore, he adapts the generated
interface at both phases according to the screen size.

Sottet et al. [34] define an MD-SPL approach to manage
UI variability. The authors define multiple FMs, allowing the
separation of concerns and propose a partial and a staged
configuration process. Sottet et al. [34] do not deal nor with
the context of use neither with the interface adaptation.

In addition to UI-SPL approaches, we list in the following
other works which deal with interface adaptation. Among
these works, we find those [4], [6], [27], [35], and [36]
which use the MDE/MBUID paradigm to generate a family
of adaptive interfaces and others which propose different
techniques to adapt the interface according to the context of
use [8], [13].

Calvary et al. [6] propose an approach which covers both
the design time and run time phases. The Calvary approach
(named Cameleon Rreference Framework (CRF)) has now
become widely accepted in the HCI Engineering community
as a reference for structuring and classifying model-based
development processes of UIs that support multiple contexts
of use. Calvary deals with a particular interface adaptation
which is UI plasticity. This latter is defined by Calvary as
‘‘the capacity of user interfaces to adapt to the context of use
while preserving human values’’.

Sottet et al. [35] propose a model driven approach to gen-
erate adaptable UI to the context of use. The authors define
models presenting the interface (the task model, the AUI
model and the CUI model) and models presenting the con-
text of use. As context elements, the authors target the user,
the platform and the environment but practically, they imple-
ment their approach according to the platform element.

Bouchelligua et al. [4] propose a MBUID approach for
the development of plastic interfaces. This approach allows
the adaptation to the context of use (platform, environment
and user) based on parameterized transformation. In her
Approach, Bouchelligua adapts the interface only at the
design phase. At runtime, the author doesn’t deal nor with
context management neither with UI adaptation.

Mezhoudi [23] uses the user feedbacks and the machine
learning to adapt her interface. By using the machine learning
technique, the final user will have the choice between several
adapted interfaces and to him to choose the interface that
goes to him. Mezhoudi approach is among the first MBUID
approaches that have used user feedbacks to adapt user
interfaces.

UsiXml [36] supports a Model Driven Engineering (MDE)
approach and covers all CRFmodels. UsiXml adaptations are
focused on the platform model. Users are supported through
stereotypes, however there is nor context management neither
users involvement during interface adaptation.

7068 VOLUME 6, 2018

T. sboui et al.: UI-DSPL Approach for the Development of CAUI

Gajos et al. [13] propose a system which performs dynam-
ically interface adaptation. The approach targets as context
elements, the devices, tasks, preferences and abilities. In their
approach, the authors propose an algorithm which finds in
less than one second the optimal adapted UI in the solution
space. The major defect of Gajos approach is that is not
dedicated for the development of a family of UIs.

Cerny et al. [8] propose a technique that aims to reduce
the development and maintenance efforts of CUI to a level
comparable with a single UI. Unlike most of the existing
CUI approaches, their technique does not involve an external
UI model. Instead, it aims to reflect runtime-information and
structures already captured in the application, while extend-
ing them to provide an appropriate CUI.

Based on the above analysis, we can list the following
shortcomings:

S1) Only 2 out of 12 UI-SPL approaches use the DSPL
paradigm to develop a family of user interfaces. These
approaches implement a dynamic adaptation, while the rest
deal with a static adaptation;

S2) Models are used in MDE and MD-SPL approaches,
however they are not yet used in Dynamic SPL approaches;

S3) No UI-SPL approach consider the user while adapting
user interfaces. The user was considered only in [8] and [23]
approaches.

S4) Based on these shortcomings, we define the following
questions, to which our approach have to respond.

A. RESEARCH QUESTIONS
Based on the gaps of existing works, we formulate the fol-
lowing research questions:

RQ1) How to ensure the generation of a family of inter-
faces while dynamically adapting the interface?

RQ2) How to ensure the abstraction and the reusability of
a UI-DSPL approach?

RQ3) How to consider the user while adapting the UI?
RQ4) How to facilitate the design and the development of

a runtime adaptation mechanism in a UI-DSPL approach?
To response to these questions, we present in the next

section our approach as well as its contributions.

III. THE CAUI APPROACH: A UI-DSPL APPROACH FOR
THE GENERATION OF CONTEXT-ADAPTABLE UIs
In this paper, we propose a semi-automatic UI-DSPL
approach [33] which generates a context-adaptable user inter-
faces. The proposed approach includes two phases; a design
phase dedicated for the development of initial UIs and a
runtime phase for the adaptation of the main UI according
to the context change.

As context information, our approach use profiled context
information, in particular, the user preferences. Despite the
many attempts to automate the acquisition of user prefer-
ences, end users are still the first supplier of this kind of data.

In the following, we present the fundamental contributions
of our approach.

1) Manage profiled context information. Our approach
deals with a profiled context at both phases. At the
design phase, and in order to generate the context inter-
face, SPL experts will manage the context variability
by designing the context feature model, configuring it
and generating its interface.While at the runtime phase,
the context information will be acquired using the con-
text interface in order to adapt the main interface.

2) Combine MBUID and SPL concepts. In order to
make our approach more abstract and more reusable,
we combine the MBUID and the SPL concepts. At the
design phase, the MBUID models (e.g. the Concrete
User Interface model, the Final User Interface model)
are used to implement the context and the UI variability
in order to generate the final interfaces while, they are
used at the runtime phase in order to recompose and
regenerate the adapted UI.

3) A runtime adaptation model. The third contribution
of our UI-DSPL approach is the proposition of a design
pattern. This latter will facilitate the design and the
development of the runtime adaptation mechanism for
the designers/developers who want to use our approach
to develop a context-adaptable interfaces.

A. THE DESIGN PHASE
The design phase (figure 1) is presented following the
Domain Engineering, and Application Engineering processes
used in typical SPL process. The domain engineering refers to
the design and development of the user interface variability.
The Application engineering, on the other hand, refers to UIs
derivation, reusing artefacts defined and implemented in the
domain engineering level.

Within the domain engineering stage, there are two distinct
phases, domain analysis, and domain implementation. In the
domain analysis phase, we define the variability models of
the application. In order to provide a better separation of
concerns, we have defined as variability models two feature
models: the context feature model and the UI feature model.
This concerns separation ensures the simplicity of design of
feature models and the facility of their maintenance.

For the domain implementation phase, it is made up of
reusable artefacts and their correspondent code source imple-
mentation. At this phase, the feature models (described dur-
ing the analysis phase) are implemented using the Concrete
User Interface (CUI) [17] model. The CUI is the expression
of the UI in terms of ‘‘concrete interactors’’ that are modality
dependent and implementation technology independent.

For the ‘‘Application Engineering’’ level, it is dedicated
for the derivation of specific UIs and it includes two distinct
phases: the application analysis phase and the application
implementation phase. At the application analysis phase,
feature models are configured (i.e. selection of features rep-
resenting the product to be generated) then at the appli-
cation implementation phase, we use the model composer
that merges features artefacts (corresponding to the selected
features). The composed UIs are then transformed, via the

VOLUME 6, 2018 7069

T. Sboui et al.: UI-DSPL Approach for the Development of CAUI

FIGURE 1. SPEM [31] representation of the design phase of the CAUI approach.

code generation techniques, into a Final User Interface (FUI).
A FUI [17] is a representation of the UI in any programming
language or mark-up language ready for compilation or inter-
pretation.

B. THE RUNTIME PHASE
The runtime phase or the execution phase is the phase which
follows the design phase and during which the UI is running.
During this phase, the final user can set his preferences.
Following preferences settings, an adaptation mechanism
is triggered. As showed in figure 2, this mechanism
encompasses three main components. The context manager
component is responsible for context acquisition and con-
text storage, the adaptation manager is responsible for UI
reconfiguration and the recomposition of the new UI and
the code source generator is responsible for the generation
of the code source of the new UI. This code is ready for
interpretation or compilation.

To facilitate the design and the development of the runtime
adaptation mechanism, we propose a design pattern. This
latter is an adaptation model [32], [33] which describes the
main concepts used and implemented by the components of
the runtime adaptation mechanism.

1) THE RUNTIME ADAPTATION MODEL
As depicted in figure3, the runtime adaptation mechanism is
seen as a state machine. States are UI states and transitions
are adaptation rules allowing the passage from a source state
to a target state.

For UI states (UIstate), the metamodel defines three types:
the requiredstate which presents the UI after its adaptation,
the defaultstate which describes the UI before its adaptation
and the LoadingError state which describes the UI when this

FIGURE 2. SPEM [31] representation of the runtime adaptation
mechanism of the CAUI approach.

later did not succeed to be loaded. A UIstate is defined as a
set of aspects (UIaspect) presenting the UI at the current time.

For adaptation rules, they are the constraints defined
between features during the design phase. The meta-model
defines two types of adaptation rules: the contextconstraint
and the aspectconstraint. The contextconstraint rule describes
the link between context features and UI features whereas,
aspectconstraint describes the link between UI features.

7070 VOLUME 6, 2018

T. sboui et al.: UI-DSPL Approach for the Development of CAUI

FIGURE 3. The EMF [10] runtime adaptation model.

For Aspectconstraint, only those whom the condition consti-
tute an action of, at least, one Context_rule are considered as
an adaptation rule.

Adaptation rule is defined in the form of an Event-
Condition-Action (ECA) rule. If adaptation rule is an Aspect-
constraint, then the event must be an Aspect_change, else if
the adaptation rule is a Contextconstraint, then the event must
be a Contextchange.

At the runtime phase, the context and the UI aspect con-
cepts are presented using features and attributes (to indicate
feature value).

To rebuild the new UI, the artefacts corresponding to
selected features are binded and those corresponding to des-
elected features are removed. Used artefacts are UImodel.
A UI model may be an Abstract User Interface Model
(AUImodel) or a Concrete User Interface model (CUImodel).

For enumerative types, the meta-model defines 5 types:
1) atype specify the type of UI aspects 2) ftype specify
the type of feature (abstract or concrete) 3) fstate indicates
the state of a feature (selected, deselected or undecided),
4) attType indicates the type (float, string, or integer) of the
attribute value and 5) Dtype indicates constraint and action
values.

To validate the proposed model, we instantiate it according
to the following use case. More details about the model and
its validation are given in [32].

IV. THE CASE STUDY
Before presenting the implementation of the design phase and
the runtime phase, we describe in this section the case study
which will illustrate these phases. The case study highlights
the adaptation of the main interface of a ‘‘search for a restau-
rant’’ application to the user preferences change. The user
preferences information is a contextual data specific to the
end-user. This kind of data may address the customization of
two main aspects of a user interface:
• The presentation aspect: customize the UI structure
(e.g. containers, widgets), the layout, color, sizing;

• The behavioral aspect: customization of UI element
(e.g. the search button) by injecting alternative
JavaScript handler.

The illustrative example is about a ‘‘search for restaurant’’
application (cf. figure 4). The application has two interfaces:
a primary interface for search and a second interface for
preferences settings.

The search UI (cf. figure 4 (a)) includes a text field to
enter the restaurant specialty, another text field to enter the
current location and a search button to validate the search
request. By default, the search result is displayed as hyperlink
describing the restaurants which correspond to the search
request.

The user preferences UI (cf. figure 4(b)) includes three
parts. The first part defines the preferences about the

VOLUME 6, 2018 7071

T. Sboui et al.: UI-DSPL Approach for the Development of CAUI

FIGURE 4. Default UIs of the search for restaurant case study. (a) The
search UI. (b) The User preference UI.

restaurant the user is looking for, the second part defines user
preferences about displaying the search result and the third
part is about accessibility preferences. ‘‘Search preferences’’
address the behavioral aspect of the UI, while ‘‘display pref-
erences’’ and ‘‘accessibility preferences’’ address the presen-
tation aspect of the search UI.

To customize the UI behavior, the ‘‘Search preferences’’
include a combobox specifying the type of the restaurant
the user is looking for (e.g: best rated restaurant, restaurant
offering a promotion). To customize the display of the search
result, ‘‘Display preference’’ includes a combobox specifying
the display desired by the user (e.g: a vertical display, a hor-
izontal display). While ‘‘accessibility preferences’’ define
two comboboxs presenting the criteria used to customize the
theme color and the font size of the search UI.

The default User interfaces are described in figure 4.
Figure 4 (a) presents the search UI relative to the default user
preferences while figure 4 (b) presents the default settings
of user preferences. These latter are described as follows:
user 1 prefers visualizing the best rated restaurants. The user
prefers visualizing the search result displayed vertically in a
normal contrast theme and a medium font size. The adapted
User Interfaces are described in figure 5. Figure 5 (a) presents
the search UI relative to the new user preferences decribed
by figure 5 (b). These preferences are described as follows:
the user prefers visualizing the restaurants in promotions
displayed horizontally in a high contrast theme and a larger
font size.

V. THE DESIGN PHASE IMPLEMENTATION
A. DOMAIN ANALYSIS
As described above, the Domain Analysis level includes the
definition of the feature models and the constraints defined
across their features. Our approach defines two feature mod-
els, a context feature model and a UI feature model and a set
of feature constraints defined using the ECA rule notation.

FIGURE 5. The search for restaurant UIs after adaptation. (a) Adapted
Search UI. (b) The new preferences Settings.

FIGURE 6. The context feature model.

1) FEATURE MODELS
For the context feature model, it describes the context vari-
ability. As depicted in figure 6, this variability is expressed
across the triplet <user, platform, environment>. UserPref-
erence is a sub-feature of the user feature and defines
three variants: SearchPreferences feature, DisplayPrefer-
ences feature and AccessibilityPreferences feature. In their
turn, the SearchPreference feature defines two variants
(Promotions, and bestrated variants), the DisplayPreference
feature defines two variants (vertical and horizontal variants)
and the accessibilitypreferences feature defines the contrast-
theme variant and the fontsize variant. The contrasttheme
feature defines two mutually exclusive variants (high and
normal variant) while the fontsize feature defines medium
and large features, two mutually exclusive variants.

The UI feature model describes the variability of the user
interface [25]. In figure 7, the UI variability is expressed
across two aspects: the UI structure and the UI presentation.
The structure feature defines two variants presenting UI con-
tainers (resquestcontainer, and responsecontainer variants).

For the requestcontainer feature, it defines three vari-
ants which present the search objects (speciality_textField,
location_textfield, and searchButton variants). In turn, the

7072 VOLUME 6, 2018

T. sboui et al.: UI-DSPL Approach for the Development of CAUI

FIGURE 7. The search UI feature model.

searchButton variant defines the listener1_BR variant rela-
tive to the listener handling requests of searching the best
rated restaurant and the listener2_P variant represents the lis-
tener handling requests of searching the restaurants offering
promotions.

For the responsecontainer feature, it is defined across two
aspects: the UI element aspect (presented by the Respon-
seElement variant) and the layout aspect (represented by the
layout variant). As UI element, the ResponseElement variant
presents the response object relative to the search request.
A ResponseElement may be a hyperText or a hyperIMG. For
the layout aspect, two variants are defined: the GridLayout
(i.e. response objects are displayed in a horizontal way) vari-
ant and the ListLayout (response objects are displayed in a
vertical way) variant.

Regarding the presentation feature, it defines two vari-
ants. The contrasttheme variant and the fontsize variant.
The former defines one optional feature: the highcontrast
feature while the latter defines two mutually exclusive fea-
tures, the medium_FS and the larger_FS features.

2) FEATURES CONSTRAINTS
In addition to feature models, feature constraints are defined
at the domain analysis phase and are describing the link
between features of the same feature model (alternatively
called intra-model constraint) or between features of different
feature models (alternatively called cross-tree or inter-model
constraint).

The cross-tree constraints (connecting context features and
UI features) express the context sensitivity and are used to
adapt statically the interface at the design phase and dynam-
ically at the runtime phase.

The two types of feature constraints (intra-model and inter-
model constraints) are defined using the Event-Condition-
Action (ECA) language. An ECA rule is described as follows:

On Event (E) if Condition (C) then Action (A)

Where the event is features presenting the actual context of
use, the condition is the connection between context features
using the and, or, not operators and the action is the interface
features connected using the and, or, not operators.

In the following, we present an example of two feature
constraints using the formalism of set theory.

FIGURE 8. Excerpt of the CUI Meta-model [17].

AR1: on E = {promotions, horizontal, high, large} if C =
{ horizontal } then A = { Gridlayout }, this rule means that
the selection of the horizontal feature of the context feature
model implies the selection of the Gridlayout feature of the
UI feature model.

AR2: on E = {BestRated, vertical, normal, medium}
if C = {BestRated} then A = {Listener1_BR}, this rule
means that the selection of the BestRated context feature
implies the selection of Listener1_BRUI feature (the listener
looking for the best rated restaurants).

B. DOMAIN IMPLEMENTATION
As mentioned above, to implement context features and UI
features, we used the MBUID models. The used model is
the Concrete User Interface (CUI) model. To perform the
mapping, we associate for each feature, a fragment of the CUI
model. The associated CUI model is an instantiation of the
CUI metamodel defined by the UsiXML team [17].

1) THE CUI METAMODEL
Figure 8 presents an excerpt of the CUI meta-model defined
in [17]. In addition to the defined classes [17], we define
as graphical interactors (graphicalinteractors): the textfield,
the pushbutton, the imglink, the textlink, the radiobox, the
combobox, and the label classes. Regarding the graphical
container (graphicalcontainer), we mainly defined the web
containers such as the footer, the header, the section, and the
div container. Furthermore and in order to manage the user
event (event), we associate a listener class to the CUIobject
class. The listener has to implement the Action class in
response to the produced event.

2) THE MAPPING BETWEEN FEATURE MODELS
AND THE CUI MODEL
In figure 9, we depict an example of mapping between
context features and the CUI model. As shown, the search-
preferences context feature is mapped into a CUI fragment

VOLUME 6, 2018 7073

T. Sboui et al.: UI-DSPL Approach for the Development of CAUI

FIGURE 9. Mappings between context features and CUI model fragments.

composed by three objects, namely, the main container (the
window1 object), the div container (the div1 object), and
the label object (the searchpreference object). The search-
preferences object is contained (which justifies the aggre-
gation association) in the div1 container and this later in
contained (another aggregation association), in turn, in the
window1 container object.

Equally, the promotions context feature is mapped into a
CUI model fragment. This later is composed by four objects:
a window object (window1), a div container object (div1),
a combobox object (CB1), and a label object (promotions).
For the object relationship, the window1 object contains
(an aggregation relationship) the div1 object which contains
(an aggregation relationship), in turn, the CB1 object. This
later contains (another aggregation relationship) the promo-
tions object.

C. APPLICATION ANALYSIS
1) FEATURE MODEL CONFIGURATION
In order to generate initial interfaces (context and search
UIs), first of all, we have to configure the application feature
models. The context feature model was configured according
to a default context of use. In our case, the default context is
defined as follows (figure 10 (a)): the user prefers visualizing
the best rated restaurants displayed vertically in a normal
contrast theme and with a medium font size.
Secondly, to configure the search UI feature model, we use

the default configuration of the context feature model and
the appropriate feature constraints (i.e. feature constraints
defined according to the selected context features, table 2).
So according to the prescribed default context feature model
and using the features constraints of table, the obtained con-
figuration of the UI feature model

As depicted in figure 10(b), the default search UI feature
model configuration is defined as follows: for the search
button, we have selected the Listener_Br feature. This latter

FIGURE 10. The feature model configuration. (a) The Context F.M
configuration. (b) The UI feature model configuration.

TABLE 2. Feature constraints relative to the default context feature
model of figure 4.

looks for best rated restaurants. For the response container
layout, we have selected as default layout the listlayout.
This latter allows displaying the result in a vertical way. And
for presentation features, we selected as theme, the normal-
Contrast contrast theme and as font size, the medium_FS
feature.

D. APPLICATION IMPLEMENTATION
1) USER INTERFACE COMPOSITION
After feature model configuration, the next step is the compo-
sition of features artifacts. Feature artifacts are CUI models
which correspond to the selected features. We have to com-
pose the context features and the search UI features in order
to generate consecutively the context UI and the search UI.

To perform feature artifacts composition, we took a look
at existing model composers. We note that some existing
model composer [2], [18] are still at the prototype stage. So to
compose our CUI models, we opted for the conversion of
these models into XML files (figure 11), then we used an
XML file merger as model composer. As described in [37],
the merge script is used to merge two XML files. For that,
we use Algorithm1 (described below) with the aim to merge
the XML files representing the selected feature of the context
feature model and the search UI feature model.

7074 VOLUME 6, 2018

T. sboui et al.: UI-DSPL Approach for the Development of CAUI

Algorithm 1 Composition Algorithm
Require: A set of features artifacts {artifact}
Require: The current search UI configuration Pcurrent =
{F1,F2, . . ., Fk}
Ensure: The merged XML file (RF.xml)
1: RF.xml = {the first artifact to be merged}
2: for all (f ∈ Pcurrent) do
3: RF.xml = merge (artifact(F), RF.xml)
4: end for

FIGURE 11. Feature mappings and the conversion of the CUI model into
XML code.

Algorithm1 illustrates how a UI is recomposed using
the artifacts which corresponds to the selected UI features.
To start, the algorithm requires the current configuration,
the appropriate implementation artifacts. The algorithm con-
sists in browsing the list of selected features (saved in the
new configuration file). For each feature, wemerge its artifact
with the already merged artifacts saved in the merge
file (RF.xml). The algorithm iterates over features composing
the new configuration file.

Using the prescribed algorithm, the result of composition
of context features is the XML file described in figure 12.

2) FINAL USER INTERFACES
To generate final UIs, we used the Extensible StyleSheet
Language Transformations (XSLT). The XSLT language
transforms the XML file (resulted from CUI models compo-
sition) into a HTML page. Figure 13 (a) depicts the XSLT file
which transforms the XML file related to the context page to
a HTML page and figure 13(b) depicts the obtained HTML
page presenting the context UI.

VI. THE RUNTIME PHASE IMPLEMENTATION
In this section, we give more details about the runtime adap-
tation mechanism. In figure 14, we highlight the architecture
of the runtime adaptation mechanism. In this architecture, we
specify, in particular, runtime components, used algorithms
and data storages.

FIGURE 12. The XML representation of the context UI.

A. THE CONTEXT MANAGER
The context data are acquired from the context interface
and are saved into a text file in the form of the couple
<contextdata, Value>where the ‘‘contextdata’’ describes the
context data description and the ‘‘value’’ is a Boolean value
which is equal to true if the context data is selected by the user,
else the context data value is equal to false. Figure 15 depicts
the default context of use (figure 15(a)) and the new context
of use (figure 15(b)).

B. ADAPTATION MANAGER
The second runtime component is the adaptation manager
component. This later encompasses two scripts. The first
script is responsible for looking for a new configuration and
the second script is responsible for the implementation of the
new configuration and the recomposition of the new UI.

1) THE RECONFIGURATION ALGORITHM
To look for a new configuration, the reconfiguration algo-
rithm requires as inputs, the set of context data, the running
UI configuration (figure 16) and adaptation rules (figure 16).

Algorithm2 illustrates how the new feature configuration
is obtained from context information. To start, the algorithm
requires a set of updated observables, obtained from the con-
text manager, the current configuration (also called the run-
ning configuration) obtained from the configuration storage
and adaptation rules obtained from adaptation rules storage.
The first step consists in creating a target configuration with
the same variants as in the current configuration (line 1).
Afterwards, the algorithm iterates over the updated observ-
ables. For the observables whose action belongs to the current
configuration, the algorithm verifies if the new observable
value is false. In that case, the action has to be unwoven from
the target configuration. For the observables whose action
does not belong to the configuration the algorithm verifies

VOLUME 6, 2018 7075

T. Sboui et al.: UI-DSPL Approach for the Development of CAUI

FIGURE 13. The generation of the context interface. (a) Excerpt of the
XSLT transformation file. (b) The context HTML page.

if the new observable value is true. In that case, the action has
to be woven to the target configuration.

2) THE INTERFACE REGENERATION
After feature reconfiguration, we recompose the selected
features using Algorithm 1 as described in the design phase.
The result of the runtime recomposition is an XML file which
describes the new search UI.

Like at the design phase, the code generation is performed
using the XSLT transformation language. The XSLT file
is applied on the XML file resulted from the composition
of the new UI. As shown in figure 18, the first interface
(figure 17 (a)) results from the design phase and represents
the search UI before its adaptation. The second interface

FIGURE 14. The runtime adaptation mechanism.

FIGURE 15. Context data. (a) The default context of use. (b) The new
context of use.

FIGURE 16. The Inputs of the reconfiguration algorithm. (a) The running
configuration. (b) Adaptation Rules.

(figure 17(b)) is the first adaptation of the search UI. It corre-
sponds to the context 1 described as follows: the user prefers
visualizing the restaurants in promotions, displayed in an
horizontal way with a contrast theme and a large font size.

The third interface (figure 17(c)) is another adaptation for
the search UI which corresponds to the context 2 described as

7076 VOLUME 6, 2018

T. sboui et al.: UI-DSPL Approach for the Development of CAUI

Algorithm 2 Runtime Reconfiguration
Adapter algorithm Require: A set of updated context
observables C
Require: The current product configuration Pcurrent =
{F1,F2, . . .,Fk}
Require: The set of adaptation rules AR
Ensure: A target product configuration Ptarget
1: Ptarget← Pcurrent
2: for all (O ∈ C) do
3: if (AR(O) ∈ Pcurrent) then
4: if (O.value() = false) then
5: Ptarget.deselect(AR(O))
6: else
7: Ptarget.select (AR(O))
8: endif
9: end if
10: end for

follows: the user prefers visualizing the best rated restaurants,
displayed in a vertical way with a contrast theme and a large
font size.

VII. EVALUATION AND DISCUSSION
To evaluate our approach, we proceed for a 1) scenario-
based evaluation, a 2) scalability evaluation and for a
3) user evaluation of the generated interfaces. The first type
of evaluation is based on the used illustrative case study.
The second evaluation is based on twometrics (the generation
time, the adaptation time) and user’s evaluation is based on a
questionnaire to which users must respond. For a better eval-
uation, this section includes a comparison of our approach
with existing approaches [12], [19], [20].

For the scenario based evaluation and as described in
section 2, the illustrative SPL is relative to a ‘‘search for
restaurant’’ application. To manage the application variabil-
ity, we have defined two variability models: the context
feature model and the UI feature model. The variability
of the UI feature model was defined across different UI
aspects such as: UI elements (speciality textField, location
textField and the hyperlink response objects), presentation
units (request container, response container), the visual aspect
(text font size, UI contrast theme) and the layout aspect
(response hyperlinks displayed in the form of grid, response
hyperlinks displayed vertically).

The context variability was defined across threeUI aspects:
UI element (display the best rated restaurants or the restau-
rants in promotions), the layout (response hyperlinks dis-
played using a gridlayout, response hyperlinks displayed
using a listlayout) and the visual appearance of the UI (text
size, UI contrast theme).

To implement context and UI variabilities, we used the
CUI models, each concrete feature is associated to a frag-
ment of the CUI diagram (instantiated from the meta-model
of figure 6). Each artifact is, then converted into their
XML representation then composed with the others arti-

FIGURE 17. The adaptation of the search UI. (a) The search UI before
adaptation. (b) Search UI adaptation – context1. (c) Search UI
adaptation-Context 2.

facts in order to generate the search UI and the context
UI.

Regarding kramer approach, the illustrative SPL is about
a content store case study. In this case study, the store can
distribute different content such as video or music. The
content can be distributed depending on the location of the

VOLUME 6, 2018 7077

T. Sboui et al.: UI-DSPL Approach for the Development of CAUI

device. The UI variability was defined according to GUI
elements, GUI elements properties and GUI behavior.
To implement the UI variability, the author opted for the
document-oriented technology. After the composition of doc-
ument artifacts, the resulted document is interpreted on an
Android platform.

In Gabillon’s approach, the use case was about a dash-
board user interface. The UI variability was defined accord-
ing to two aspects: presentation units and UI elements.
To implement the UI variability, the author used component
technology.

By comparing our approach with other approaches,
we note that our approach took into consideration many
aspects when describing the UI variability. Except for the
presentation units and UI elements, we have described the UI
variability according to the layout and the visual appearance
(text size, UI color) aspects. The design and the implemen-
tation of such features (layout feature, visual appearance
feature) ensure the generation of a more ergonomic inter-
face and make the UI development easier and the modifica-
tion of some properties simpler. Furthermore, and contrary
to Kramer and Gabillon approaches which respectively use
document-based technology and component-based technol-
ogy, the use of models as implementation technology makes
the design phase process more reusable and more abstract.

At the runtime phase, by comparing our approach with
the other approaches, we note that the principal difference
is about the context acquisition. In our approach, the context
was entered manually. The main UI is adapted according to
the context data updated by the end-user. The first context
was about a user who prefers visualizing the restaurants in
promotions, displayed in a horizontal way with a contrast
theme and large font size. And the second context is about
a user who prefers visualizing the best rated restaurants,
displayed in a vertical way and with a contrast theme and
a large font size. In Kramer approach, the adaptation was
about some platform properties such as the actual position,
connectivity and the battery while in Gabillon’s approach,
the context was about the screen size.

For the scalability evaluation, we opted for the use of the
generation time and the adaptation time. In table 3, we present
the twometrics and the correspondent values for our approach
and Kramer’s approach. Gabillon did not carry out a scalabil-
ity evaluation.
• Generation Time: this is the time the tool takes to
generate the source code of initial interfaces. For this
metric, we do not consider the time required for feature
model design or for artifacts implementation. We only
consider the time of feature model configuration, UIs
composition and the generation of the source code.
In our approach, the generation time was calculated for
the context UI and the search UI. As depicted in table 3,
the generation time of the context UI varies between
0.86s (for 1 feature) to 13.05mins (for 10 features) while
for the search UI, the generation time varies between
0.89s (for 1 feature) to 14.57 mins (for 14 features). For

TABLE 3. Scalability evaluation results.

Kramer’s approach, the generation time varies between
1.11s (for 1 feature) to 23.43 mins (for 14 features).

• Adaptation Time: this metric measure the time it takes
for a complete adaptation cycle to take place. This time
assumes a new configuration, the recomposition of the
new UI and the time for the generation of the HTML
source code. In our approach, to measure the adaptation
time, we adapt the application 10 times to fetch the
average time for these adaptations. The average time
is equal to 2.03 ms (for 1 feature) and to 68.33 ms
(for 14 features). In Kramer’s approach, the adaptation
time is equal to 2.44ms (for 1 feature) to 63.72ms (for
14 features). At the runtime phase, Kramer’s approach is
more rapid. The reason is that the recomposition (at the
runtime) is performed by weaving/unweaving document
and not by recomposing all feature artifacts as is the case
of our approach, which shows the limit of our approach.

The last evaluation is a qualitative evaluation, for that we
sent an on-line questionnaire to 11 participants (5 females and
6 males). These participants were coming from 3 different
countries belonging to 2 different continents with different
types of background and occupation (e.g., students in com-
puter science, teachers and students in various languages,
as well as researchers in social and exact sciences). The
participants were aged between 22 and 43. The evaluation
includes a debriefing questionnaire based on the IBM Com-
puter Satisfaction Usability Questionnaire (CSUQ) [21].

The CSUQ questionnaire is an empirically-validated
19-question questionnaire benefiting from an α = 0.89
reliability coefficient related to usability, thus meaning
that answers provided by participants to this questionnaire
demonstrate a high correlation with the usability of the sys-
tem being evaluated. Each IBM CSUQ closed question was
measured using a 7-point Likert scale (1= strongly disagree,
2 = largely disagree, 3 = di-sagree, 4 = neutral, 5 = agree,
6 = largely agree, 7 = strongly agree) and was phrased
positively as follows:

1. Q1 : Overall, I am satisfied with how easy it is to use this
model.

7078 VOLUME 6, 2018

T. sboui et al.: UI-DSPL Approach for the Development of CAUI

FIGURE 18. Distribution of participants’ answers to the IBM CSUQ
questionnaire.

2. Q2 : It was simple to apply this model.
3. Q3 : I can effectively complete my task applying this

model.
4. Q4 : I am able to complete my task quickly applying this

model.
Q5 : I am able to efficiently complete my task applying this

model.
6. Q6 : I feel comfortable applying this model.
7. Q7 : It was easy to learn to applying this model.
8. Q8 : I believe I became productive quickly applying this

model.
9. Q9 : The model provides me with structured guidance

on how to fix problems.
10. Q10 : Whenever I make a mistake using the model,

I recover easily and quickly.
11. Q11 : The information provided by the model and its

accompanying method is clear.
12. Q12 : It is easy to find the information I needed.
13. Q13 : The information provided for the model is easy

to understand.
14. Q14 : The information is effective in helping me com-

plete the tasks and scenarios.
15. Q15 : The organization of information on the model

screens is clear.
16. Q16 : The interface of this model is pleasant.
17. Q17 : I like using the interface of this model.
18. Q18 : This model has all the functions and capabilities

I expect it to have.
19. Q19 : I am satisfied in using this model.
Questionnaire Results: Figure 18 graphically depicts the

distribution of the answers provided by the participants on
the 19 IBM CSUQ questions. Each cumulated horizontal
histogram of Figure 18 could be interpreted as follows:

a score between 6 and 7 represented with dark green, is con-
sidered as excellent; a score of 5, represented with light
green, is considered as good; a score of 4, represented with
yellow, is considered as average, a score of 3, represented in
orange, is considered as poor; and a score between 1 and 2,
represented in red, is considered very bad. In general, a score
between ‘average’ and ‘excellent’ should not raise any partic-
ular concern regarding this question, whereas a score between
‘poor’ and ‘very bad’ should raise some discussion in order
to investigate why this question has been depreciated so
much. Figures 19 and 20 summarise the aggregated CSUQ
sub-metrics reported in table 4. Each CSUQ questionnaire
involves the calculation of four quality metrics of the system
being evaluated as follows:

1. System usefulness (SysUse : Items 1-8)
2. Quality of the information (InfoQual : Items 9-15)
3. Quality of the interaction (InterQual : Items 16-18)
4. Overall quality of the system (Overall : Item 19)

FIGURE 19. Aggregated scores by CSUQ sub-metrics (Min, Max, Average).

FIGURE 20. Aggregated scores by CSUQ sub-metrics(Average, Up, Down,
Median).

Figure 18 suggests that the global subjective satisfaction
of participants involved in the experiment follows a positive
trend since Q19 is interpreted positively by 11 users out
of 11 (Q19, µ = 6, M = 6, s = 0.63). The most posi-

VOLUME 6, 2018 7079

T. Sboui et al.: UI-DSPL Approach for the Development of CAUI

TABLE 4. Scores by CSUQ sub-metrics.

tively evaluated sub-metric is certainly the system usefulness
(Q1- Q8, µ = 6.47, M = 6.5, s = 0.25) : all eight questions
do not have any negative answers, the average is the highest
and the standard deviation is the smallest, thus suggesting
that respondents tend to agree that the whole system is
very useful to them. Second comes the interaction quality
(Q16-Q18, µ = 6.09, M = 6, s = 0.4): the average is con-
sidered high as well as the median with small deviation. Next
comes the information quality (Q9-Q15, µ = 4.79, M = 6,
s= 0.8) : some questions have negative answers, the average
is lower with a more disperse variance, thus indicating that
there is no strong agreement among the respondents regarding
to this sub-metric. Questions Q9 and Q11 raise a particu-
lar concern. They are the only questions receiving strong
disagreement. Q9, ‘‘The model provides me with structured
guidance on how to fix problems’’ indicates that the system
does not guide enough the users to correct an error when
this latter is produced. Q11, ‘‘The information provided by
the model and its accompanying method is clear’’ indicates
that the help messages are not clear and do not help the user
sufficiently.

The analysis of the CSUQ sub-metrics in Table 4 and
Figures 19 and 20 evidences that participants perceived as
‘‘useful’’ the application (µ = 6.47, M = 6.5, s = 0.25) and
said to be ‘‘Overall satisfied’’ (µ = 6, M = 6, s = 0.63).

VIII. CONCLUSION
Our work is considered as a new contribution in the area of
adaptation of user interfaces to the context of use. In this
paper, we have proposed a UI-DSPL approach for the devel-
opment of context-adaptable UIs. The main contributions of
our approach are 1) target the user preference to adapt the
main interface. 2) Combine MBUID and DSPL concepts to
make theUI-DSPL approachmore abstract andmore reusable
3) propose a design pattern to facilitate the design and the
development of the runtime adaptation mechanism.

In the paper, we have highlighted the approach phases and
their implementations. The design phase is dedicated for the
generation of initial UIs and a runtime phase is dedicated
for the adaptation of the main UI according to the user
preference.

To validate the proposed approach, we have used two types
of evaluation. The first evaluation is a scalability evaluation
in which we have evaluated the generation time and the adap-
tation time of the restaurant search application. The second

evaluation is a qualitative/quantitative evaluation based on the
IBM CSUQ questionnaire.

For future works, we will use the machine learning tech-
nique. This latter puts the user at ease by choosing the
interface that suits him. Furthermore, we will promote the
development process according to the results of the question-
naire, we will evaluate the approach by designers using the
NASATask Load Index (TLX) questionnaire [15] andwewill
consider more context elements while adapting our interfaces
(e.g. the platform).

REFERENCES
[1] S. Apel and C. Kästner, ‘‘An overview of feature-oriented software devel-

opment,’’ J. Object Technol., vol. 8, no. 5, pp. 49–84, 2009.
[2] S. Apel, C. Kästner, and J. Liebig. FeatureHouse: Language-Independent,

Automated Software Composition. Accessed: Sep. 2, 2016. [Online]. Avail-
able: http://www.infosun.fim.uni-passau.de/spl/apel/fh/

[3] H. Arboleda, A. Romero, R. Casallas, and J.-C. Royer, ‘‘Product deriva-
tion in a model-driven software product line using decision mod-
els,’’ in Proc. 12th Conf. Iberoamericana Soft. Eng. (CIbSE), Medellín,
Colombia, Apr. 2009, pp. 59–72. [Online]. Available: http://ai2-s2-pdfs.
s3.amazonaws.com/57ae/634647fcf7e610df3d106eb2a3cd0f152733.pdf

[4] W. Bouchelligua, A. Mahfouthi, and L. Benammar, ‘‘An MDE approach
for user interface adaptation to the context of use,’’ in Proc. 3rd Int. Conf.
HCSE, Reykjavik, Iceland, Oct. 2010, pp. 62–78.

[5] Q. Boucher, G. Perrouin, and P. Heymans, ‘‘Deriving configuration inter-
faces from feature models: A vision paper,’’ in Proc. 6th Int. Workshop
Variability Model. Softw.-Intensive Syst., Jan. 2012, pp. 37–44.

[6] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and
J. Vanderdonckt, ‘‘A unifying reference framework for multi-target
user interfaces,’’ Interact. Comput., vol. 15, no. 3, pp. 289–308,
Jun. 2003.

[7] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, and M. Hinchey,
‘‘An overview of Dynamic Software Product Line architectures and tech-
niques: Observations from research and industry,’’ J. Syst. Softw., vol. 91,
pp. 3–23, May 2014.

[8] T. Cerny, K. Cemus, M. J. Donahoo, and E. Song, ‘‘Aspect-driven, data-
reflective and context-aware user interface,’’ ACM SIGAPP Appl. Comput.
Rev., vol. 13, no. 4, pp. 53–66, Dec. 2013.

[9] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley, 2002.

[10] Eclipse Modeling Framework. Accessed: Oct. 10, 2016. [Online].
Available: http://www.eclipse.org/modeling/emf

[11] J. D. A. S. Eleutério and C. M. F. Rubira, ‘‘A comparative study of
dynamic software product line solutions for building self-adaptive sys-
tems,’’ Comput. Inst., Univ. Campinas, Portugal, Tech. Rep. C-17-05,
2017.

[12] Y. Gabillon, N. Biri, and B. Otjacques, ‘‘Designing an adaptive user
interface according to software product line engineering,’’ in Proc. ACHI,
vol. 15. 2015, pp. 86–91.

[13] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock, ‘‘Automatically gener-
ating personalized user interfaces with supple,’’ Artif. Intell., vol. 174,
nos. 12–13, pp. 910–950, 2010.

[14] K. Garcés, C. Parra, H. Arboleda, A. Yie, and R. Casallas, ‘‘Variability
management in a model-driven software product line,’’ Revista Avances
Sistemas Informática, vol. 4, no. 2, pp. 3–12, Sep. 2007.

[15] V. J. Gawron. (2000). Human Performance Measures Handbook,
Nasa TLX Questionnaire. [Online]. Available: http://theses.univ-
lyon2.fr/documents/getpart.php?id=lyon2.2010.maincent_a&part=365749

[16] H.Gomaa andM.Hussein, ‘‘Dynamic software reconfiguration in software
product families,’’ in Proc. PFE, 2003, pp. 435–444.

[17] J. M. G. Calleros et al. (May 2010). Model-Based UI XG Final
Report. [Online]. Available: https://www.w3.org/2005/Incubator/model-
based-ui/XGR-mbui-20100504/

[18] F. Heidenreich. (Sep. 2013). FeatureMapper Mapping Features to Models.
[Online]. Available: http://featuremapper.org

[19] D. M. Kramer, ‘‘Unified gui adaptation in dynamic software product
lines,’’ Ph.D. dissertation, Dept. Comput., Univ. West London, London,
U.K., 2014.

7080 VOLUME 6, 2018

T. sboui et al.: UI-DSPL Approach for the Development of CAUI

[20] D. Kramer, S. Oussena, P. Komisarczuk, and T. Clark, ‘‘Using document-
oriented GUIs in dynamic software product lines,’’ ACM SIGPLAN
Notices, vol. 49, no. 3, pp. 85–94, Mar. 2014. [Online]. Available:
https://doi.org/10.1145/2637365.2517214

[21] J. R. Lewis. Questionnaire sur l’usabilité d’un Système Informatisé.
Accessed: Sep. 21, 2017. [Online]. Available: http://garyperlman.com/
quest/quest.cgi

[22] I. M. S. Logre, P. Collet, and M. Riveilli, ‘‘Sensor data visualisation:
A composition-based approach to support domain variability,’’ in Proc.
10th Eur. Conf. Model. Found. Appl. (ECMFA, vol. 8569. New York, NY,
USA, Jul. 2014, pp. 101–116. [Online]. Available: https://doi.org/10.1007/
978-3-319-09195-2_7

[23] N. Mezhoudi, ‘‘User interface adaptation based on user feedback
and machine learning,’’ in Proc. Companion Pub. Int. Conf. Intell.
Interfaces Companion (IUI), New York, NY, USA, 2013, pp. 25–28,
doi: 10.1145/2451176.2451184.

[24] J. Müller, ‘‘Generating graphical user interfaces for software
product lines: A constraint-based approach,’’ in Forschungsberichte
des Instituts für Wirtschaftsinformatik der Universität Leipzig/15.
Interuniversitäres Doktorandenseminar Wirtschaftsinformatik der
Universitäten Chemnitz, Dresden, Freiberg, Halle-Wittenberg,
Jena und Leipzig. Qucosa, Germany: Electronic Server, 2011,
pp. 64–71. [Online]. Available: https://pdfs.semanticscholar.org/
186d/7f0907852cbaaf798513ea1f2e347a63b342.pdf

[25] A. Pleuss, B. Hauptmann, M. Keunecke, and G. Botterweck, ‘‘A case study
on variability in user interfaces,’’ in Proc. 16th Int. Softw. Product Line
Conf., vol. 1. New York, NY, USA, 2012, pp. 6–10.

[26] A. Pleuss, S. Wollny, and G. Botterweck, ‘‘Model-driven development and
evolution of customized user interfaces,’’ in Proc. 5th ACM SIGCHI Symp.
Eng. Interact. Comput. Syst., Jun. 2013, pp. 13–22.

[27] A. Pleuss, B. Hauptmann, D. Dhungana, and G. Botterweck, ‘‘User
interface engineering for software product lines: The dilemma between
automation and usability,’’ in Proc. 4th ACM SIGCHI Symp. Eng. Inter-
act. Comput. Syst. (EICS), Copenhagen, Denmark, Jun. 2012, pp. 25–34.
[Online]. Available: https://doi.org/10.1145/2305484.2305491

[28] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. New York, NY,
USA: Springer, 2005.

[29] C. Quinton, S. Mosser, C. Parra, and L. Duchien, ‘‘Using multiple feature
models to design applications for mobile phones,’’ in Proc. SPLC, Munich,
Germany, Aug. 2011, pp. 1–8.

[30] M. Schlee and J. Vanderdonckt, ‘‘Generative programming of graphi-
cal user interfaces,’’ in Proc. 7th Int. Working Conf. Adv. Vis. Inter-
faces (AVI), Gallipoli, Italy, May 2004, 2004, pp. 403–406. [Online].
Available: https://doi.org/10.1145/989863.98993

[31] Software & Systems Process Engineering Metamodel Specification.
Accessed: Sep. 22, 2017. [Online]. Available: http://www.omg.org/
spec/SPEM/2.0/

[32] T. Sboui, A. Ben Ayed, and M. A. Alimi, ‘‘A meta-model for run time
adaptation in a UI-DSPL process,’’ in Proc. BHCI, 2017, pp. 1–7.

[33] T. Sboui, ‘‘A DSPL approach for the development of context-adaptable
user interfaces,’’ in Proc. RCIS, 2017, pp. 421–426.

[34] J. S. Sottet, A. Vagner, and A. G. Frey, ‘‘Model transformation config-
uration and variability management for user interface design,’’ in Proc.
3rd Int. Conf. Model-Driven Eng. Softw. Develop. (MODELSWARD),
vol. 580. Angers, France, Feb. 2015, pp. 390–404. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-27869-8_23

[35] J.-S. Sottet et al., ‘‘Model-driven adaptation for plastic user inter-
faces,’’ inHuman-Computer Interaction. Berlin, Germany: Springer, 2007,
pp. 397–410.

[36] UsiXML: User Interface eXtensible Markup Language. Accessed:
Oct. 20, 2016. [Online]. Available: http://www.w3.org/2005/Incubator/
model-basedui/wiki/UsiXML

[37] (2002). XSLT Stylesheets Useful Things and Other Jokes. [Online].
Available: http://web.archive.org/web/20160809092524/http://www2.
informatik.hu-berlin.de/~obecker/XSLT/

THOURAYA SBOUI is currently pursuing the
Ph.D. degree. She is currently a Computer Science
Teacher. She is member of the research group in
Intelligent Machines Laboratory. She is currently
an investigating User Interface Adaptation and
Software Product Line Engineering.

MOUNIR BEN AYED received the Habilitation
degree in computer system engineering from the
Engineering School of Sfax, Tunisia, in 2013,
the Ph.D. degree in biomedical engineering from
Paris XII University, France, and the Postgrad-
uate Diploma degree in biomedical engineering
from the University of Technology of Compiègne,
France.

He is currently an Associate Professor with the
Computer Science Department, Faculty of Sci-

ence, University of Sfax. His research activities concern decision support
system based on a knowledge discovery from data process. Most of his
research are designed and evaluated in the medical field. He received the
University Accreditation for his habilitation research in computer system
engineering from the Engineering School of Sfax.

ADEL M. ALIMI received the Degree in electri-
cal engineering in 1990 and the Ph.D. and HDR
degrees in electrical and computer engineering
in 1995 and 2000, respectively.

He is currently a Professor in electrical and
computer engineering with the University of Sfax.

His research interests include applications of
intelligent methods (neural networks, fuzzy logic,
and evolutionary algorithms) to pattern recogni-
tion, robotic systems, vision systems, and indus-

trial processes. His research interest include intelligent pattern recognition,
learning, analysis and intelligent control of large scale complex systems.

VOLUME 6, 2018 7081

http://dx.doi.org/10.1145/2451176.2451184

	INTRODUCTION
	RELATED WORKS
	RESEARCH QUESTIONS

	THE CAUI APPROACH: A UI-DSPL APPROACH FOR THE GENERATION OF CONTEXT-ADAPTABLE UIs
	THE DESIGN PHASE
	THE RUNTIME PHASE
	THE RUNTIME ADAPTATION MODEL

	THE CASE STUDY
	THE DESIGN PHASE IMPLEMENTATION
	DOMAIN ANALYSIS
	FEATURE MODELS
	FEATURES CONSTRAINTS

	DOMAIN IMPLEMENTATION
	THE CUI METAMODEL
	THE MAPPING BETWEEN FEATURE MODELS AND THE CUI MODEL

	APPLICATION ANALYSIS
	FEATURE MODEL CONFIGURATION

	APPLICATION IMPLEMENTATION
	USER INTERFACE COMPOSITION
	FINAL USER INTERFACES

	THE RUNTIME PHASE IMPLEMENTATION
	THE CONTEXT MANAGER
	ADAPTATION MANAGER
	THE RECONFIGURATION ALGORITHM
	THE INTERFACE REGENERATION

	EVALUATION AND DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	THOURAYA SBOUI
	MOUNIR BEN AYED
	ADEL M. ALIMI

