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ABSTRACT Vehicle detection and counting in aerial images have become an interesting research focus
since the last decade. It is important for a wide range of applications, such as urban planning and traffic
management. However, this task is a challenging one due to the small size of the vehicles, their different types
and orientations, and similarity in their visual appearance, and some other objects, such as air conditioning
units on buildings, trash bins, and road marks. Many methods have been introduced in the literature for
solving this problem. These methods are either based on shallow learning or deep learning approaches.
However, these methods suffer from relatively low precision and recall rate. This paper introduces an
automated vehicle detection and counting system in aerial images. The proposed system utilizes convolution
neural network to regress a vehicle spatial density map across the aerial image. It has been evaluated on two
publicly available data sets, namely, Munich and Overhead Imagery Research Data Set. The experimental
results show that our proposed system is efficient and effective, and produces higher precision and recall rate
than the comparative methods.

INDEX TERMS Aerial images, convolution neural network (CNN), deep learning, regression, vehicle

detection.

I. INTRODUCTION

Vehicle detection and counting is important for many appli-
cations such as surveillance, traffic management, and rescue
tasks. The ability of on-line monitoring of vehicles distri-
bution in the urban environments prevents traffic jams and
congestions which in turn reduces air and noise pollution.
In terms of surveillance, the accurate estimation of vehicles in
parking lots or roads is essential for making right decisions.
Therefore, this problem has attracted the attention of the
researchers in the recent years. However, vehicle detection
and counting is a challenging task due to many reasons such
as: small size of the vehicles, different types and orientations,
similarity in visual appearance of vehicles and some other
objects (e.g., air conditioning units on the buildings, trash
bins, and road marks), and detection time in very high res-
olution images is another challenge that researchers need to
take in consideration. Fig. 1 shows vehicles in aerial images
and some of the aforementioned challenges.

The solution for this task can be categorized into two
groups namely fixed-ground sensors and image-based sen-
sors. In fixed-ground sensors, traffic information and vehicle
monitoring are collected efficiently using different types of
fixed ground sensors such as stationary camera, radar sensors,
bridge sensors, and induction loop [1], [2]. These sensors
give a partial overview about vehicles density, parking lots
situation, and traffic flow. However, the overall information
of traffic situation will not be available, which is important
for road network monitoring and planning, traffic statistics,
and optimization. On the other hand, image-based sensors
come from two sources: satellites and airplanes or unmanned
aerial vehicles (UAV). Image-based sensors give an overall
overview of traffic situation in the area of interest. This is the
reason for adapting this type of sensors widely for monitoring
vehicles [1], [3], [4]. Satellites provide images with sub-
meter spatial resolution. Therefore, satellite images have been
used for monitoring vehicles by many researches [2], [5], [6].

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

2220

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-5678-3479

H. Tayara et al.: Vehicle Detection and Counting in High-Resolution Aerial Images Using Convolutional Regression Neural Network

IEEE Access

FIGURE 1. Examples of some of vehicle detection challenges (small
vehicle sizes, different types and orientations, other similar objects
such as air conditioning units on building, trash bins, and road
marks) are shown by red ellipses.

On the other hand, aerial images captured by airplane or UAV
provide a higher spatial resolution of 0.1 to 0.5m [7], [8] com-
pared to satellite images which make them more preferable
in solving vehicle detection and counting task. In addition,
data acquisition is easier in UAV aerial images [9]. Thus,
vehicle detection task became attainable due to high spatial
resolution provided by aerial images. Nowadays, UAV are
increasingly used in capturing images for vehicle detection
task. The benefits of using UAV include low cost, fast acqui-
sition of images, and environment-friendliness. The proposed
algorithms for vehicle detection in the literature can be cat-
egorized into two groups: shallow-learning-based methods
and deep-learning-based methods. In shallow-learning-based
methods, hand-crafted features are engineered and followed
by a classifier or cascade of classifiers [1], [10], [11]. How-
ever, shallow-learning-based methods do not give the desired
accuracy in vehicle detection task and, recently, have been
outperformed by deep learning architectures such as con-
volution neural network (CNN). On the other hand, deep
learning-based methods have been used for vehicle detection
task because of their outstanding performance in different
domains such as images and sounds. More specifically, region
based convolution neural network (RCNN) methods achieved
outstanding performance in object detection tasks [12].
Faster RCNN [13] utilizes a fully convolution regional pro-
posal network to generate region candidates which will be
inferred by a classifier attached to region proposal net-
work (RPN). Region proposal based networks perform better
than shallow learning due to the following reasons i) CNN
improves the performance because of the automatic features
generation which is more powerful than hand-crafted features
ii) region-based CNN model is less time consuming com-
pared with sliding-window-based models because it reduces
search space by examining hundreds of proposed objects
rather than searching the whole image. Even though, region
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based CNNs have performed well in natural scene images,
their performance in aerial images is limited due to the small
size and different orientations of the vehicle, complex back-
ground in aerial images, and difficulties in fast detection due
to the large size of the aerial images.

We solve the problem of vehicle detection and counting
as a supervised learning problem. We try to learn a mapping
function between an image /(x) and a density map D(x),
denoted as F' : I(x) — D(x) where I € R™" and D € R™*"
as shown in Fig. 2. We solve the mapping problem by utilizing
the convolutional neural network (CNN) [14], [15]. A fully
convolutional regression network (FCRN) has been proposed
and evaluated on two publicly available datasets namely DLR
Munich vehicle dataset provided by Remote Sensing Tech-
nology Institute of the German Aerospace Center [12] and
Overhead Imagery Research Data Set (OIRDS) dataset [16].
The results of the proposed system have been compared with
the state-of-the-art results and outperformed them.

The rest of the paper is organized as follows: Section II lists
the related works published recently in the literature.
Section III describes the proposed system. Section IV intro-
duces datasets, evaluation procedures, and experimental
results. This paper is concluded in Section V.

Il. RELATED WORKS

A lot of researches have been carried out on vehicle detec-
tion and counting in aerial images over the years. These
works can be categorized into two main groups i.e. shallow-
learning-based methods and deep-learning-based methods.
In this section, we briefly introduce the latest works carried
out in these two groups.

A. SHALLOW-LEARNING-BASED METHODS

The general strategy followed in this group relies on hand-
crafted features extraction followed by a classifier or cascade
of classifiers. Moranduzzo and Melgani [9] proposed a sys-
tem for car counting in aerial images captured by UAV. They
have reduced search space by selecting the regions where cars
might exist using a supervised classifier then extracted feature
points using scale invariant feature transform (SIFT) [17] .
Then support vector machine (SVM) has been used in order
to discriminate between the cars and all other objects. Four
steps for car detection system have been introduced in [18].
The proposed system in [18] starts with selecting the areas
that might have cars. Then, two sets of histogram of oriented
gradients (HOG) features are extracted for vertical and hor-
izontal filtering directions. The discrimination between the
cars and other objects has been performed by one of three sug-
gested techniques: mutual information measure, normalized
cross correlation, and combination of the correlation measure
with SVM classification. The discrimination is obtained by
associating an orientation value to the points classified as
cars. Finally, the points that belong to the same car are
merged. Fast vehicle orientation and type detection has been
introduced in [12]. The proposed system has two stages. The
first stage utilizes fast binary sliding window object detector
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FIGURE 2. Training procedure tries to find a mapping function that maps the input image /(x) to the density map D(x).
(left) Represents the input image /(x) whereas (right) is the density map. Each vehicle is represented by 2-D Gaussian function.

which returns bounding boxes of vehicles without orientation
or type information. The second stage applies multi-class
classifiers on bounding boxes in order to decide the type and
the orientation of the vehicles. Moranduzzo et al. [19] have
introduced a fast and general object detection in which non-
linear filters are used to combine image gradient features
at different orders which produces features vector of very
high dimension. Therefore, features reduction process has
been utilized. The reduced features vector has been used by
Gaussian process regression (GPR) model in order to decide
the presence of the target object. Finally, they have used
an empirical threshold value for the final decision. Super-
pixel segmentation method has been introduced for vehicle
detection task in [20]. After segmentation, patches located at
the center of the super-pixel have been extracted for training
and detection sets; then sparse representation dictionary has
been created from training set. Therefore, selected training
subset enables high discriminative ability for vehicle detec-
tion. Another method has been proposed by [21] in which it
integrates linear SVM classifier and Viola-Jones with HOG
features. Firstly, roads and on-road vehicles are aligned to
vehicle detectors by adopting a roadway orientation adjust-
ment method. Then, HOG and SVM or V-J methods can
be applied to achieve higher accuracy. Local and global
information of the vehicles in high resolution images have
been studied together in order to increase the accuracy of
vehicle detection [22]. Two detectors have been utilized for
front wind shield samples and whole vehicle samples. The
combined outputs have resulted in improving the accuracy
of the system. Geometric constraint function has been uti-
lized via improved entropy rate clustering (IERC) in order to
obtain more homogeneous, regular, balanced, and compact
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super-pixels [23]. The resulted super-pixels are considered
as the seeds for training sample selection. In addition,
correlation-based sequential dictionary learning (CSDL) has
been constructed for fast sequential training and updating of
the dictionary.

B. DEEP-LEARNING-BASED METHODS

Most of the works proposed in this category use convolution
neural network for automatic features extraction. In [24],
deep convolutional neural network with multi-scale spa-
tial pyramid pooling (SPP) has been employed in extract-
ing the target patterns with different sizes. However, input
images have been pre-processed by maximum normed gra-
dient algorithm in order to restore the edges of the objects.
Another deep learning approach has been introduced by [25].
In this work, the input image has been segmented into small
homogeneous regions. Then the features in the segmented
regions are extracted using pre-trained convolutional neural
network (CNN) by a sliding-window approach. Windows are
classified using support vector machine (SVM) into car and
no-car classes. Finally, post-processing is done such as mor-
phological dilation to smooth the detected regions and fill the
holes. In addition, the number of the cars detected has been
determined by the estimation of the detected regions. Hyper
feature map that combines hierarchical feature maps have
been used in an accurate vehicle proposal network (AVPN)
in [26]. Vehicle location and attributes have been extracted by
the proposed coupled regional convolutional network method
which merges an AVPN and a vehicle attribute learning net-
work. Fast and Faster R-CNN have been explored in [27].
In order to overcome the limitations in Fast and Faster
R-CNN, a new architecture has been proposed. They have
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FIGURE 3. The proposed system. (a) Training phase. (b) Inference Phase.
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improved the detection accuracy of the small-sized objects
by using the resolution of the output of the last convolutional
layer and adapting anchor boxes of RPN as feature map.
Another improved detection method based on Faster R-CNN
has been introduced by [28]. They have solved the limitations
of Faster R-CNN by a proposing hyper region proposal net-
work (HRPN) that extracts vehicle targets with a hierarchical
feature maps. In addition, a cascade of boosted classifier has
been used to classify the extracted regions.

Ill. THE PROPOSED SYSTEM
In this section, we introduce the architecture of the proposed
system, ground truth preparation, and implementation details.

A. FULLY CONVOLUTIONAL REGRESSION

NETWORK (FCRN)

We propose to solve vehicle detection and counting prob-
lem by a fully convolutional regression network (FCRN).
Fig 3 illustrates the proposed system. During training, an
input image and its corresponding ground truth are given to
the FCRN where the goal is to minimize the error between
the ground truth and predicted output. During inference, the
output of the trained model goes under an empirical thresh-
olding after which a simple connected component algorithm
is used for returning the count and the location of the detected
vehicles.

In the proposed architecture, we build an auto-encoder-like
network as shown in Fig. 4. FCRN has two paths: down-
sampling path and up-sampling path. The down-sampling
path is the pre-trained VGG-16 network [29]. This path con-
sists of repeated padded 3 x 3 convolutions followed by
rectified linear unit (ReLU) and a max pooling operation.
VGG-16 network has been trained on ImageNet large scale
visual recognition challenge (ILSVRC) dataset [30]. We use
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TABLE 1. Detailed architecture of the proposed system (FCRN).

Name Configuration
convl [Conv 3 x 3 x 64 - ReLU] x2
Max-pooling
conv2 [Conv 3 X 3 x 128 - ReLU] x2
Max-pooling
conv3 [Conv 3 X 3 x 256 - ReLU] x3
Max-pooling
conv4 [Conv 3 x 3 x 512 - ReLU] x3
Max-pooling
convS [Conv 3 x 3 x 512 - ReLU] x3
Up-Sampling
D1 [Conv 3 x 3 x 256 - Batch normalization - ReLU] x2
D2 [Conv 3 x 3 x 128 - Batch normalization - ReLU] x2
D3 [Conv 3 x 3 x 64 - Batch normalization - ReLU] x2
deconvl Concatenate [D1_output, Cov5_output]

[Conv 3 x 3 X 256 - Batch normalization - ReLU] x 2
Up-Sampling

deconv2 Concatenate [D2_output, deconv1_output]
[Conv 3 x 3 X 256 - Batch normalization - ReLU] x2

Up-Sampling

Concatenate [D3_output, deconv2_output]
[Conv 3 x 3 x 256 - Batch normalization - ReLU] x2
Up-Sampling
[Conv 3 X 3 X 256 - Batch normalization - ReLU] X2
[Conv 1 x 1 X 1 - linear activation]

deconv3

deconv4

deconv5

the layers up to "conv5’ from VGG-16 network. Removing
the remaining layers reduces the number of the parameters
significantly. In the up-sampling path, the symmetry has been
broken because of asymmetric nature of image regression
problem (the input is an image and the output is a density
map). We have used a skip connections in order to merge fine,
shallow, appearance information and coarse, deep, semantic
information. Therefore, accurate vehicles detection and local-
ization has been achieved. The detailed architecture is given
in Table 1.

B. GROUND-TRUTH PREPARATION

A two-dimensional elliptical Gaussian function has been
utilized for generating the ground-truth from the dataset as
depicted in the general equation

F(x,y) = Ae—@@—x0+2bE—x0)0—y0+e0=30%) (1)

2 2
cos9_|_5m9’b_

—sin 260 sin 260
202 2072 +

p= 407 and ¢ =

where a =

102 2
512r(17 Xz@ + cg; VZ&
( a ’Z ) and used for generating rotated ground-truth. We set
A =1, 0y, and oy are inferred from the width and height of the
vehicle, and 6 is the orientation of the vehicle. Width, height,
and orientation of the vehicle are taken from the bounding box
ground-truth annotation provided by the dataset. Fig. 5 shows
an example of a generated ground-truth. Fig. 5(a) shows

are the elements of the positive-definite matrix
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FIGURE 4. The architecture of the proposed fully convolutional regression network (FCRN).

an input image with the yellow bounding boxes ground-
truth annotation, Fig. 5(b) shows the generated ground-truth,
and Fig. 5(c) shows a 2D visualization of the generated
ground-truth.

C. IMPLEMENTATION DETAILS

The implementation of the proposed architecture is based
on Tensorflow [31]. During training phase, 224x224 random
patches were selected from the aerial image. The selected
patch contains at least one vehicle. Thus, patches with no
vehicles were not chosen during training. In order to increase
the amount of training examples, data augmentation tech-
niques were utilized such as rotation, horizontal and vertical
flipping and shifting. The mean square error target function

1 M
1@, X) = =23 (Yr = Yp) (Y — Yp) )

i=1

is used. In (2), X is the input patch with M samples, ¢ are
all trainable parameters, Yp is the predicted density map, and
Yr is the ground truth annotation. RMSprop optimizer has
been used for updating the parameters values [32]. Parameters
in the down-sampling path have been initialized with the
parameters of VGG-16 networks and fixed during training.
However, the parameters of the up-sampling path and skip
connections have been initialized using “He’” initialization
method [33] and updated during training. Gaussian annota-
tion of the ground-truth is scaled to 255 in order to make
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FIGURE 5. Example of ground truth preparation. (a) Input image,
(b) generated ground truth, (c) 2D visualization of the ground
truth.

training easier. Initial learning rate is 0.01 and decayed expo-
nentially. The number of epochs is set to 200. The empirical
threshold is set to 120.
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FIGURE 6. Examples of aerial images in Munich dataset (first row) and OIRDS dataset (second row).

IV. EXPERIMENTAL RESULTS

In this section, we introduce the datasets used for training the
proposed system and the results of the proposed system with
comparison with the state-of-the-art methods.

A. DATASETS DESCRIPTION

The proposed system has been evaluated on two public
datasets namely DLR Munich vehicle dataset provided
by Remote Sensing Technology Institute of the German
Aerospace Center [12] and Overhead Imagery Research
Data Set (OIRDS) dataset [16]. Munich dataset contains
20 images (5616 x 3744 pixels) taken by DLR 3K camera
system at a height of 1000 m above the ground over the area
of Munich, Germany. GSD is 13 cm approximately. This
dataset contains 3418 cars and 54 trucks annotated in the
training image set and 5799 cars and 93 trucks annotated
in testing image set. This dataset is challenging because of
existence of many disturbance factors such as trees, streets,
roads, and similar objects. The images in this dataset were
captured in Munich city therefore the vehicle detection task
is more challenging than the case of rural areas. To further
evaluate the performance of our proposed system,
OIRDS dataset has been used. This dataset contains
907 aerial images with approximately 1800 annotated vehi-
cles. The images in this dataset have been taken in suburban
areas. Vehicles are occluded partially or totally by trees,
buildings, or other objects. Thus, this dataset is equally chal-
lenging. Fig. 6 shows few examples of Munich and OIRDS
datasets.
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B. QUANTITATIVE EVALUATION AND COMPARISON

We have adopted the following evaluation criteria in vehicle
detection: recall rate, precision rate, and F1-score. Recall rate
is given in (3), precision rate is defined by (4), and F1-score
is given by (5).

TP

recall = —— 3)

TP + FN
.. TP )

7 n= ———

precisio TP+ FP

2TP
l=——— 5)
2TP + FP + FN

Where TP is true positive, FP is false positive, and FN is false
negative. The comparison between the proposed system and
the state-of-the-art detection methods is given in the Table 2.
For Munich dataset, the following methods have been used
for the comparison.

1) AGGREGATED CHANNEL FEATURES (ACF) DETECTOR [34]
This detector is used as a baseline [26] and has been used by
the work proposed by [12].

2) ACF WITH FAST R-CNN [35]
ACF is used for extracting region of interest (ROI) which will
be input to Fast R-CNN network for classification.

3) SELECTIVE SEARCH (SS) WITH FAST R-CNN

Selective search [36] is used for predicting the regions of the
all object classes. These regions are fed into Fast R-CNN for
classification.
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TABLE 2. Performance comparison between the proposed method and the state-of-the-art methods.

Method Ground Truth | True Positive | False Positive | Recall | Precision | F1 score Time
[12] 5892 4085 619 69.3% 86.8% 0.77 4.40s
ACF detector 5892 3078 4062 52.24% 43.31% 0.47 4.37s
ACF+fast R-CNN 5892 2583 1540 43.84% 62.65% 0.52 6.29 s
SS+fast R-CNN 5892 3287 15012 55.79% 17.96% 0.27 87.84s
Faster R-CNN 5892 4050 503 68.74% 88.95% 0.78 3.84s
AVPN_basic [26] 5892 4454 729 75.59% 85.93% 0.80 3.65s
AVPN_basic+fast R-CNN [26] 5892 4403 384 74.73% 91.98% 0.82 4.05s
AVPN_large [26] 5892 4538 630 77.02% 87.81% 0.82 3.65s
H-Fast [28] 5892 4363 696 74.00% 86.2% 0.80 3.65s
HPRN + Cascade Classifier [28] 5892 4615 560 78.3% 89.2% 0.83 393s
Our proposed system 5892 5333 383 90.51% 93.30% 0.92 9.7s
BACF uACF+ Fast RONN 88+ Fast RONN Faster RONN HPrecision WRecall ®F1 score
BAVPN basic 5 AVPN_basic + FASTRCNN # AVPN_Larg SHRPN |
H-Fast SHRPN+ cascade classifier B The preposed method

precision
s

# Test Image

FIGURE 7. Performance comparisons with different methods in terms of
precision values for 10 test images in Munich dataset.

4) FASTER R-CNN

This network combines region proposal network (RPN)
with Fast R-CNN [13]. It performs better than SS with
Fast R-CNN.

5) ACCURATE VEHICLE PROPOSAL NETWORK (AVPN) [26]
AVPN combines heretical feature maps which helps in detect-
ing small-sized objects .

6) HYPER REGION PROPOSAL NETWORK (HRPN) WITH
FAST R-CNN AND CASCADE CLASSIFIER [28]
HRPN has been used for improving the recall by using a tech-
nique similar to [26]. Then, they have used cascade classifier
by replacing the one after RPN for reducing the false alarm.
From Table 2, It can be seen that the proposed system out-
performs the aforementioned methods in terms of F1-score,
precision, and recall. More precisely, we achieve 9%, 1.32%,
and 12.2% improvements in terms of F1 score, precision rate,
and recall rate, respectively. It can be also observed that our
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FIGURE 8. Performance of the proposed system after rescaling the test
image 2 with different factors.

method has achieved the lowest false positive rate and the
highest true positive rate. However, the average time spent
by FCRN for processing a large scale image from Munich
dataset is 9.7 sec. on TitanX GPU with 12 GB memory due
to the auto-encoder-like architecture used in the proposed
system.

Moreover, we compare the precision performance of our
proposed method with the above mentioned methods for all
test images in Munich dataset. It is clearly seen that our
proposed system outperforms the comparative methods in all
test images as shown in Fig. 7.

In addition, we test the ability of the proposed method for
vehicle detection and counting in aerial images with different
scales. In this case, we resized the test image only without
performing training on the new scales. Fig. 8 shows the
detection results of the scaled test image 2. It can be seen from
the Fig. 8§ that the proposed system performs best on the same
scale as it was trained. However, the performance decreases
remarkably when increasing or decreasing the resolution with
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FIGURE 9. Examples of output results of the proposed system on Munich dataset. Green represents true positive cases, yellow represents

false negative cases, and red represents false positive cases.

FIGURE 10. Examples of output results of the proposed system on OIRDS dataset. Green represents true positive cases,
yellow represents false negative cases, and red represents false positive cases.

a large scale factor. On the other hand, the performance
is comparable when increasing or decreasing the resolution
slightly.

For OIRDS dataset, the proposed system has been
fine-tuned and then tested on 385 images which contains
351 vehicles. The true positive rate is 329, false positive rate
is 17. Therefore, the precision rate and recall rates are 95.09%

VOLUME 6, 2018

and 93.72%, respectively. These results outperform the works
proposed by [23] and [20] where the detection deteriorates
when the recall rate is less than 0.7.

C. QUALITATIVE RESULTS
In order to illustrate the effectiveness of the proposed system
qualitatively, some of the vehicle detection results are shown
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[a] [b]

[c]

FIGURE 11. Examples illustrate the steps that the proposed system follows: First row represents the input patch, Second row shows the
ground truth, Third row shows the predicted density map, Fourth row shows the result of applying thresholding and connected component
algorithm, Last row shows the final output of the proposed system. (a) An example of finding all vehicles successfully, (b) an example of
false negative which is marked by yellow dot, (c) an example of false positive case which is marked by a red dot.

in Fig. 9 (Munich dataset) and Fig. 10 (OIRDS dataset).
In Fig. 9 and Fig. 10, green dots represent true positive
cases, red and yellow dots represent false positive and false
negative cases, respectively. From the output results, we can
see that the proposed system can detect the vehicles in the
aerial images accurately. In addition, very low rate of false
positive and false negative has been achieved. False nega-
tive cases mainly occurs when the vehicles are completely
occluded by trees or shadow of the buildings . On the other
hand, false positive cases have been reduced as shown in
Fig. 9 and Fig. 10. More detailed examples are shown

2228

in Fig. 11. First row represents an input patch, second row
shows the ground-truth whereas the predicted density map
is shown in the third row. The result of applying thresh-
olding and connected component analysis is shown in the
fourth row. Finally, fifth row shows the final output of
the proposed system. In the Fig. 11, first column shows a
case where the proposed model finds all vehicles success-
fully, second column gives an example of false negative
case where missed cars are marked by yellow dot, third
column shows a false positive case which is marked by a
red dot.
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V. CONCLUSION

A novel vehicle detection and counting method has been
introduced using convloutional regression neural network.
In the proposed system, we have used regression model in
order to predict the density map of the input patches. Then,
the output of FCRN goes under empirical threshold which
results a binary image. Finally, a simple connected compo-
nent algorithm is used for finding the locations and count
of the blobs that represent the detected vehicles. The results
of the proposed architecture outperforms the state-of-the-art
methods. We have achieved the highest true positive rate and
the lowest false alarm rate. In addition, the F1 and precision
scores are better than the state-of-the-art methods. However
the proposed system consumes more time during inference
compared with the other systems. The future work will be
focusing on a much faster model with better performance.
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