
Received October 18, 2017, accepted November 17, 2017, date of publication December 13, 2017,
date of current version August 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2782838

An Approach for Hierarchical
RBAC Reconfiguration With
Minimal Perturbation
NING PAN , LEI SUN, LIANG-SHENG HE, AND ZHI-QIANG ZHU
Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China

Corresponding author: Ning Pan (pan_ning1988@163.com)

This work was supported in part by the National Natural Science Foundation of China under Award 61272041, Award 61202491, and
Award 61272488, and in part by the National Key Research Program of China under Award 2016YFB0501900

ABSTRACT In recent years, role-based access control (RBAC) has become the de facto access control
model due to its good applicability and high flexibility. Since the organizations need to update the access
control policies to meet the changes in employees, departments, business processes, and so on. The
RBAC system has to define new roles and becomes more and more bloated because it’s difficult to modify
the role-permission assignment with no or minimal impact to other users and roles. Hence, there is a great
need to reconfigure the RBAC system over time to reduce its structural complexity and keep as close as
possible to the original. Several RBAC reconfiguration approaches have been proposed aiming at generating
roles similar to the deployed ones, but they neglect the differences in deployed roles that some of them
are useless for the system and generate more roles than needed, which in turn increases the system structure
complexity. In this paper, we first propose three indicators to evaluate the quality of deployed roles and define
the problem of hierarchy RBAC reconfiguration with minimal weight structure complexity and perturbation.
Then, the hierarchy RBAC reconfiguration approach and its algorithm process are proposed to address the
problem. To conclude, we demonstrate the effectiveness and stability of our approach through experiments.

INDEX TERMS RBAC, role mining, reconfiguration, hierarchy, perturbation.

I. INTRODUCTION
More and more organizations have adopted RBAC as their
main access control mechanismwhichmakes security admin-
istration more flexible and manageable [1], [2]. However,
with the continuous changing in access control policies
(changes in users, permissions and resources) in organiza-
tions, the RBAC system needs to be updated quickly. Since
changing the permission in the role [3] will influence all users
assigned with this role which is prone to error, the secu-
rity administrator prefers to add new roles to meet the cur-
rent needs. In [4], the information management system had
271 users with 348 roles when it was established in 2005.
It became 295 users with 441 roles in 2006, 335 users with
506 roles in 2007 and 379 users with 563 roles in 2008.
However, most of new roles have ignored business processes
and are often assigned to few users, which not only makes
a huge redundancy in the RBAC system, but also increases
the security administrator management burdens. Therefore it

is needed to reconfigure and optimize the RBAC system at
regular intervals.

Role engineering [5], used to define the requisite and
correct set of roles, can be divided into two approaches:
top-down approach [5] and bottom-up approach [6]. The
top-down approach needs to analyze the business pro-
cesses associated with different permissions carefully
which makes it labor intensive and time consuming. The
bottom-up approach, called role mining, has aroused
extensive interest since it can extract roles from a discre-
tionary user-permission assignment relationships automat-
ically or semi-automatically. There have been several role
mining approaches [7]–[11] proposed to reconfigure the
RBAC system and keep the reconfigured one as close as pos-
sible to the original. However, none of them has considered
the differences in the nature and importance of deployed roles
and they have to generate roles similar to all deployed roles
which is unnecessary.

VOLUME 6, 2018
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

40389

https://orcid.org/0000-0001-7367-2105

N. Pan et al.: Approach for Hierarchical RBAC Reconfiguration With Minimal Perturbation

In this paper, we propose an efficient approach for hier-
archy RBAC reconfiguration which minimizes the WSC of
RBAC state and the perturbation in roles. We first define
three indicators to evaluate the quality of deployed roles
using access history log and the problem of hierarchical
RBAC reconfiguration with minimal WSC and perturbation.
Then propose a heuristic algorithm to solve the problem and
analyze its computational complexity. At last we experimen-
tally prove the effectiveness and stability of our approach by
two sets of experiments.

The remainder of paper is organized as follows.
In Section II we briefly overview the related work and present
mathematical background in Section III. In Section IV,
we propose three evaluation indicators and the definition
of problem. The hierarchy RBAC reconfiguration approach
and the heuristic algorithm are proposed in Section V. Then
the viability of our approach is proved by experiments in
Section VI. Section VII concludes this work and explores
future work.

II. RELATED WORK
Role mining was first proposed in [6] and many approaches
with different optimization objectives have been proposed
recently, such as reducing the number of roles and the WSC
of RBAC state [12], satisfying various constraints (separation
of duty, temporal constraints, etc) [13], [14], and seman-
tic meaning according to the business processes and user
attributes [15], [16].

Hachana et al. [17] defined the problem of role sets
comparison and proposed a greedy algorithm that mapped
inherent relations between the deployed roles and the
generated roles based on algebraic expression, but the
RBAC system must support the negation of roles (e.g. there
are two roles {r1 : (p1, p2, p3)} and {r2 : (p2, p3)}, if the
user has permission p1, then he will be assigned with
the roles r1 and ¬r2.) and most system can’t satisfy
this requirement. Baumgrass and Strembeck [18] pro-
posed an approach to identify the differences between two
RBAC model based on model comparison techniques and
defined the migration rules (adding, changing and deleting)
to migrate the current-state RBAC model to the target which
were implemented on Eclipse Modeling Framework (EMF),
but the migration time was direct related to the scale of
system.

Vaidya et al. [7] first proposed a role mining approach
to address the problem of reconfiguring RBAC system and
defined a series of similarity metrics based on Jaccard Coef-
ficient. However, the similarity metrics have a great bias
when the target set of roles has a number of similar roles.
Then these similar roles may be used to compare with
the same role from the source set of roles. For example,
the source set of roles is Rsou = {(p1, p2) , (p3, p4)} and
the target set of roles is Rtar = {(p1, p2, p3) , (p1, p2, p4)},
then the similar between them is Similarity (Rsou,Rtar) =
(J ((p1, p2) , (p1, p2, p3))+ J ((p1, p2) , (p1, p2, p4))) /2 =
0.67 based on the definition of similarity in [7]. The role

(p1, p2) is similar to both roles in Rtar , but the role (p3, p4) is
similar to none. Guo et al. [19] proposed a metric to evaluate
the role hierarchy based on the transitive closure in the graph
representation and defined the Minimal Perturbation Role
Hierarchy Problem which minimized quantified disruptions
and direct relations. They proposed two heuristic algorithms
to solve the problem, RH-Builder and RH-Miner, the former
is used when there are deployed roles and the latter is used
when there is no given role. Jafari et al. [20] applied the access
history log as the source data and proposed a log-based role
mining approach the assumptions under which permissions
appeared near each other in the log might belong to the same
role, but the approach didn’t take into consideration the issue
of minimizing the structure complexity of the RBAC state
by introducing the role hierarchy. Takabi and Joshi [8] first
applied rolemining to reconfigure the RBAC systemwith role
hierarchy and defined the problem of mining role hierarchy
with minimal perturbation. The heuristic algorithm, StateM-
iner, was proposed to build the hierarchical RBAC state with
the minimal perturbation and weighted structural complexity.
However, their definition of the similarity between hierar-
chy relation just considered the number of junior and senior
roles that each role had. Zhigang et al. [9] first proposed
a definition of similarity between two sets of roles which
conforms the commutative law and proposed a hybrid role
mining approach for reconfiguring RBAC system based on
it. Based on access history log and expert knowledge of
the administrator, Zhang et al. [10] proposed a strategy to
optimize the RBAC configuration with the purpose of balanc-
ing the permission utilization and the perturbation between
the new and the initial RBAC configurations and proposed
a two-phase algorithm based on Support Vector Machines.
Saenko and Kotenko [11] first defined the problem of RBAC
system design and reconfiguration with formulas and pre-
sented an enhanced genetic algorithm to solve the problem.
But its performance and computation complexity mostly
depend on the terminal conditions such as the number of
iterations that is not easily decided.

The above literatures just focus on generating roles that are
most similar to the deployed ones and most of them have the
same problem in [7], what’s more, they treat the deployed
roles equallywithout taking into consideration the differences
in them and generate more roles than needed which in turn
increases the structure complexity of the RBAC reconfigured.

III. MATHEMATICAL BACKGROUD
Definition 1 (RBAC Model): The RBAC model has the

following components:

• U , R and P are mnemonic for users, roles and permis-
sions respectively;

• PA ⊆ P×R, a many-to-many mapping of permission to
role assignments relationships;

• UA ⊆ U × R, a many-to-many mapping of user to role
assignment relationships;

• User(r) = {u ∈ U |(u, r) ∈ UA }, the mapping of the
role r onto a set of users;

40390 VOLUME 6, 2018

N. Pan et al.: Approach for Hierarchical RBAC Reconfiguration With Minimal Perturbation

• Perm(r) = {p ∈ P |(p, r) ∈ PA }, the mapping of the role
r onto a set of permissions;

• UPA ⊆ U × P, a many-to-many mapping of user to
permission assignment relationships;

• RH ⊆ R× R, a partial order on roles called inheritance
relationships.

The symbol r � r ′ means that the role r ′ is junior to the
role r , which means Perm

(
r ′
)
⊆ Perm (r) and User (r) ⊆

User
(
r ′
)
. If there is no role r ′′ that r � r ′′∧ r ′′ � r ′, the role

r ′ is the direct descendant of the role r and the role r is direct
ancestor of the role r ′.
As is described above, the user-permission assignment

relationships can be defined as an m× n binary matrix UPA,
m is the number of users and n is the number of permissions.
The element UPA(i, j) = 1 indicates the assignment of the
permission pj to the user ui.

The direct inheritance relationships between roles can be
defined as an k × k binary matrix RH , k is the number of
roles. The element RH (i, j) = 1 indicates that role rj is the
direct descendant of the role ri and RH (i, i) = 1.
Definition 2 (Boolean Matrix Multiplication): A boolean

matrix multiplication between an m × k boolean matrix A
and a k × n boolean matrix B is A ⊗ B = C, where C is an
m× n boolean matrix and

C (i, j) =
k∨
l=1

(A (i, l)× B (l, j)) (1)

Thus the matrices UPA,UA,PA,RH satisfy the equation
UPA = UA⊗(RH ⊗ PA) according to theDefinition 1. In the
remainder of this article, we use PA to represent RH⊗PA for
brevity.
Definition 3 (L1 Norm): The L1 norm of a d-dimensional

vector v ∈ Xd for some set X , is

‖v‖1 =
d∑
i=1

|vi| (2)

Definition 4 (Role Mining Problem, RMP): Given a set
of users U , a set of permissions P and a user-permission
assignment matrix UPA, find a set of roles R, a user-role
assignment matrix UA and a role-permission assignment PA,
subject to UA ⊗ PA = UPA and minimize the number of
roles |R|.
The RMP has been proved to be NP-complete in [12].
Definition 5 (Access History Log): Access history log is a

sequence of quaternion in the form of 〈u, p, r, t〉, it represents
the user u invocated the permission p by the role r at time t .
Based on access history log, the user-permission invoca-

tion matrix, user-role invocation matrix and role-permission
invocation matrix can be defined as follows, in which m, n, k
are the numbers of users, permissions and roles.
Definition 6 (User-Permission Invocation, UPI): The user-

permission invocation matrixUPI is anm×n positive integer
matrix and the element UPI (i, j) = z indicates the number
of times that user ui invoked permission pj is z.

Definition 7 (User-Role Invocation, URI): The user-role
invocation matrix URI is an m × k positive integer matrix
and the element URI (i, j) = z indicates the number of times
that user ui invoked role rj is z.
Definition 8 (Role-Permission Invocation, RPI): The role-

permission invocation matrix RPIr for the role r is an
|User (r)| × |Perm (r)| positive integer matrix . If the sth

user (row) in the matrix UPI is the user ux in the matrix
RPIr and the oth permission (column) in the matrix UPI
is the permission py in the matrix RPIr, then the element
RPI r (x, y) = z indicates the number of times that the user
us invoked the permission po by invoking role r is z.
Definition 9 (Weighted Structural Complexity, WSC):

Given the weight scheme W = 〈wR,wU ,wP,wRH 〉 and
wR,wU , wP,wRH ∈ Q+

⋃
{∞}, the weight structural com-

plexity of an RBAC state γ = (R,UA,PA,RH) is calculated
as follows.

WSC (γ,W) = wR × |R| + wU × ‖UA‖1 + wR × ‖PA‖1
+wRH × (‖RH‖1 − |R|)

IV. HIERARCHICAL RBAC RECONFIGURATION WITH
MINIMAL WSC AND PERTURBATION PROBLEM
In this section, we first define three indicators to evaluate
the role quality, then define a new definition of the simi-
larity between two sets of roles and define the problem of
hierarchical RBAC reconfiguration with minimal WSC and
perturbation at last.

A. ROLE QUALITY
Based on access history log and RBAC configuration,
we define three indicators, usage, homogeneity and redun-
dancy.

The first indicator usage consists of three factors, the invo-
cation frequency of the role and the permissions in this role,
and the latest time that the role invocated. Based on the
Definition 5−8, the usage of the role rj can be defined as
follows.
Definition 10 (Usage): Given the matrices URI,UPI ,

RPIrj and the latest invocated time trj within a time period
[tstart , tend] for the role rj, the usage degree of rj is calculated
as follows.

usage
(
rj
)
= min

(
‖URI (∗, j)‖1
‖URI‖1

,

∥∥RPIrj∥∥1
‖UPI‖1

,
trj − tstart
tend − tstart

)
(4.1)

where the notation URI (∗, j) is the jth column vector of
matrix URI and the notation URI (i, ∗) will be used later is
the ith row vector of it.
The role with a high usage degree means it is invocated

more frequently (‖URA (∗, j)‖1), accomplishes more tasks
(
∥∥RPIrj∥∥1) and has been used longer (trj). Thus, it makes
better to cater for users and fits workflowwell. Then it should
be preserved in RBAC system reconfigured.

The second indicator homogeneity is used to describe the
similarity of users in a role. Since a task is accomplished

VOLUME 6, 2018 40391

N. Pan et al.: Approach for Hierarchical RBAC Reconfiguration With Minimal Perturbation

by a series of permissions, if there are obvious differences
in the invocation frequency of permissions among them, this
role is likely to be just a composition of permissions which
is meaningless to the system. Based on the Definition 8,
the homogeneity of the role rj can be defined as follows.
Definition 11 (Homogeneity, Hom): Given the matrix

RPIrj for the role rj, the homogeneity of rj is calculated as
follows.

hom
(
rj
)
=

1
m

m∑
i=1

cos

(
RPIrj (i, ∗) ,

1
m

m∑
i=1

RPIrj (i, ∗)

)
(4.2)

where m is the number of users that role rj is assigned to and
1
m

m∑
i=1

RPIrj (i, ∗) is the average behavior pattern of the users

in User
(
rj
)
, cos (a, b) represents the cos similarity |a·b|

|a|×|b| .
The role with a small homogeneity degree means it may be

assigned to a set of dissimilar users whose tasks are different.
Thus, this role is meaningless to the users and doesn’t have
to be preserved in RBAC system reconfigured.

The third indicator redundancy is used to describe the
unique of the user-permission assignments covered by the
role. Since some tasks can be only accomplished by a
few users and permissions, which infers the unique user-
permission assignments. Then the role covers these unique
assignments is more important to the system. The redundancy
of the role rj can be defined as follows.
Definition 12 (Redundancy, Redun):Given the matrixUPA

for the role rj, the redundancy of rj is calculated as follows.

redun
(
rj
)
= min(

ux , py
)
∈

cover
(
rj
)
(∣∣{r ∈ R ∣∣(ux , py)
∈

(
cover (r)

⋂
cover

(
rj
))}∣∣∣)

(4.3)

where cover(rj) = {(ux , py) ∈ UPA|ux ∈ User(rj) ∧ py ∈
Perm(rj)} is the user-permission assignments covered by the
role rj.
The role with a small redundancy degree means some user-

permission assignments covered by it is important and make
the role is unique to the system. Thus, this role is should be
preserved in RBAC system reconfigured.

Based on equation (4.1), (4.2) and (4.3), the quality degree
of role rj is calculated as follows.

Degree
(
rj
)
= α × usage

(
rj
)
+ β × hom

(
rj
)

+χ ×
[
redun

(
rj
)]

where the weighting coefficients α, β, χ ∈ (0, 1) and α+β+
χ = 1.

[
redun

(
rj
)]

is the normalization of redun
(
rj
)
and is

calculated as follows.[
redun

(
rj
)]
=
redunmax − redun

(
rj
)

redunmax − redunmin

where redunmax and redunmin is the maximum and minimum
of the redundancy for all roles.

Definition 13 (Qulified Role, QRole): Given the matrices
URI ,UPI ,RPIr for the role r with the weighting coefficients
α, β, χ and the threshold th. If the equation Degree (r) ≥ th
is satisfied, then the role r is a qualified role and should be
preserved in RBAC system reconfigured.

B. PERTURBATION BETWEEN ROLES
In this subsection, we first define the similarity between a pair
of roles and then extend it to measure the similarity between
two sets of roles, which can be used to evaluate the perturba-
tion in roles caused by RBAC system reconfiguration.

Based on Jaccard coefficient, the similarity between a pair
of roles

(
ri, rj

)
can be calculated as follows.

similarity
(
ri, rj

)
=

∣∣Perm (ri)⋂Perm
(
rj
)∣∣∣∣Perm (ri)⋃Perm

(
rj
)∣∣

To overcome the shortcoming in [7], the relationship
between the size of roles set is taken into consideration when
we calculate the similarity between them and we use the
example in Figure.1 to illustrate the calculating process.

In Figure. 1, ObjRole is the object set of roles and
SouRole is the source set of roles. The similarity between
them is anti-commutative law which means similarity
(SouRole,ObjRole) 6= similarity(ObjRole, SouRole).

FIGURE 1. Similarity between two sets of roles.

In Figure. 1(a)(|SouRole| < |ObjRole|), each role in
ObjRole must have a similar role in SouRole, then there is
a one-to-many relationship between SouRole and ObjRole,
which means each role in SouRole may be similar to more
than one role in ObjRole.

In Figure. 1(b)(|SouRole| ≥ |ObjRole|), there is a one-to-
one relationship between SouRole and ObjRole as each role
in ObjRole should be similar to a different role in SouRole.
Then there are some roles in SouRole which are not similar
to any one in ObjRole.
Definition 14 (Similarity):Given two sets of roles SouRole

and ObjRole, the similarity between them is calculated as
follows.

Step 1Randomly select role rj ∈ ObjRole, find role ri ∈
SouRole subject to max similarity

(
ri, rj

)
and for all

selected pairs of roles (ra, rb) and (rc, rd), if ra 6= rc
then rb 6= rd . When |SouRole| ≥ |ObjRole|, jump
to Step 3.

Step 2After Step 1, each role in SouRole is matched with
exactly one distinct role in ObjRole, but for the role
rq ∈ ObjRole that has not been matched with one in
SouRole, find the role rp ∈ SouRole subject to max
similarity

(
rp, rq

)
.

40392 VOLUME 6, 2018

N. Pan et al.: Approach for Hierarchical RBAC Reconfiguration With Minimal Perturbation

Step 3Take the average over all selected pairs of roles.
If SouRole = {(p1, p2), (p3, p4), (p5)} and ObjRole =
{(p1, p2, p3), (p3, p4)}, the similarity between the six possible
pairs of roles are:

similarity((p1, p2), (p1, p2, p3)) = 2/3

similarity ((p1, p2) , (p3, p4)) = 0

similarity ((p3, p4) , (p1, p2, p3)) = 0.25

similarity ((p3, p4) , (p3, p4)) = 1

similarity ((p5) , (p1, p2, p3)) = 0

similarity ((p5) , (p3, p4)) = 0

Then the similarity between them is

similarity (SouRole,ObjRole) = (2/3+ 1) /2 = 5/6

And if SouRole = {(p3, p4)}, then the similarity becomes

similarity (SouRole,ObjRole) = (0.25+ 1) /2 = 0.625

Then the perturbation (pert) between two sets of roles
SouRole and ObjRole is defined as follows.

pert (SouRole,ObjRole)=1−similarity (SouRole,ObjRole)

C. OBJECTIVE FUNCTION
In order to minimize the manager burden and the perturbation
between the generated roles and deployed roles, the objective
function is defined as follows.
Definition 15 (Objective Function, OF): Given a weighted

structural complexity, WSC , of the RBAC state reconfig-
ured, a perturbation measure between the two sets of roles,
the objective function is defined as follows.

OF (WSC, pert) = (1− w)×WSC + w×WSC × pert

wherew is a weighting coefficient between 0 and 1 to bias the
objective function from the perturbation between two sets of
roles to the WSC of RBAC state reconfigured.

Based on prior definitions, the problem of hierarchical
RBAC reconfiguration with minimal WSC and perturbation
is defined as follows.
Definition 16 (The Problem of Hierarchical RBAC Recon-

figuration With Minimal WSC and Perturbation): Given a
set of users U , a set of permissions P, a user-permission
assignment matrix UPA, a set of qualified roles QRole that
are selected from the deployed roles DRole based on the
matrices URI , UPI , RPIDRole, find an RBAC state γ =
(R,UA,PA,RH), subject to UPA = UA ⊗ PA, such that
minimizes the objective function of WSC (γ,W) and the
perturbation between R and QRole.
The problem of hierarchical RBAC reconfiguration with

minimalWSC and perturbation can be reduced to Basic RMP
by defining the weighting coefficient w = 0 and the weight
scheme W = 〈1, 0, 0, 0〉. In this situation, the objective
function is just to minimize the number of generated roles
which is the same as RMP, so the problem of hierarchical
RBAC reconfiguration with minimal WSC and perturbation
is NP-complete as well.

V. LOG-BASED HIERARCHICAL RBAC
RECONFIGURATION APPROACH
In this section, we present the log-based hierarchical RBAC
reconfiguration approach to address the problem defined in
Definition 16 by the heuristic algorithm designed.

A. DESCRIPTION
Our approach consists of four phases, find the qualified roles
from the deployed roles based on access history log, construct
the candidate hierarchical RBAC state, remove roles to mini-
mize the objective function and restore removed roles which
are useful. Its flow chart is shown in Figure. 2.

FIGURE 2. Log-based hierarchical rbac reconfiguration.

Phase 1: The matrices URI , UPI , RPIDR are generated
based on access history log and the qualified roles (QRole)
can be selected according to its usage degree, homogeneity
degree and redundancy degree. Then we generate the set of
candidate roles (CRole) from the matrix UPA and select the
set of similar roles (SimRole) which is the most similar to the
set of qualified roles.
Phase 2: The candidate hierarchical RBAC state is con-

structed by the set of candidate roles.
Phase 3: As the set of candidate roles are much bigger

than needed, we need to remove candidate roles to minimize
the objective function OF . The order of removing candidate
roles is based on its score which takes into consideration the
similarity and redundancy and is calculated as follows.

score (crole)

= redun(crole)×
(
1− max

qrolek∈QRole
(similarity (crole, qrolek))

)
(5.1)

VOLUME 6, 2018 40393

N. Pan et al.: Approach for Hierarchical RBAC Reconfiguration With Minimal Perturbation

Algorithm 1:
Input: user-permission assignment matrix UPA, access history log, deployed roles, weighting coefficients α, β, χ,w and

threshold th weight scheme W
Output: UA,PA,RH,Role,OF, pert

1 Select QRole from deployed roles according to access history log, weighting coefficient α, β, χ and threshold th;
2 (CRole,UA,PA)← FastMiner [20] (UPA), RemRole← ∅;
3 (SimRole, pert)← Sim (CRole,RemRole,QRole);(Algorithm 2)
4 Rootrole← Perm (crole1)

⋃
· · ·
⋃
Perm

(
crole|Crole|

)
;

5 RH ← I |CRole|+1;
6 Sort CRole in descending order by the number of permissions;
7 for each crolei ∈ CRole do
8 RH ← Insert (crolei,Rootrole,RH,CRole,RemRole); (Algorithm 3)

9 OF ← ObjectFunction (UA,PA,RH,CRole,RemRole, pert,W ,w); (Algorithm 5)
10 Sort crole in descending order by Score (crole);
11 for each crolei ∈ CRole do
12 if Satisfy (UA,PA,UPA, crolei) = 1 then
13 if crolei /∈ SimRole then
14 RemRole← RemRole

⋃
crolei;

15 (UA,PA,RH)← Remove (crolei,UA,PA,RH); (Algorithm 7)
16 else
17 RemRolenew← RemRole

⋃
crolei;

18 (SimRolenew, pertnew)← Sim (CRole,RemRole,QRole); (Algorithm 2)
19 (UAnew,PAnew,RHnew)← Remove (crolei,UA,PA,RH); (Algorithm 7)
20 OFnew← ObjectFunction (UAnew,PAnew,RHnew,CRole,RemRolenew, pertnew,W ,w);
21 if OFnew ≤ (1+ δ)× OF then
22 UA,PA,RH ← UAnew,PAnew,RHnew;
23 RemRole, SimRole,OF, pert ← RemRolenew, SimRolenew,OFnew, pertnew;

24 for each crolei ∈ RemRole do
25 RemRolenew← RemRole\crolei;
26 (SimRolenew, pertnew)← Sim (CRole,RemRolenew,QRole);(Algorithm 2)
27 if pertnew < pert then
28 UAnew (∗, i)← User (crolei) ,PAnew(i, ∗)← Perm (crolei);
29 RHnew← Insert (crolei,Rootrole,RH,CRole,RemRole);(Algorithm 3)
30 OFnew← ObjectFunction (UAnew,PAnew,RHnew,CRole,RemRolenew, pertnew,W ,w);(Algorithm 5)
31 if OFnew ≤ OF then
32 UA,PA,RH ← UAnew,PAnew,RHnew;
33 RemRole, SimRole,OF, pert ← RemRolenew, SimRolenew,OFnew, pertnew;

34 Simplify UA,PA according to RemRole,RH ;
35 Role← CRole\RemRole;

If score (crole) is much bigger than others, it means that
crole has a lower similarity with the qualified roles and
remove it may not break the equation UA ⊗ PA = UPA
as it has a higher redundancy. What’s more, considering the
greedy approach to remove candidate roles is not an optimal
solution, we allow to remove crole if the objective func-
tion increases slightly which partially compensates for this
fact.
Phase 4: Since the different order of removing candidate

roles may lead to the different hierarchical RBAC state,
we check each role in the set of removed roles (RemRole)

whether it will improve the object function and restore the
useful one to the hierarchical RBAC state.

B. HEURISTIC ALGORITHM
In order to improve the efficiency of our approach, we design
a heuristic algorithm and provide its walkthrough in
Algorithm 1. The procedure Score(crole) returns the score to
each crole according to the equation 5.1.
Phase 1: Line 1-3 in Algorithm 1 corresponds to Phase 1.

At first the qualified roles (QRole) are selected based on
its usage, homogeneity and redundancy. Then the set of

40394 VOLUME 6, 2018

N. Pan et al.: Approach for Hierarchical RBAC Reconfiguration With Minimal Perturbation

candidate roles (CRole) and corresponding matrices UA,PA
are generated from the matrixUPA by FastMiner [21] and the
SimRole which is the most similar (minimal perturbation) to
QRole is selected from CRole by Algorithm 2.

Algorithm 2: Sim
Input: CRole,RemRole,QRole
Output: SimRole, pert

1 Sim← zeros (|CRole| , |QRole|) , Sum← 0,QRole′←
QRole, SimRole← ∅;

2 for each crolei ∈ CRole\RemRole do
3 for each qrolej ∈ QRole do

4 Sim (i, j)←

∣∣Perm (crolei)⋂Perm
(
qrolej

)∣∣∣∣Perm (crolei)⋃Perm
(
qrolej

)∣∣ ;
5 while ‖Sim‖1 > 0 do
6 Select

(
crolex , qroley

)
with the maximum Sim (x, y);

7 If there is a tie, select crolex with more permissions;
8 Sim (x, ∗)← 0,Sim (∗, y)← 0;
9 Sum← Sum+ Sim (x, y) ,QRole′←

QRole′\qroley, SimRole← SimRole
⋃
crolex ;

10 if |CRole\RemRole| < |QRole| then
11 for each qrolej ∈ QRole′ do
12 for each crolei ∈ CRole\RemRole do

13 S (i)←

∣∣Perm (crolei)⋂Perm
(
qrole′j

)∣∣∣∣Perm (crolei)⋃Perm
(
qrole′j

)∣∣ ;
14 Select crolex with the maximum S (x);
15 Sum← Sum+ S (x) , SimRole←

SimRole
⋃
crolex ;

16 pert ← 1−
Sum
|QRole|

;

In Algorithm 2, the similarity matrix Sim is firstly
constructed in which the row represents the crole from
CRole\RemRole and the column represents the role from
QRole (Line 2-4). The element Sim (i, j) is the similarity
between pair of roles

(
crolei, qrolej

)
. Line 5-9 corresponds

to the step 1 in Definition 14. In each iteration, the maximum
element Sim (x, y) is selected and the row Sim (x, ∗) and
column Sim (∗, y) are set to zero. Line 10-15 corresponds
to step 2 when |CRole\RemRole| < |QRole| and select the
most similar crolex for each quality roles in QRole′ without
considering whether crolex has been selected to be similar
with another quality role (crolex ∈ SimRole). Line 16 cor-
responds to step 3 and calculates the perturbation between
CRole\RemRole and QRole.
Phase 2: Line 4-8 in Algorithm 1 corresponds to

Phase 2. Firstly, we generate Rootrole with all permis-
sions as the root of role hierarchy and initialize the matrix
RH as a (|CRole| + 1)-rank identity matrix. (Line 4-5 in
Algorithm 1). Then we insert each crole into the role hierar-
chy by Algorithm 3-4 (Line 7-9 in Algorithm 1) and calculate
OF by Algorithm 5.

Algorithm 3: Insert
Input: crolei,RootRole,RH,CRole,RemRole
Output: RH

1 for each crolej ∈ CRole\RemRole do
2 if RH (|CRole| + 1, j) = 1 then
3 if Perm (crolei)

⋂
Perm

(
crolej

)
= ∅ then

4 continue;
5 else if Perm (crolei) ⊇ Perm

(
crolej

)
then

6 RH (|CRole| + 1, j)← 0;
7 RH (|CRole| + 1, i)← 1;
8 RH (i, j)← 1;
9 else if Perm (crolei) ⊆ Perm

(
crolej

)
then

10 RH ← Insert
(
crolei, crolej,RH

)
;

11 else if Perm (crolei)
⋂
Perm

(
crolej

)
6= ∅ then

12 RH ← Link
(
crolei, crolej,RH

)
;

13 if |RH (∗, i)| = 1 then
14 RH (|CRole| + 1, i)← 1;

Algorithm 4: Link
Input: crolei, crolej,RH,CRole,RemRole
Output: RH

1 for each crolej ∈ CRole\RemRole do
2 if RH (j, k) = 1 then
3 if Perm (crolei)

⋂
Perm (crolek) = ∅ then

4 continue;
5 else if Perm (crolei) ⊇ Perm

(
crolej

)
then

6 RH (i, k)← 1;
7 else if Perm (crolei)

⋂
Perm (crolek) 6= ∅ then

8 RH ←
Link (crolei, crolek ,RH,CRole,RemRole);

In Algorithm 3, when we try to insert crolei into the role
hierarchy, we check its relationship in permission set with
each direct descendant crolek of Rootrole (RH (|CRole| +
1, k) = 1) (Line 3, 5, 9, 11) and take appropriate actions
(Line 4, 6-8, 10, 12). If it has no relationships with any direct
descendant of Rootrole, we make the crolei as the direct
descendant of Rootrole (Line 13-14).
Based on the inheritance relationship, if RH (i, j) = 1,

then Perm (ri) ⊇ Perm
(
rj
)
and User (ri) ⊆ User

(
rj
)
. For

the sake to reduce the management burden, Perm (ri) can be
reduced to Perm (ri) \Perm

(
rj
)
and User

(
rj
)
can be reduced

to User
(
rj
)
\User (ri). In Algorithm 5, Line 2-9 corresponds

to the above simplification operations.
Phase 3: Line 11-23 in Algorithm 1 corresponds to

Phase 3. At first the score of each crole is calculated accord-
ing to equation 5.1 and is sorted in descending order. Then
each crole is checked in order by Algorithm 6 whether
removing it will change access control policies. If the crole
does not belong to SimRole, it can be removed directly
by Algorithm 7 because removing it won’t affect the

VOLUME 6, 2018 40395

N. Pan et al.: Approach for Hierarchical RBAC Reconfiguration With Minimal Perturbation

perturbation and will reduce the WSC (Line 14-15 in
Algorithm 1). If it belongs to SimRole, we check whether
removing it will increase the OFnew to (1+ δ) × OF
(Line 16-23 in Algorithm 1).
Phase 4: Line 24-35 in Algorithm 1 corresponds to

Phase 4. Each crole in RemRole is checked whether recov-
ering it will reduce the perturbation (Line 27- 30 in
Algorithm 1). Then check whether the OF is also reduced
(Line 31-33 in Algorithm 1).

C. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity analysis takes a row operation
as the unit operation and the results are shown in table 1.

The computational complexity of finding the qualified
roles isO(U ′1+U ′2+· · ·+U ′|DRole|), whereU ′i is the number
of users assignedwith drolei. In the worst case, each deployed
role is assigned to all users (|U |) and the computational
complexity is O (|U | × |DRole|). Then the computational
complexity of our approach is

O(|U | × |DRole| + |U |2 + |CRole| × |QRole|)

+O(|CRole|3)+ O(|CRole|3)+ O(|CRole|2)

As |CRole| � {|DRole| , |QRole| , |U |}, the computational
complexity of our approach is O(|CRole|3).

VI. EXPERIMENT
In this section two sets of experiments are carried out, the first
is to compare our approach with previous proposals and
the second is to research the relationships between parameters
in our approach. All experiments have been implemented by
usingMATLABR2016 on a ThinkPad T440P runningWin10
(2.40 Ghz Intel Core i7, 8GB 1067Mhz DDR3 SDRAM).

As there is no access history log in real datasets
(e.g. Domino, Apj), we take five steps to create four manual
datasets with access history log.

Step 1The dataset generator algorithm takes the number of
users, permissions, roles and two limit parameters

Algorithm 5: ObjectFunction
Input: UA,PA,RH,CRole,RemRole, pert,W ,w
Output: OF

1 UA′
← UA,PA′

← PA;
2 for i = 1 to |CRole| do
3 for j = 1 to |CRole| do
4 if RH (i, j) = 1 ∧ i 6= j then
5 UA′ (j, ∗)←

UA′ (j, ∗)− UA′ (j, ∗)
⋂
UA′ (i, ∗);

6 PA′ (i, ∗)←
PA′ (i, ∗)− PA′ (i, ∗)

⋂
PA′ (j, ∗);

7 RH (∗, |CRole| + 1)← 0;
8 WSC = wR × |CRole\RemRole|+wU ×

∥∥UA′∥∥
1+wP ×∥∥PA′∥∥

1+wRH × (‖RH‖1 − |CRole\RemRole|);
9 OF ← (1− w) ∗WSC + w×WSC × pert;

Algorithm 6: Satisfy
Input: UA,PA,UPA, crolei
Output: ans

1 UA′
← UA,PA′

← PA;
2 UA′ (∗, i)← 0,PA′(i, ∗)← 0;
3 if UA′

⊗ PA′
= UPA then

4 ans← 1
5 else
6 ans← 0

Algorithm 7: Remove
Input: crolei,UA,PA,RH
Output: UA,PA,RH

1 UAnew← UA,PAnew← PA;
2 UAnew (∗, i)← 0,PAnew (i, ∗)← 0;
3 for j = 1 to |CRole| do
4 if RH (j, i) = 1 ∧ j 6= i then
5 for k = 1 to |CRole| do
6 if RH (i, k) = 1 ∧ i 6= k then
7 RH (j, k) = 1

8 RH (i, ∗)← 0,RH (∗, i)← 0;

TABLE 1. Computational complexity of procedures.

(the maximum number of roles a user can have
and the maximum number of permissions a role
can have) as input. The outputs are three boolean
matrices UA, PA and UPA = UA⊗ PA.

Step 2Repeat Step 2 to Step 5 k times, k is the number of
roles.

Step 3Randomly select a user and invoke one or more
permissions by his roles, then log in the form of
〈u, {p1, · · · , pn} , r, t〉. Repeat s times, s is the num-
ber of permissions assigned to the user.

Step 4Repeat Step 3 m2 times, m is the number of the
users.

Step 5Randomly choose one or more operations below.

a) Add one role. Add one column and one row
in the matrices UA and PA, set the elements
according to the matrix UPA.

b) Add one user. Add one row in the matrices
UPA and UA, set the elements according to the

40396 VOLUME 6, 2018

N. Pan et al.: Approach for Hierarchical RBAC Reconfiguration With Minimal Perturbation

permissions and roles assigned with the new
user. Add one role if there is no subset of the
role set can satisfy the permission set the new
user has.

c) Add one permission. Add one column in the
matrices UPA and PA. Set the elements in the
matrix UPA according to users assigned with
the new permission. Then add one role contain-
ing the new permission and update the elements
in the matrices UA and PA.

d) Delete one role. Delete the corresponding col-
umn and row in the matrices UA and PA.
Then update the corresponding elements in the
matrix UPA.

e) Delete one user. Delete the corresponding row
in the matrices UPA and UA.

f) Delete one permission. Delete the correspond-
ing column in the matrices UPA and PA.

g) Assign/Revoke a role to/from a user. Update
the corresponding elements in the matrices UA
and UPA;

h) Assign/Revoke a permission to/from a user.
Update the corresponding elements in the
matrices UPA and UA. Add one role if there is
no subset of the role set can satisfy the permis-
sion set updated.

i) Add/Delete a permission to/from a role. Update
the corresponding elements in the matrices
UPA and PA.

The statistics for four manual datasets is shown in Table 2.
Dataset 1 and 2 were the same when they were generated in
Step 1. As repeating Step 5 different times, the numbers of
deployed role in two datasets are different. Dataset 3 and 4 are
in the case of Dataset 1 and 2.

TABLE 2. Datasets.

In the first set of experiments, we evaluate the performance
of our approach with five other approaches (MP-RM [7],
StateMiner (SM) [8], HybridMiner (HM) [9], DDRE [10],
and GA-RM [11]) in the similarity (Sim), weight structural
complexity (WSC) and computation time (Time). All results
reported for each dataset are averaged over the five runs and
Table 3 shows the comparison results. Since their definitions
of similarity between two sets of roles are different from ours,
then we adopt the Definition 13 and recognize all deployed
roles as the qualified roles in these approaches.

As the optimization objective of MP-RM, DDRE and
GA-RM don’t take into consideration the weight struc-
tural complexity of RBAC, we just list the results

without comparison. The weight schemes W = 〈0.25,
0.25, 0.25, 0.25〉 and α = β = χ = 1/3,w = 0.5, th = 0.4.
The results in Table 3 demonstrate our approach has a

better performance compared with others. With the number
of DRole increases. there is an obvious increase on WSC
and Time in other approaches, because these approaches must
generate more roles to keep a high similarity with DRole,
which in turn increases WSC and Time. On the contrary, our
approach has a more stable performance because the number
of qualified roles is mainly affected by the threshold th and
a larger DRole may even conversely decrease the number of
qualified roles, then WSC and Time have no direct relation-
ships to the number of DRole.

As there has been a detail discussion on performance of
MP-RM, SM and HM in [9], we will not repeat it any
more. And the Sim of DDRE and GA-RM is much lower
than others which is mostly because their definition of the
similarity between a pair of roles considered not just the same
permissions they both have, but also the same users they are
both assigned to. The Time of DDRE and SM is much longer
thanMP-RM and HM, because the optimization objectives of
DDRE and SM are much more complex. As the computation
complexity of GA-RM depends largely on the termination
conditions and maximum iterations of genetic algorithm, its
Time is the longest.
In the second set of experiments, we conducted the experi-

ments on the relationships between threshold th (0 to 0.9) and
three indices. The results are shown in Figure. 3-5.

FIGURE 3. Similarity vs. threshold.

Figure. 3 shows that Sim floats up and down slightly with
th increasing. As th increases, the number of qualified roles
decreases and the average of quality degrees increases. But
the role with a higher quality degree doesn’t mean there will
be a candidate role that is more similar to it, because some
permissions in the qualified role may be deleted. For exam-
ple, when the threshold is 0.5, the qualified roles are r1 =
(p1, p2, p3), r2 = (p4, p5, p6, p7) and r3 = (p8, p9, p10), but
the permissions p4, p6 are deleted in Step 5. The candidate
roles similar to them are r ′1 = (p1, p2, p3), r ′2 = (p5, p7)
and r ′3 = (p8, p9), the similarity between them is 13/18.

VOLUME 6, 2018 40397

N. Pan et al.: Approach for Hierarchical RBAC Reconfiguration With Minimal Perturbation

TABLE 3. Experimental results in different approaches.

FIGURE 4. Weight structural complexity vs. threshold.

When the threshold increases to 0.9, the qualified roles are
reduced to r2 = (p4, p5, p6, p7) and r3 = (p8, p9, p10),
the candidate roles similar to them are r ′2 = (p5, p7) and
r ′3 = (p8, p9), but the similarity between them reduces to
7/12. So there is no direct relationships between Sim and
threshold th.
Figure. 4 shows that WSC decreases slightly with th

increasing and becomes a constant at last. It is because
with the number of qualified roles decreasing, there will be
less redundancies in the final set of roles which means the
less WSC . For example, the qualified roles are r1 = (p1),
r2 = (p3, p4) and r3 = (p1, p2, p4), the candidate roles
similar to them are r ′1 = (p1), r ′2 = (p2, p3, p4) and
r ′3 = (p1, p2, p3, p4), then r ′3 is a redundant role as it is the
combination of r ′1 and r ′2. If the qualified role r3 is removed
with th increasing, the candidate role r ′3 will be removed if
it won’t affect the access control policies. And when th goes
up to some extent, there will be no qualified roles and the
objective function changes to minimizeWSC which makes it
become a constant.

Figure. 5 shows that Time decreases slightly with
th increasing in our approach. According to the analysis of
computation complexity, the number of qualified roles only

FIGURE 5. Computation time vs. threshold.

affects the computation complexity of procedure Sim. So with
th increasing, Time decreases slightly.

VII. CONCLUSION
In this paper, we first propose three indicators to evaluate the
quality of roles based on access history log and define the
method to evaluate the perturbation in permissions between
two sets of roles. Then an efficient approach for reconfig-
uring hierarchical RBAC system with minimal WSC and
perturbation is proposed. Experimental results demonstrate
the effectiveness and stability of our approach at last.

As for future work, there are still a few interesting issues to
be considered. One issue is to introduce intelligent algorithms
to solve the problem and the other is how to assign similar
roles to users for the sake of meeting user usage pattern.

REFERENCES
[1] S. Ravi, ‘‘Role based access control,’’ Adv. Comput. Sci., vol. 48,

pp. 38–47, 1998.
[2] A. C. O’Connor and R. J. Loomis, ‘‘2010 economic analysis of role-based

access control,’’ NIST, Gaithersburg, MD, USA, Tech. Rep. 0211876,
2010, p. 20899.

[3] D. F. Ferraiolo, D. M. Gilbert, and N. Lynch, ‘‘An examination of federal
and commercial access control policy needs,’’ in Proc. 16th NIST-NSA Nat.
Comput. Secur. Conf., 1993, pp. 107–116.

40398 VOLUME 6, 2018

N. Pan et al.: Approach for Hierarchical RBAC Reconfiguration With Minimal Perturbation

[4] A. A. Elliott and G. S. Knight, ‘‘Role explosion: Acknowledging
the problem,’’ in Software Engineering Research and Practice. 2010,
pp. 349–355.

[5] L. Fuchs and G. Pernul, ‘‘HyDRo—Hybrid development of roles,’’ in
Information Systems Security. 2008, pp. 297–302.

[6] M. Kuhlmann, D. Shohat, and G. Schimpf, ‘‘Role mining—Revealing
business roles for security administration using data mining technol-
ogy,’’ in Proc. 8th ACM Symp. Access Control Models Technol., 2003,
pp. 179–186.

[7] J. Vaidya, V. Atluri, Q. Guo, and N. Adam, ‘‘Migrating to optimal RBAC
with minimal perturbation,’’ in Proc. 13th ACM Symp. Access Control
Models Technol., 2008, pp. 11–20.

[8] H. Takabi and J. B. D. Joshi, ‘‘StateMiner: An efficient similarity-based
approach for optimal mining of role hierarchy,’’ in Proc. 15th ACM Symp.
Access Control Models Technol., 2010, pp. 55–64.

[9] D. Zhigang,W. Jiandong, C. Zining, andM.Yuguang, ‘‘Hybrid role mining
methods with minimal perturbation,’’ J. Comput. Res. Develop., vol. 50,
no. 5, pp. 951–960, 2013.

[10] W. Zhang, Y. Chen, C. Gunter, D. Liebovitz, and B. Malin, ‘‘Evolving role
definitions through permission invocation patterns,’’ in Proc. 18th ACM
Symp. Access Control Models Technol., 2013, pp. 37–48.

[11] I. Saenko and I. Kotenko, ‘‘Using genetic algorithms for design and
reconfiguration of RBAC schemes,’’ in Proc. 1st Int. Workshop AI Privacy
Secur., 2016, p. 4.

[12] J. Vaidya, V. Atluri, and Q. Guo, ‘‘The role mining problem: A formal
perspective,’’ ACM Trans. Inf. Syst. Secur., vol. 13, no. 3, pp. 53–56, 2010.

[13] S. D. Stoller and T. Bui, ‘‘Mining hierarchical temporal roles with multiple
metrics,’’ in Proc. IFIP Annu. Conf. Data Appl. Secur. Privacy, 2016,
pp. 79–95.

[14] B. Mitra, S. Sural, J. Vaidya, and V. Atluri, ‘‘Mining temporal roles using
many-valued concepts,’’ Comput. Secur., vol. 60, pp. 79–94, Jul. 2016.

[15] Z. Xu and S. D. Stoller, ‘‘Algorithms forminingmeaningful roles,’’ inProc.
17th ACM Symp. Access Control Models Technol., Jun. 2012, pp. 57–66.

[16] R. K.Wong, V.W. Chu, and T. Hao, ‘‘Online role mining for context-aware
mobile service recommendation,’’Pers. Ubiquitous Comput., vol. 18, no. 5,
pp. 1029–1046, 2014.

[17] S. Hachana, F. Cuppens, N. Cuppens-Boulahia, and J. Garcia-Alfaro,
‘‘Towards automated assistance for mined roles analysis in role min-
ing applications,’’ in Proc. Availability, Rel. Secur. (ARES), Aug. 2012,
pp. 123–132.

[18] A. Baumgrass and M. Strembeck, ‘‘Bridging the gap between role mining
and role engineering via migration guides,’’ Inf. Secur. Tech. Rep., vol. 17,
no. 4, pp. 148–172, May 2013.

[19] Q. Guo, J. Vaidya, and V. Atluri, ‘‘The role hierarchy mining problem:
Discovery of optimal role hierarchies,’’ in Proc. Comput. Secur. Appl.
Conf., Dec. 2008, pp. 237–246.

[20] M. Jafari, A. Chinaei, K. Barker, and M. Fathian, ‘‘Role mining in access
history logs,’’ Int. J. Comput. Inf. Syst. Ind. Manage. Appl., vol. 1, no. 1,
pp. 258–265, Dec. 2009.

[21] J. Vaidya, V. Atluri, and J. Warner, ‘‘RoleMiner: Mining roles using subset
enumeration,’’ in Proc. 13th ACM Conf. Comput. Commun. Secur. 2006,
pp. 144–153.

NING PAN received the B.S. degree from the
Department of Electronics and Information, Xi’an
Jiaotong University, in 2011, and the M.S. degree
from the Zhengzhou Information Science and
Technology Institute in 2014, where he is cur-
rently pursuing the Ph.D. degree in computer and
communication engineering. His research interests
include cloud computing, access control, and data
mining.

LEI SUN received the B.S. and M.S. degrees
from the Department of Electrical Engineering,
Huazhong University of Science and Technology,
in 1995 and 1998, respectively, and the Ph.D.
degree from the Department of Computer and
Communication Engineering, Wuhan University,
in 2003. He is currently pursuing the Ph.D. degree
in computer and communication engineering with
the Zhengzhou Information Science and Technol-
ogy Institute. He joined the Department of Com-

puter Science and Information Engineering, Zhengzhou Information Science
and Technology Institute, as anAssistant Professor, in 2004, and then became
a Full Professor in 2013. His research interests include information security,
cloud computing, and computer network.

LIANG-SHENG HE received the B.S. degree from
the Department of Information Science, Xidian
University, in 1978, the master’s degree from
the Department of Computer and Communica-
tion Engineering, Nankai University, in 1988, and
the Ph.D. degree from the Zhengzhou Informa-
tion Science and Technology Institute in 1994. He
joined the Department of Computer Science and
Information Engineering, Zhengzhou Information
Science and Technology Institute, as an Assistant

Professor, in 1994, and then became a Full Professor in 2004. His research
interests lie in cryptogram theory for computer communication.

ZHI-QIANG ZHU received the B.S. degree from
the Department of Radio Electronics, Wuhan Uni-
versity, in 1978, the master’s degree from the
Department of Computer Science and Informa-
tion Engineering, Zhengzhou Information Science
and Technology Institute in 1984, and the Ph.D.
degree from the Department of Information Secu-
rity, Wuhan University, in 2011. He joined the
Department of Computer Science and Information
Engineering, Zhengzhou Information Science and

Technology Institute, in 1984, and became the Full Professor in 2001. His
research interests lie in information management, cloud computing, and
access control.

VOLUME 6, 2018 40399

	INTRODUCTION
	RELATED WORK
	MATHEMATICAL BACKGROUD
	HIERARCHICAL RBAC RECONFIGURATION WITH MINIMAL WSC AND PERTURBATION PROBLEM
	ROLE QUALITY
	PERTURBATION BETWEEN ROLES
	OBJECTIVE FUNCTION

	LOG-BASED HIERARCHICAL RBAC RECONFIGURATION APPROACH
	DESCRIPTION
	HEURISTIC ALGORITHM
	COMPUTATIONAL COMPLEXITY ANALYSIS

	EXPERIMENT
	CONCLUSION
	REFERENCES
	Biographies
	NING PAN
	LEI SUN
	LIANG-SHENG HE
	ZHI-QIANG ZHU

