
Received September 4, 2017, accepted November 4, 2017, date of publication December 11, 2017,
date of current version February 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2780250

HAST-IDS: Learning Hierarchical
Spatial-Temporal Features Using Deep Neural
Networks to Improve Intrusion Detection
WEI WANG 1, YIQIANG SHENG 2, JINLIN WANG2, XUEWEN ZENG2, XIAOZHOU YE2,
YONGZHONG HUANG3, AND MING ZHU1
1Department of Automation, University of Science and Technology of China, Hefei 230026, China
2National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
3Guilin University of Electronic Technology, Guilin 541004, China

Corresponding author: Wei Wang (ww8137@mail.ustc.edu.cn)

This work was supported by the Pioneer Program of Institute of Acoustics, Chinese Academy of Sciences, under Grant Y654101601.

ABSTRACT The development of an anomaly-based intrusion detection system (IDS) is a primary research
direction in the field of intrusion detection. An IDS learns normal and anomalous behavior by analyzing
network traffic and can detect unknown and new attacks. However, the performance of an IDS is highly
dependent on feature design, and designing a feature set that can accurately characterize network traffic is
still an ongoing research issue. Anomaly-based IDSs also have the problem of a high false alarm rate (FAR),
which seriously restricts their practical applications. In this paper, we propose a novel IDS called the
hierarchical spatial-temporal features-based intrusion detection system (HAST-IDS), which first learns the
low-level spatial features of network traffic using deep convolutional neural networks (CNNs) and then learns
high-level temporal features using long short-term memory networks. The entire process of feature learning
is completed by the deep neural networks automatically; no feature engineering techniques are required. The
automatically learned traffic features effectively reduce the FAR. The standard DARPA1998 and ISCX2012
data sets are used to evaluate the performance of the proposed system. The experimental results show that
the HAST-IDS outperforms other published approaches in terms of accuracy, detection rate, and FAR, which
successfully demonstrates its effectiveness in both feature learning and FAR reduction.

INDEX TERMS Network intrusion detection, deep neural networks, representation learning.

I. INTRODUCTION
Cyberspace security has recently gained increasing attention.
Creating effective defenses against various types of network
attacks and ensuring the safety of network equipment and
information security has become a highly considered prob-
lem. Network intrusion detection systems (IDSs) identify
malicious attack behaviors by analyzing the network traffic
of key nodes of a network and have become an important part
of the network security protection architecture.

The anomaly-based detection method, which is a primary
research direction in the field of intrusion detection, learns
normal and anomalous behaviors by analyzing network traf-
fic and can detect unknown and new attacks [1]. However,
its performance is highly dependent on feature design, and
designing a feature set that can accurately characterize net-
work traffic is still an ongoing research issue [2]. Anomaly-
based IDS also have a high false alarm rate (FAR), which
seriously restricts its practical application [3].

To solve the abovementioned problems, using the rep-
resentation learning approach, we propose a hierarchical
spatial-temporal features-based intrusion detection system
(HAST-IDS) that automatically learns network traffic fea-
tures. It first learns the spatial features of network traffic using
deep convolutional neural networks (CNNs) and then learns
the temporal features using long short-term memory (LSTM)
networks, which are a special type of recurrent neural net-
works (RNNs). The high-level temporal features are based on
the low-level spatial features. The entire feature-learning pro-
cess is conducted automatically: no feature engineering tech-
niques are required. We expect that the automatically learned
hierarchical spatial-temporal features are better at character-
izing network traffic behaviors than are manually designed
features and that they can effectively improve the intrusion
detection capability. The experimental results successfully
demonstrate the effectiveness of the proposed method for
both feature learning and FAR reduction.

1792
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-2336-0135
https://orcid.org/0000-0002-8452-2492


W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

The rest of this paper is organized as follows. Section II
describes the related work. Section III describes the design
and implementation of the proposed method. Section IV
mainly covers the evaluation methodology and experimental
results, and Section V presents conclusions and future work.

II. RELATED WORK
A. INTRUSION DETECTION TECHNIQUES
IDSs can be classified as either signature-based or
anomaly-based detection. Signature-based detection, also
called misuse detection, analyzes known attacks to extract
their discriminating characteristics and patterns, called sig-
natures. These signatures are compared against the new
traffic to detect intrusions. The advantages of signature-based
detection are that it has a high detection rate and a low FAR
for known attacks, while its disadvantage is that it cannot
detect any unknown and new (0-day) attacks. Anomaly-based
detection, also called behavior-based detection, mainly uses a
machine learning-based method. In this approach, some net-
work traffic features are designed first; then, a model is built
based on those features using supervised or unsupervised
learning approaches. The model can identify both normal and
anomalous traffic patterns. Its advantage is that it can detect
unknown and new attacks; thus, it has attracted increasing
interest in research and industrial circles.

However, in practical applications, some problems still
exist for anomaly-based intrusion detection methods. The
first problem is the difficulty of designing representative
traffic features. The detection effect of this method is highly
dependent on the design of the traffic features used in train-
ing. The detection effects often vary widely when different
feature sets of network traffic are applied. No standard guid-
ing principle currently exists for the design of a feature set that
accurately characterizes network traffic. The second serious
problem of the anomaly-based intrusion detection method
is its high FAR, which is a major obstacle to its practical
application [3].

The representation learning approach [4] is a promis-
ing method for solving both these problems. Representation
learning, also called feature learning, is a technique that
allows a system to automatically extract features from raw
data. Its biggest advantage is that it replaces manual feature
engineering and can directly learn the best features from
raw data. Deep neural networks have been the most success-
ful technique of representation learning and have achieved
remarkable results in the fields of computer vision and nat-
ural language processing. In the field of network intrusion
detection, some research results obtained using the represen-
tation learning approach have recently emerged. For example,
Ma et al. [5] applied deep neural networks to detect intrusion
behaviors using the KDD99 dataset. Niyaz et al. [6] studied
the intrusion detection method on the NSL-KDD dataset
using deep belief networks. The common ground of these
research methods is that their models learn features from
manually designed traffic features. However, applications in
the fields of computer vision and natural language processing

have shown that the biggest advantage of deep neural net-
works lies is their ability to learn features directly from raw
data [7]. The abovementioned research methods used deep
neural networks based onmanually designed features without
taking full advantage of the deep neural networks.

The literature reveals that raw network traffic data have
not been used to learn features. This revelation motivates us
to develop a process for learning features directly from raw
network traffic data using deep neural networks to obtain a
better traffic feature set and develop a more efficient IDS.
Additionally, Eesa et al. [8] proved that the detection rate
can be increased and the FAR decreased by using a better
traffic feature set. We also hope to reduce the FAR by using
an automatically learned traffic feature set.

B. DEEP NEURAL NETWORKS
CNNs and RNNs are the two most widely used deep neural
network models; they are capable of learning effective spa-
tial and temporal features, respectively. In common neural
networks, every neural node of every hidden layer sums the
weighted values coming from the previous layer, applies a
nonlinear transform, and transfers the resulting values to the
next layer. The output value of the last layer can be regarded
as the representation or feature learned by the neural net-
works from the input data. CNNs, which improve upon the
architecture of the common neural networks, benefit from
the following: sparse connectivity, shared weights and pool-
ing. CNNs are capable of learning spatial features and have
already yielded impressive achievements in many computer
vision tasks, such as image classification [9]. RNNs add a
self-connected weighted value as the memory unit for every
neural node based on the architecture of common neural
networks, and they can memorize the previous state of the
neural networks. Long short-termmemory (LSTM) networks
further add a component called the forget gate, and LSTMs
can effectively learn temporal features from a long sequence.
LSTM networks have already been shown to perform well
for many natural language processing tasks, such as machine
translation [10].

Spatial and temporal features are two commonly used types
of traffic features in the field of intrusion detection. When
using spatial features, network traffic is first transformed into
traffic images; then, the image classification method based
on geometric features is used to classify the traffic images,
which also indirectly achieves the goal of identifying the mal-
ware traffic. This approach is relatively new, but many recent
research results demonstrate its great potential. For example,
Tan et al. [11] applied a widely used dissimilarity measure
in the computer vision domain, namely, the earth mover’s
distance (EMD), to detect denial of service (DoS) traffic
and achieved a good effect. When using temporal features,
the temporal features of a network traffic flow are extracted
and can be used to detect intrusion behaviors via the time
series analysis method. This approach was developed early
and has been adopted by many researchers. For example,
Ariu et al. [12] developed an effective IDS using the hidden

VOLUME 6, 2018 1793



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

Markov model method based on the temporal relations of
traffic payload bytes.

Over the past two years, a few studies have used CNNs or
RNNs to perform intrusion detection tasks based on spatial
and temporal features. For example, Wang et al. [13] used
a CNN to learn the spatial features of network traffic and
achievedmalware traffic classification using the image classi-
fication method. Torres et al. [14] first transformed network
traffic features into a sequence of characters and then used
RNNs to learn their temporal features, which were further
applied to detect malware traffic. The common point of these
research methods is that they used CNNs or RNNs alone and
learned a single type of traffic feature.

FIGURE 1. Hierarchical structure of network traffic.

Network traffic has an obvious hierarchical structure as
illustrated in Figure 1, where the bottom row shows a
sequence of traffic bytes. Based on the format of specific
network protocols, multiple traffic bytes are combined to
form a network packet, and multiple network packets com-
municated between two sides are further combined to form a
network flow. Notably, these traffic bytes, network packets
and network flows are similar to the characters, sentences
and paragraphs in the field of natural language processing.
Moreover, the task of classifying a network flow as either
normal or malware is very similar to classifying a paragraph
as either positive or negative, which is a common task in
the field of natural language processing, namely, sentiment
analysis. In some recent studies on sentiment analysis, deep
neural networks were used to learn the hierarchical features of
natural language and achieved good results [15]–[17]. Those
studies motivated us to use deep neural networks to learn the
hierarchical features of network traffic and further perform
the intrusion detection task.

However, no studies that combine the use of CNNs and
RNNs to detect network intrusion exist in the literature.
To take full advantage of these two types of deep neural
networks, we use both CNNs and RNNs to learn the spatial-
temporal features of raw network traffic data to develop a
more effective IDS.

III. HAST-IDS
A. HAST-IDS OVERVIEW
The goals of the HAST-IDS are to automatically learn the
spatial-temporal features of raw network traffic data using

deep neural networks and to improve the effectiveness of the
IDS. The basic design concept is as follows. At the network
packet level, every network packet is transformed into a
two-dimensional image, the internal spatial features of which
are learned by a CNN. At the network flow level, the temporal
features of a sequence of network packets of a network flow
are further learned by an RNN. Finally, the resulting spatial-
temporal traffic features are used to classify the traffic as
normal or malware.

Two implementation schemes are used for the HAST-IDS,
as shown in Figure 2. HAST-I uses a CNN and learns only
spatial features, while HAST-II uses both CNNs and RNNs
and learns spatial-temporal features. Each scheme has differ-
ent application scenarios for different types of network traffic,
which will be discussed in Section IV.

The various stages of the HAST-IDS are described below.

1) PREPROCESSING
In this stage, the input raw network traffic data are trans-
formed into the two-dimensional images required by the
CNN. The basic traffic units for intrusion detection are net-
work flows; thus, the input raw traffic data must be split into
multiple network flows. Each network flow contains multi-
ple network packets communicated between two endpoints.
One-hot encoding (OHE) is used as the transformation
method. In HAST-I, the first n traffic bytes of the network
flow are transformed. If the OHE vector is m-dimensional,
then the entire network flow can be transformed into an m∗n
two-dimensional image. For HAST-II, similar preprocessing
is required; however, every network packet must be trans-
formed individually. If r packets exist in a flow and if the
first q bytes of every packet are transformed and the OHE
vector is p-dimensional, then the entire network flow can be
transformed into r different p∗q two-dimensional images.

2) CROSS-VALIDATION
The k-fold cross-validation technique is used for performance
evaluation. In this technique, a dataset is randomly divided
into k equal parts. In each iteration, one part is selected
as the validating dataset, while all the other k-1 parts are
treated as the training dataset. In our experiments, k was set
to 10 because of the resulting low bias, low variance, low
overfitting and good error estimate [18].

3) SPATIAL FEATURE LEARNING
CNNs are used to learn the spatial features of the
two-dimensional traffic images. In HAST-I, the spatial fea-
tures of the entire flow image are learned from a single m∗n
image, and the output is a single flow vector. In HAST-II,
the spatial features of every p∗q packet image are learned
individually, and the output is r packet vectors.

4) TEMPORAL FEATURE LEARNING
An LSTM is used to learn the temporal features of multiple
traffic vectors. In HAST-II, the LSTM further learns the
temporal relations among the r packet vectors. The output

1794 VOLUME 6, 2018



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

FIGURE 2. Workflow of HAST-IDS.

is a single flow vector that represents the spatial-temporal
features of the network flow.

5) SOFTMAX CLASSIFIER
The softmax classifier is used to determine whether the input
traffic is normal or malware based on the flow vector. Soft-
max is a commonly used multi-class classification method in
the field of machine learning.

6) TEST AND RESULT AGGREGATION
The fine-tuned model is tested using the test dataset. The
results of each experiment are collected and analyzed.

B. LEARNING SPATIAL FEATURES WITH CNNS
CNNs are used to learn the spatial features from the two-
dimensional image of the input network traffic bytes, as
shown in Figure 3. In HAST-I, the CNN is applied to the
entire network flow. The first n traffic bytes of the entire
flow are transformed into a single m∗n flow image via OHE.
The image is further processed via convolution and pool-
ing. The final output is a flow vector that represents the
features of the entire flow. In HAST-II, the CNN is applied
to every network packet. The first q bytes of every packet
are transformed into a p∗q packet image via OHE, and
each image is further processed via convolution and pooling.
The final output consists of multiple packet vectors that

represent the features of the individual network packets.
When implemented, two convolution filters with different
sizes are used to output two different flow/packet vectors,
which are concatenated together as the final vector. The appli-
cation of CNNs in the field of computer vision has shown that
this method can obtain better spatial features. Algorithm 1
presents the details of the spatial feature learning stage.

The key components used in Algorithm 1 are as follows.

1) ONE-HOT ENCODING
Let xi ∈ R be the k-dimensional vector corresponding to the
i-th traffic byte in a packet or flow. A packet or flow of length
n can be encoded according to the following formula, where
⊕ is the concatenation operator. In general, xi:i+j denotes the
concatenation of traffic bytes xi, xi+1, . . . , xi+j.

x1:n = x1 ⊕ x2 ⊕ . . .⊕ xn (1)

2) CONVOLUTION OPERATION
A convolution operation involves a filter w ∈ R, which is
applied to a window of h traffic bytes to produce a new fea-
ture. For example, a feature ci is generated using this formula,
where b ∈ R. is a bias term, and f denotes ReLUs [19]

ci = f (w · xi:i+h−1 + b) (2)

VOLUME 6, 2018 1795



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

FIGURE 3. Feature learning process of HAST-IDS.

3) FEATURE MAPPING
A convolution filter is applied to each possible window
{x1:h, x2:h+1, · · · xn−h+1:n} to produce a feature map with
c ∈ R.

c = [c1, c2, . . . , cn−h+1] (3)

4) POOLING OPERATION
A max-over-time pooling operation is then applied to the
feature map and takes the maximum value as the final feature.

ĉ = max{c}. (4)

C. LEARNING TEMPORAL FEATURES WITH LSTM
An LSTM [20] is used to learn the temporal features based
on the sequence of network packet vectors, as shown in
Figure 3. In HAST-II, a bidirectional LSTM is used to scan
the sequence both from beginning to end and in reverse.
The application of LSTM in the field of natural language
processing has shown that bidirectional scanning can yield
more accurate features [10]. Algorithm 2 presents the details
of the temporal feature learning stage.

Compared to common neural networks and the common
RNN, an LSTM offers several key improvements for each
neural node as described below.

1) FORGET GATE
The forget gate provides a forgetting coefficient by looking
at the input layer xt and previous hidden layer ht−1 for cell
state Ct−1. The coefficient ranges from 0 to 1 and controls

the information between Ct−1 and Ct .

ft = σ (Wf · [ht−1, xt ]+ bf ) (5)

2) INPUT NODE
This unit also considers the input layer xt and the previous
hidden layer ht−1. Typically, a tanh layer is used to process
the summed weighted input.

gt = tanh(Wg · [ht−1, xt ]+ bg) (6)

3) INPUT GATE
The input gate decides which values should be updated in
Ct−1, and its output multiplies the value of the input node
to generate a new candidate for Ct .

it = σ (Wi · [ht−1, xt ]+ bi) (7)

4) INTERNAL STATE
The memory unit combines the computation results men-
tioned above.

Ct = ft ∗ Ct−1 + it ∗ gt (8)

5) OUTPUT GATE
The hidden layer ht is produced based on the internal state Ct
and the value of the output gate ot .

ot = σ (Wo · [ht−1, xt ]+ bo)

ht = ot ∗ tanh(Ct ) (9)

1796 VOLUME 6, 2018



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

Algorithm 1 Spatial Feature Learning
Input: Network traffic image: a flow image (f1) in HAST-I or r packet images (p1, p2, . . . , pr ) in HAST-II.
Output: Spatial features of network traffic: a flow vector (vf 1) or r packet vectors (vp1, vp2, . . . , vpr ).
Step 1: Create CNN model_1
1. Add 1st convolution layer with c1 filters of size s1, followed by 1st max pooling layer of size t1.
2. Add 2nd convolution layer with c2 filters of size s2, followed by 2nd max pooling layer of size t2.
3. Add 1st dense layer, the output of which is a temp vector Vtemp1.

Step 2: Create CNN model_2
4. Add 3rd convolution layer with c3 filters of size s3, followed by 3rd max pooling layer of size t3.
5. Add 4th convolution layer with c4 filters of size s4, followed by 4th max pooling layer of size t4.
6. Add 2nd dense layer, the output of which is a temp vector Vtemp2.

Step 3: Concatenate two temp vectors
7. Vtemp = Vtemp1 + Vtemp2

Step 4: Train and validate model
8. while early termination condition is not met, do

while training dataset is not empty, do
Prepare the mini-batch dataset as the model input.
Compute the categorical cross-entropy loss function H (p, q) = −

∑
x p(x)log(q(x)), p = true_dist and q =

predict_dist.
Update the weights and biases using the RMSprop gradient descent optimization algorithm.

end
Validate model using the validating dataset.

end
Step 5: Test model
9. Test the fine-tuned model using the test dataset.
10. return the Vtemp of every network traffic image in the test dataset.

Algorithm 2 Temporal Feature Learning
Input: r packet vectors of network traffic (vp1, vp2, . . . , vpr ).
Output: spatial-temporal features of network traffic: a flow vector (vf ).

Step 1: Create LSTM model
1. Add 1st LSTM layer of l1 units, with dropout d1 and recurrent dropout r1.
2. Add 2nd LSTM layer of l2 units, with dropout d2 and recurrent dropout r2.
3. Add a dense layer whose output is a flow vector vf .

Step 2: Train and validate model
4. Train and validate the model as described in Algorithm 1.

Step 3: Test model
5. Test the fine-tuned model using the test dataset.
6. return the vf of every network traffic image in the test dataset.

IV. EVALUATION AND DISCUSSION
This section evaluates the performance of the pro-
posed HAST-IDS by performing various experiments on
DARPA1998 and ISCX2012, two commonly used public
standard intrusion detection datasets. More specifically, these
experiments aim to achieve the following:
• Evaluate the effect of network flow size on the perfor-
mance of the HAST-IDS.

• Evaluate the effect of network packet size on the perfor-
mance of the HAST-IDS.

• Evaluate the effect of the number of network pack-
ets of a network flow on the performance of the
HAST-IDS.

• Evaluate the spatial-temporal features learned by the
HAST-IDS using the t-SNE visualization approach.

• Show the best experimental results of theHAST-IDS and
compare them with other published IDS techniques.

A. EXPERIMENTAL METHODOLOGY
1) DATASETS
The HAST-IDS learns features based on raw network traffic
data; thus, the source dataset must contain raw traffic data.
At present, most research methods use manually designed
network traffic features. Thus, most public intrusion detection
datasets, such as NSL-KDD [21] and Kyoto2009 [22], do not
contain raw traffic data. From among the few public datasets

VOLUME 6, 2018 1797



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

that do contain raw traffic data, we choose DARPA1998 [23]
and ISCX2012 [24] as our experiment datasets. The years
of publication and the malware traffic types these datasets
contain differ greatly; thus, they can be used to effectively
evaluate the generality of the proposed method.

a: DARPA1998
In 1998, MIT’s Lincoln Laboratory conducted an intrusion
detection evaluation project funded by DARPA. One result
of this project was a network traffic dataset simulating vari-
ous intrusion behaviors, namely, DARPA1998. This dataset
contains both normal traffic and four types of malware traf-
fic (i.e., DoS, Probe, U2R, and R2L) and is divided into
seven weeks of training traffic and two weeks of test traffic.
The famous KDD99 dataset, which includes 41 manually
designed traffic features, was derived from the DARPA1998
dataset and has become the most commonly used dataset
in the field of intrusion detection and has used to produce
numerous research results [25]. For comparison purposes, we
choose DARPA1998 as one of the evaluation datasets.

The traffic format of DARPA1998 is non-split pcap, which
must be split into multiple network flow files. In addition,
the label files contain a few problems, such as duplicated
records and incorrect labels. For example, the label file
‘‘Test/Week2/Friday’’ contains a record of ‘‘07/32/1998,’’
which is an obvious date error. Therefore, the dataset requires
preprocessing before the experiments can be conducted. First,
the pkt2flow tool [26] is used to split the raw network traffic
data into multiple network flows. Second, every label file is
checked, and all duplicated records and incorrect records are
removed. Finally, we match every network flow file to the
processed label files. Table 1 shows the preprocessing results
for the DARPA1998 dataset.

TABLE 1. Preprocessing results of the DARPA1998 dataset.

b: ISCX2012
In 2012, the Information Security Center of Excellence
(ISCX) of the University of New Brunswick (UNB) in
Canada published an intrusion detection dataset named
ISCX2012. This dataset contains seven days of raw network
traffic data, including normal traffic and four types of attack
traffic (i.e., BruteForce SSH, DDoS, HttpDoS, and Infil-
trating). Some researchers have noted that the attack types
considered in KDD99 are now obsolete [27]. In contrast, the
attack types of ISCX2012 are more modern and closer to

reality. In addition, the percentage of attack traffic is approx-
imately 2.8%, which makes ISCX2012 similar to real-world
datasets [28].

The ISCX2012 dataset also needs to be preprocessed
before the experiments can be conducted. The preprocessing
method is very similar to that used for DARPA1998. Because
the traffic data of 16 June has only 11 attack flows, according
to the provider’s description, we removed these 11 flows and
consider all traffic data of 16 June as normal. ISCX2012 was
not divided by the provider into training and test datasets;
therefore, we divide it into training and test datasets using
a ratio of 60% to 40%, respectively. Moreover, this ratio has
recently been used by many researchers, thus simplifying the
comparison of our method with other methods. Table 2 shows
the preprocessing results for the ISCX2012 dataset.

TABLE 2. Preprocessing results of the ISCX2012 dataset.

2) METRICS
Three metrics are used to evaluate the performance of the
HAST-IDS: accuracy, detection rate (DR) and FAR, which
are all commonly used in the field of intrusion detection.
Accuracy is used to evaluate the overall performance of the
system. DR is used to evaluate the system’s performance
with respect to its malware traffic detection. FAR is used to
evaluatemisclassifications of normal traffic. Their definitions
are presented below. TP is the number of instances correctly
classified as X, TN is the number of instances correctly clas-
sified as Not-X, FP is the number of instances incorrectly
classified as X, and FN is the number of instances incor-
rectly classified as Not-X.

Accuracy(ACC) =
TP+ TN

TP+ FP+ FN + TN

DetectionRate(DR) =
TP

TP+ FN

FalseAlarmRate(FAR) =
FP

FP+ TN
(10)

In addition, an important goal of the HAST-IDS is to
reduce the FAR as much as possible while improving the DR.
To comprehensively evaluate the HAST-IDS considering
both the DR and FAR, the effectiveness measure (EM)
proposed by [29] is used in our research to compare the
HAST-IDS with other published methods. The EM is slightly
modified, and its definition is given below, where C is the
number of classes and 1 denotes the normal class, which is
excluded from the calculation. This formula results in a high

1798 VOLUME 6, 2018



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

value only when the DR is high and the FAR is low. In addi-
tion, when the test dataset size is bigger, the generalization
capability of the system is better; thus, the EM value is larger.
This metric, which considers the DR, FAR and test dataset
size, can better reflect the comprehensive performance of
the HAST-IDS. In addition, EMDF is also used, which is
calculated using only the DR and FAR.

Effect.Mea.(EM ) =

c∑
i=2

DR
FAR

C − 1
× ln(#Testing samples)

Effec.Mea.DF (EMDF ) =

c∑
i=2

DR
FAR

C − 1
(11)

3) EXPERIMENTAL SETUP
Keras [30] and TensorFlow [31], which are run on the Ubuntu
16.04 64-bit OS, are used as the software frameworks. The
server is a DELLR720with 16 CPU cores and 16GB ofmem-
ory. An Nvidia Tesla K40m GPU is used as the accelerator.
Tables 3 and 4 describe the architectures of the deep neural
networks of the HAST-I and HAST-II, respectively.

TABLE 3. DNN architectural parameters of HAST-I.

B. INFLUENCE OF NETWORK FLOW SIZE
In HAST-I, each network flow must be reduced to a fixed
size in the preprocessing stage due to the special requirements
of CNN input data. Computer vision tasks do not have this
problem because the size of every image or every video
frame is fixed, and the images and video frames are easy
to preprocess to an identical size. However, in the field of
network traffic analysis, the number of packets in a flow is
variable. Furthermore, the packet size is also variable, which
causes large fluctuations among flow sizes. Table 5 shows the
network flow size statistics of the two datasets.

As shown in Table 5, large differences in network flow
sizes exist in both datasets. Thus, a method to choose a suit-
able flow size must be determined via the experiments. In our
experiments, the flow size ranges from 100 to 1,500 bytes.
At sizes above 1,500, the performance no longer improves.
The evaluation metrics are accuracy, overall DR and over-
all FAR. Table 6 shows the experimental results. For the
DARPA1998 dataset, the system achieves similar superior
performances when the flow sizes are 800 and 1,000∼1,300.
Considering the training time, we choose 800 bytes as the

TABLE 4. DNN architectural parameters of HAST-II.

TABLE 5. Network flow size statistics.

TABLE 6. Performance for different network flow sizes (%).

best flow size. For the ISCX2012 dataset, the system achieves
the best performance when the flow size is 600 bytes. When
the flow size is larger than 700, the performance no longer
improves. Tables 7 and 8 respectively show the best experi-
mental results of HAST-I and HAST-II on the two datasets.
Note that the two best sizes differ greatly from the mean sizes
(57,719, 5,582) of the flows presented in Table 5. A possible
explanation is that the information in the front part of a flow,
which mainly corresponds to connection creation, may be
more important when detecting malware traffic.

VOLUME 6, 2018 1799



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

TABLE 7. Best performance of HAST-I for DARPA1998.

TABLE 8. Best performance of HAST-I for ISCX2012.

The above analysis shows that even though many differ-
ences exist between the two datasets, both schemes achieve
their highest accuracy, highest DR and lowest FAR when the
flow size ranges from 600 to 800. An interesting finding is
that applying a similar deep neural network architecture to
classify the MNIST hand-written digit dataset also achieves
very high accuracy [32]. The size of an MNIST image is
784 (28∗28), which is very close to our chosen size. This
similarity may indicate that the architecture of deep neural
networks is suitable for detecting key information in data of
that size, regardless of whether the data represents images or
traffic.

FIGURE 4. The number of packets per flow in the DARPA1998 dataset.

C. INFLUENCE OF NETWORK PACKET SIZE
The next two sections measure the effects of two key param-
eters of HAST-II on the system performance, namely, the
packet size and the number of packets per flow. Note that
the number of packets per flow is generally very small in
the DARPA1998 dataset. Figure 4 shows that the majority of
flows, i.e., 1,471,468, contain only one packet, accounting for
41.32%of the total, and 775,649 flows contain only two pack-
ets, accounting for 21.78% of the total. Together, these two
flow sizes account for 63.1% of the total. The most important
advantage of LSTM is its ability to learn the temporal features
of a long sequence of data. However, the sequence length of
the flows in theDARPA1998 dataset is too short. In particular,

when the number of packets is 1, no sequence exists, which
makes it meaningless to apply LSTM to the DARPA1998
dataset. Thus, the evaluation experiments for HAST-II are
conducted only for ISCX2012.

During spatial feature learning in HAST-II, the input data
unit of the CNNs is network packets. Similar to the discussion
in section B, every packet must be reduced to a fixed size. In a
network flow, the packet sizes generally differ greatly. Table 9
shows the statistics regarding packet sizes for the ISCX2012
dataset. As shown in Table 9, large differences in packet
sizes exist in the ISCX2012 dataset. Section B discussed how
flow size has an important effect on the system performance.
Similarly, this section measures the effect of packet size on
the performance of HAST-II and determines the best packet
size.

TABLE 9. Statistics regarding network packet size for ISCX2012.

TABLE 10. Statistics regarding number of network packets per flow for
ISCX2012.

In our experiments, the packet sizes range from
100 to 1,000. We choose the median (14; see the median
row in Table 10) as the number of packets per flow. The
accuracy, DR and FAR of every class of traffic are used as
evaluation metrics. Table 11 shows the experimental results,
from which, we can see that those metrics yield the best
results when the packet sizes are 100 and 200. Considering
the training time, we choose 100 bytes as the best packet size,
which differs greatly from the mean packet size of 743 shown
in Table 9. A possible explanation is that the first 100 bytes
mainly comprise the packet header, whose information may
be more important for detecting intrusion.

An interesting finding is the comparison with the senti-
ment analysis task in the field of natural language process-
ing. Using a similar deep neural network architecture, [15]
chooses 512 characters as the best sentence size, which
is equivalent to the packet size in our research. However,
512 characters cover the length of most sentences, whereas

1800 VOLUME 6, 2018



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

TABLE 11. Effect of packet size on the performance of the HAST-IDS (%).

TABLE 12. Effect of number of packets on the performance of the HAST-IDS (%).

the 100 bytes used in our study covers only the first small
part of a network packet. Intuitively, this result may occur
because the structure of a sentence is very different from that
of a packet. The information in a sentence tends to follow a
uniform distribution, whereas a packet can be divided into a
packet header and payload, thus, its information tends to be
emphasized differently.

D. INFLUENCE OF THE NUMBER OF NETWORK PACKETS
In the temporal feature learning stage of HAST-II, LSTM
requires that the number of packets per flow be fixed.
However, the number of packets per flow generally differs
greatly. Table 10 shows the statistics regarding the number of
packets per flow for the ISCX2012 dataset. The table shows
that in practice, the number of packets per flow varies widely.
Therefore, we must measure the effect of the number of pack-
ets per flow on the system performance and determine the best
number of packets via multiple evaluation experiments.

In our experiments, the number of packets ranges from 6 to
30. When the number of packets is larger than 30, the perfor-
mance no longer improves. The packet size is 100 bytes, as
determined in section C. The accuracy, DR and FAR of every

class of traffic are used as evaluation metrics. Table 12 shows
the experimental results. From the table, we see that those
metrics yield the best results when the number of packets
is 6, 8 and 14. Considering the training time, we choose 6
as the best number of packets. This number differs greatly
from the mean number of packets (77) shown in Table 10.
This result probably occurs because the first few packets in a
flow correspondwith connection creation, whose information
may be more important for detecting intrusion behaviors.
This fact and its possible explanation are both very similar to
those of section B. Celik et al. [33] reported similar findings
(i.e., the first few packets play a relatively more important
role in malware traffic detection).

Via the experiments presented in sections C and D, we
finally obtain the best values for the two parameters of
HAST-II for the ISCX2012 dataset, namely, the best packet
size (100) and the best packet number (6). The experimental
results obtained using those two parameters are shown in
Table 13. Compared with Table 8, Table 13 shows that the
accuracy and DR are approximately equal, while the FAR is
remarkably reduced. We conclude that HAST-II achieves a
comprehensively better performance than that of HAST-I on

VOLUME 6, 2018 1801



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

the ISCX2012 dataset, which indicates that spatial-temporal
features are more effective than single spatial features in
reducing the FAR on the ISCX2012 dataset.

TABLE 13. Best performance of HAST-II for ISCX2012.

E. VISUALIZATION OF SPATIAL-TEMPORAL
FEATURES USING T-SNE
The t-SNE algorithm [34] is used in this section to perform
dimensionality reduction and visualization analysis for the
spatial-temporal traffic features learned by the HAST-IDS.
The t-SNE algorithm is a nonlinear dimensionality reduction
algorithm. Compared to linear dimensionality reduction algo-
rithms such as principal component analysis (PCA), t-SNE
can obtain better low-dimensional results and better visual-
izations. According to the results discussed in sections B, C
and D, we apply the t-SNE algorithm to the high-dimensional
result vectors of the two best experiments, namely, the net-
work flow vectors learned by HAST-I for DARPA1998 and
by HAST-II for ISCX2012.

Specifically, the flow vectors learned by the CNN in
HAST-I or by the LSTM in HAST-II are saved before
application of the softmax classifier. The flow vector is
a five-dimensional vector. In each test dataset of the two
datasets, 500 samples are randomly selected from every class
of traffic. The total number of samples in the ISCX2012
dataset is 2,500; however, because there are only 207 total
test samples of U2R traffic, the total number of samples
from the DARPA1998 dataset is 2,207. The t-SNE source
code file we used was sourced from [35]. Because the flow
vectors are only five-dimensional, we do not use the PCA
preprocessing stage of that code file; instead, we directly
apply t-SNE to reduce the dimensionality. The visualization
results for the resulting low-dimensional vectors are shown
in Figures 5 and 6.

From Figure 5, for the DARPA1998 dataset, the cluster
effects for three classes of traffic, i.e., Normal, DoS, and
Probe, are very good. The experimental data also yield the
same result. The cluster effects for the R2L and U2R classes
of traffic are not as good as those of the other three classes.
Although a cluster effect exists, there are too many clus-
ters, and their distances from other clusters are too small to
clearly distinguish between clusters. The experimental data
also yield the same results. This outcome possibly occurs
because there are too few training samples of R2L and U2R
compared to those of the other three classes. The numbers
of training samples of the Normal, DoS, and Probe classes
are 849,991, 1,561,231 and 48,984, respectively, whereas the

FIGURE 5. Visualization result of flow vectors for DARPA1998.

FIGURE 6. Visualization result of flow vectors for ISCX2012.

R2L and U2R classes have only 6,494 and 229 training sam-
ples, respectively. The imbalance of training data [36] results
in the HAST-IDS being unable to learn sufficient representa-
tive features, which causes a poor detection performance for
these two classes. Figure 6 shows a good overall clustering
effect for the ISCX2012 dataset, although the discrimination
degrees of some classes, such as DDoS and Infiltrating, are
not very high. The reason is also most likely due to an imbal-
ance in the training samples. In general, the visualization
results of the two datasets using the t-SNE algorithm are
quite good, which directly demonstrates the capability of the
HAST-IDS to learn spatial-temporal features and indirectly
explains why the subsequent softmax classifiers achieve such
a high performance.

F. COMPARISON WITH OTHER PUBLISHED METHODS
Researchers have proposed many intrusion detection meth-
ods, most of which are based on manually designed traffic
features. In contrast, the method proposed in this paper learns
spatial-temporal traffic features directly from raw network
traffic data. We expect the automatically learned traffic fea-
tures be more accurate and more representative, thus, we
compare the experimental results of the HAST-IDS with
those of other published methods.

Table 14 shows the experimental results comparison for the
DARPA1998 dataset. The compared methods are all based on
KDD99, which is a dataset containing 41 manually designed

1802 VOLUME 6, 2018



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

TABLE 14. Comparison with other published methods for DARPA1998.

TABLE 15. Comparison with other published methods for ISCX2012 (%).

TABLE 16. Comparison of training time and testing time achieved using HAST-IDS with those of other published methods for DARPA1998.

features extracted from the DARPA1998 dataset. Accuracy
and EM, proposed in section A, are used as the evaluation
metrics. The EM metric comprehensively considers three
metrics, DR, FAR and test dataset size, and can better mea-
sure the system performance. For example, the DR of the
Probe class of the EID3 method is very high, but the FAR
is too high, while the FAR of the U2R class of the SVM
method is very low, but the DR is too low. The EM metric
can be used to comprehensively compare these methods more
fairly. Table 14 shows that the HAST-IDS does not always
perform best on every evaluation metric. For example, the
DR of the DoS class is lower than that of the EID3 method,
and the FAR of U2R is higher than that of MARK-ELM.
However, the HAST-IDS achieves the best EM result among
all listed methods. Even without considering the test dataset
size, the EMDF result of the HAST-IDS is still the best. Thus,
our method achieves the best comprehensive performance
among all methods. It learns more accurate features, and
better features effectively result in a reduced FAR, which is
consistent with the conclusion of [8].

Table 15 shows a comparison of the experimental results
for the ISCX2012 dataset. This dataset was published much
later than DARPA1998; thus, there are relatively fewer avail-
able corresponding experimental results. The methods listed
in Table 15 all use 16 manually designed traffic features.

Because most of these methods do not report the accuracy
and FAR for every traffic class, we cannot compare their EM
values. Based on the available experimental results for the
compared methods, the DR of normal traffic, DR of attack
traffic, accuracy and overall FAR are used as the evalua-
tion metrics. Table 15 shows that the HAST-IDS achieves
the best performances regarding the DR of normal traffic,
DR of attack traffic, and overall FAR, exceeding those of
the other state-of-the-art methods by 0.07%, 0.39% and
0.01%, respectively. The DR of attack traffic obtained by the
HAST-IDS is lower than that of the KMC+NBC method by
2.74% and ranks second among all five methods.

Regarding the training and testing times, the input data
for the HAST-IDS consists of raw network traffic; thus, the
training and testing times of our method include the time
required for feature extraction and feature selection. In con-
trast, the previously mentioned methods directly use man-
ually designed features and do not require time for feature
extraction and selection. Thus, it is not suitable to compare
their training and testing times directly. However, we do
list the training and testing times that exist in the litera-
ture for some methods. The experimental hardware we used
is listed in Section A. Table 16 shows the comparison of
the training and testing times for the DARPA1998 dataset.
The authors of the MHCVF and MLHC methods did not

VOLUME 6, 2018 1803



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

report the FAR for every traffic class, and the correspond-
ing EM values cannot be calculated; thus, they do not
appear in Table 14. Because the ISCX2012 dataset is rel-
atively very new and insufficient studies exist that reports
training and testing times, we cannot perform a compar-
ison study. Table 16 shows that the training and testing
times of the HAST-IDS for the entire DARPA1998 dataset
are 58 min (3,533 s) and 1.7 min (103 s), respectively.
The table also shows that although the HAST-IDS times
include feature extraction and selection, it still achieves
the lowest training and testing times, 46 min and 2.3 min,
respectively, compared to those of the previously men-
tioned state-of-the-art methods, which clearly shows the
high efficiency of our proposed method for intrusion
detection.

V. CONCLUSION AND FUTURE WORK
Because of the difficulty of hand-designing accurate traffic
features in the field of intrusion detection, we propose the
HAST-IDS, which uses deep neural networks that can auto-
matically learn hierarchical spatial-temporal features directly
from raw network traffic data. To the best of our knowledge,
this is the first time that a representation/feature-learning
method based on raw traffic data has been applied in the
field of intrusion detection. The method uses CNNs to learn
the spatial features of network packets and then uses an
LSTM to learn the temporal features amongmultiple network
packets. As a result, the proposed method obtains more accu-
rate spatial-temporal traffic features. The method does not
require any of the engineering techniques used in traditional
intrusion detection methods. The experimental results show
that the HAST-IDS effectively improves the accuracy and DR
compared to other publishedmethods. In addition, the FAR of
many current intrusion detection methods is generally high.
Eesa et al. [8] showed that the detection rate can be increased
while the FAR can be decreased by using a better traffic
feature set. Our experimental results show that the HAST-IDS
effectively reduces the FAR because it automatically learns
the spatial-temporal features, which improve the overall per-
formance of the IDS.

Two problems require further study in future work. The
first involves improving the detection performance on imbal-
anced datasets [36]. In the real world, the amount of malware
traffic is small compared to the amount of normal traffic, and
the proportions of different classes of malware traffic often
differ greatly. The t-SNE visualization results and experimen-
tal data both show that the performance of the HAST-IDS is
not good enough for the classes of traffic with fewer samples.
We will focus on that problem in future work. The second
problem involves combining traditional traffic features.Many
published research results show that in certain cases, some
manually designed traffic features can be very useful.
To further improve the system performance, the usefulness
of either an integration of those features into the HAST-IDS
framework or the use of an ensemble learning method is
worth exploring.

Combining the previous research results [13], [48], we
conclude that deep neural networks can automatically learn
features directly from raw network traffic data and achieve
good results in the field of intrusion detection or network
anomaly detection. The preliminary experimental results are
promising. Following up on this idea, we will continue to
research the application of deep neural networks in the IDS
field with the goal of further improving IDS performance.

REFERENCES
[1] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, ‘‘Intrusion detection

system: A comprehensive review,’’ J. Netw. Comput. Appl., vol. 36, no. 1,
pp. 16–24, Jan. 2013.

[2] F. Zhang and D. Wang, ‘‘An effective feature selection approach for
network intrusion detection,’’ in Proc. IEEE 8th Int. Conf. Netw., Archit.
Storage, Xi’an, China, Jul. 2013, pp. 307–311.

[3] N. Hubballi and V. Suryanarayanan, ‘‘False alarmminimization techniques
in signature-based intrusion detection systems: A survey,’’ Comput. Com-
mun., vol. 49, pp. 1–17, Aug. 2014.

[4] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:
A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[5] T.Ma, F.Wang, J. Cheng, Y. Yu, andX. Chen, ‘‘A hybrid spectral clustering
and deep neural network ensemble algorithm for intrusion detection in
sensor networks,’’ Sensors, vol. 16, no. 10, p. 1701, 2016.

[6] Q. Niyaz, W. Sun, A. Y. Javaid, and M. Alam, ‘‘A deep learning approach
for network intrusion detection system,’’ Proc. 9th EAI Int. Conf. Bio-
Inspired Inf. Commun. Technol. (BIONETICS), 2015, pp. 21–26.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[8] A. S. Eesa, Z. Orman, and A. M. A. Brifcani, ‘‘A novel feature-selection
approach based on the cuttlefish optimization algorithm for intrusion
detection systems,’’ Expert Syst. Appl., vol. 42, no. 5, pp. 2670–2679,
Apr. 2015.

[9] J. Gu et al.. (2017). ‘‘Recent advances in convolutional neural networks.’’
[Online]. Available: https://arxiv.org/abs/1512.07108

[10] Y. Goldberg, ‘‘A primer on neural network models for natural language
processing,’’ J. Artif. Intell. Res., vol. 57, pp. 345–420, Nov. 2016.

[11] Z. Tan, A. Jamdagni, X. He, P. Nanda, R. P. Liu, and J. Hu, ‘‘Detection
of denial-of-service attacks based on computer vision techniques,’’ IEEE
Trans. Comput., vol. 64, no. 9, pp. 2519–2533, Sep. 2015.

[12] D. Ariu, R. Tronci, and G. Giacinto, ‘‘HMMPayl: An intrusion detection
system based on hidden Markov models,’’ Comput. Secur., vol. 30, no. 4,
pp. 221–241, Jun. 2011.

[13] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, ‘‘Malware traffic clas-
sification using convolutional neural network for representation learning,’’
in Proc. 31st Int. Conf. Inf. Netw. (ICOIN), Da Nang, Vietnam, Jan. 2017,
pp. 712–717.

[14] P. Torres, C. Catania, S. Garcia, and C. G. Garino, ‘‘An analysis of recurrent
neural networks for Botnet detection behavior,’’ in Proc. IEEE Biennial
Congr. Argentina (ARGENCON), Buenos Aires, Argentina, Jun. 2016,
pp. 1–6.

[15] S. Vafeias. Character Level Models for Sentiment Analysis. Accessed:
Sep. 1, 2017. [Online]. Available: https://github.com/offbit/char-models

[16] J. Li, H. Xu, X. He, J. Deng, and X. Sun, ‘‘Tweet modeling with LSTM
recurrent neural networks for hashtag recommendation,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Vancouver, BC, Canada, Jul. 2016,
pp. 1570–1577.

[17] X. Zhang and Y. LeCun. (Apr. 2016). ‘‘Text understanding from scratch.’’
[Online]. Available: http://arxiv.org/pdf/1502.01710v5

[18] J. D. Rodriguez, A. Perez, and J. A. Lozano, ‘‘Sensitivity analysis of k-fold
cross validation in prediction error estimation,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 3, pp. 569–575, Mar. 2010.

[19] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted Boltz-
mann machines,’’ in Proc. Int. Conf. Mach. Learn., Haifa, Israel, 2010,
pp. 807–814.

[20] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[21] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. IEEE Symp. Comput. Intell. Secur.
Defense Appl., Ottawa, ON, Canada, Jul. 2009, pp. 1–6.

1804 VOLUME 6, 2018



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

[22] J. Song, H. Takakura, and Y. Okabe. Description of Kyoto Univer-
sity Benchmark Data. [Online]. Available: http://www.takakura.com/
Kyoto_data/BenchmarkData-Description-v5.pdf

[23] R. P. Lippman et al. (1998). Results of the DARPA 1998 Offline
Intrusion Detection Evaluation. [Online]. Available: https://ll.mit.edu/
ideval/files/RAID_1999a.pdf

[24] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, ‘‘Toward devel-
oping a systematic approach to generate benchmark datasets for intrusion
detection,’’ Comput. Secur., vol. 31, no. 3, pp. 357–374, May 2012.

[25] S. Devaraju and S. Ramakrishnan, ‘‘Performance comparison for intrusion
detection system using neural network with KDD dataset,’’ ICTACT J. Soft
Comput., vol. 4, no. 3, pp. 743–752, 2014.

[26] X. Chen. A Simple Utility to Classify Packets Into Flows. Accessed:
Sep. 1, 2017. [Online]. Available: https://github.com/caesar0301/pkt2flow

[27] A. L. Buczak and E. Guven, ‘‘A survey of data mining and machine
learning methods for cyber security intrusion detection,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1153–1176, 2nd Quart., 2016.

[28] J. Song, H. Takakura, Y. Okabe, and Y. Kwon, Correlation Analysis
Between Honeypot Data and IDS Alerts Using One-class SVM. Rijeka,
Croatia: InTech, 2011.

[29] J. M. Fossaceca, T. A. Mazzuchi, and S. Sarkani, ‘‘MARK-ELM: Appli-
cation of a novel multiple kernel learning framework for improving the
robustness of network intrusion detection,’’ Expert Syst. Appl., vol. 42,
no. 8, pp. 4062–4080, May 2015.

[30] F. Chollet. Keras. Accessed: Sep. 1, 2017. [Online]. Available:
https://github.com/fchollet/keras

[31] M. Abadi et al. (Mar. 2016). ‘‘TensorFlow: Large-scale machine
learning on heterogeneous distributed systems.’’ [Online]. Available:
https://arxiv.org/abs/1603.04467

[32] Y. A. LeCun et al., ‘‘Learning algorithms for classification: A comparison
on handwritten digit recognition,’’Neural Netw., vol. 8, no. 1, pp. 261–276,
1995.

[33] Z. B. Celik, R. J. Walls, P. McDaniel, and A. Swami, ‘‘Malware traffic
detection using tamper resistant features,’’ in Proc. IEEE Military Com-
mun. Conf. (MILCOM), Tampa, FL, USA, Oct. 2015, pp. 330–335.

[34] L. van der Maaten and G. E. Hinton, ‘‘Visualizing data using t-SNE,’’
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[35] L. van der Maaten. Python Implementation of t-SNE. Accessed:
Sep. 1, 2017. [Online]. Available: https://lvdmaaten.github.io/tsne

[36] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[37] F. Amiri, M. M. R. Yousefi, C. Lucas, A. Shakery, and N. Yaz-
dani, ‘‘Mutual information-based feature selection for intrusion detec-
tion systems,’’ J. Netw. Comput. Appl., vol. 34, no. 4, pp. 1184–1199,
Jul. 2011.

[38] M. Sabhnani and G. Serpen, ‘‘Application of machine learning algorithms
to KDD intrusion detection dataset within misuse detection context,’’ in
Proc. Int. Conf. Mach. Learn., Models Technol. Appl., Las Vegas, NV,
USA, 2003, pp. 209–215.

[39] M. Al Mehedi Hasan, M. Nasser, B. Pal, and S. Ahmad, ‘‘Support vec-
tor machine and random forest modeling for intrusion detection sys-
tem (IDS),’’ J. Intell. Learn. Syst. Appl., vol. 6, no. 1, pp. 45–52, 2014.

[40] H. A. Nguyen and D. Choi, ‘‘Application of data mining to network
intrusion detection: Classifier selection model,’’ in Challenges for Next
Generation Network Operations and Service Management (Lecture Notes
in Computer Science), vol. 5297. Berlin, Germany: Springer-Verlag, 2008,
pp. 399–408.

[41] X. Xu, ‘‘Adaptive intrusion detection based on machine learning: Feature
extraction, classifier construction and sequential pattern prediction,’’ Int.
J. Web Services Practices, vol. 2, nos. 1–2, pp. 49–58, 2006.

[42] D. M. Farid, N. Harbi, and M. Z. Rahman, ‘‘Combining Naïve Bayes and
decision tree for adaptive intrusion detection,’’ Int. J. Netw. Secur. Appl.,
vol. 2, no. 2, pp. 189–196, 2010.

[43] V. Jaiganesh, P. Mangayarkarasi, and P. Sumathi, ‘‘An efficient algorithm
for network intrusion detection system,’’ Int. J. Comput. Appl., vol. 90,
no. 12, pp. 12–16, Mar. 2014.

[44] A. Akyol, M. Hacibeyoǧlu, and B. Karlik, ‘‘Design of multilevel hybrid
classifier with variant feature sets for intrusion detection system,’’ IEICE
Trans. Inf. Syst., vol. E99-D, no. 7, pp. 1810–1821, 2016.

[45] H. Sallay, A. Ammar, M. Ben Saad, and S. Bourouis, ‘‘A real time adaptive
intrusion detection alert classifier for high speed networks,’’ in Proc. IEEE
12th Int. Symp. Netw. Comput. Appl., Cambridge, MA, USA, Aug. 2013,
pp. 73–80.

[46] W. Yassin, N. I. Udzir, Z. Muda, and M. N. Sulaiman, ‘‘Anomaly-
based intrusion detection through K-means clustering and Naives Bayes
classification,’’ in Proc. 4th Int. Conf. Comput. Inform. (ICOCI), 2013,
pp. 298–303.

[47] C. Xiang, P. C. Yong, and L. S. Meng, ‘‘Design of multiple-level hybrid
classifier for intrusion detection system using Bayesian clustering and
decision trees,’’ Pattern Recognit. Lett., vol. 29, no. 7, pp. 918–924,
May 2008.

[48] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, ‘‘End-to-end encrypted
traffic classification with one-dimensional convolution neural networks,’’
in Proc. IEEE Int. Conf. Intell. Secur. Inform. (ISI), Beijing, China,
Jul. 2017, pp. 43–48.

WEI WANG received the B.S. and M.S. degrees
from PLA Information Engineering University,
Zhengzhou, China, in 2006 and 2011, respec-
tively. He is currently pursuing the Ph.D. degree
with the University of Science and Technology of
China, Hefei, China. His research interests include
machine learning and cyberspace security.

YIQIANG SHENG received the master’s degree
from Nankai University, Tianjin, China, in 2003,
and the Ph.D. degree from the Tokyo Institute of
Technology, Tokyo, Japan, in 2014. He is currently
with the National Network New Media Engineer-
ing Research Center, Chinese Academy of Sci-
ences, Beijing, China, as an Academic Researcher
and an Associate Professor. His current research
interests include smart systems, optimization algo-
rithms, machine learning, big data, and network
theory with applications.

JINLIN WANG received the B.S. degree in math-
ematics from the University of Science and Tech-
nology of China in 1986, and the M.S. degree in
acoustics from the Institute of Acoustics, Chinese
Academy of Sciences (IACAS), in 1989. He is
currently a Research Professor at the IACAS and
the Director of the National Network New Media
Engineering Research Center. His current research
interests include the structure and new service of
broadband networks, digital media services, and
network architecture.

XUEWEN ZENG received the B.S. degree in auto-
matic control from Shanghai Jiao Tong University,
China, in 1989, and the M.S. and Ph.D. degrees in
signal and information processing from the Insti-
tute of Acoustics, Chinese Academy of Sciences
(IACAS), in 1992 and 1997, respectively. He is a
Research Fellow with IACAS and a Professor at
the Chinese Academy of Sciences. His research
interests include multimedia communication and
pattern recognition.

XIAOZHOU YE received theM.S. degree from the
Beijing University of Posts and Telecommunica-
tions in 2004, and the Ph.D. degree from the Insti-
tute of Acoustics, Chinese Academy of Sciences
(IACAS) in 2007. He is currently an Associate
Professor at IACAS.His research activities involve
application delivery networks, embedded network
processors and intelligent terminal systems, home
network media gateways, broadband access net-
works, and streaming media processing.

VOLUME 6, 2018 1805



W. Wang et al.: HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks

YONGZHONG HUANG received the Ph.D.
degree from the National Digital Switching Sys-
tem Engineering and Technological Research and
Development Center in 2007. He is currently a
Professor at the School of Computer Science and
Information Security, Guilin University of Elec-
tronic Technology, Guilin, China. His research
interests are high-performance computing, big
data, and artificial intelligence.

MING ZHU received the B.S., M.S., and Ph.D.
degrees from the University of Science and Tech-
nology of China, Hefei, China, in 1986, 1989,
and 2002, respectively. He is currently a Professor
with the Department of Automation, University of
Science and Technology of China. His research
interests generally lie in the fields of data mining,
pattern recognition, and machine learning.

1806 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	INTRUSION DETECTION TECHNIQUES
	DEEP NEURAL NETWORKS

	HAST-IDS
	HAST-IDS OVERVIEW
	PREPROCESSING
	CROSS-VALIDATION
	SPATIAL FEATURE LEARNING
	TEMPORAL FEATURE LEARNING
	SOFTMAX CLASSIFIER
	TEST AND RESULT AGGREGATION

	LEARNING SPATIAL FEATURES WITH CNNS
	ONE-HOT ENCODING
	CONVOLUTION OPERATION
	FEATURE MAPPING
	POOLING OPERATION

	LEARNING TEMPORAL FEATURES WITH LSTM
	FORGET GATE
	INPUT NODE
	INPUT GATE
	INTERNAL STATE
	OUTPUT GATE


	EVALUATION AND DISCUSSION
	EXPERIMENTAL METHODOLOGY
	DATASETS
	METRICS
	EXPERIMENTAL SETUP

	INFLUENCE OF NETWORK FLOW SIZE
	INFLUENCE OF NETWORK PACKET SIZE
	INFLUENCE OF THE NUMBER OF NETWORK PACKETS
	VISUALIZATION OF SPATIAL-TEMPORAL FEATURES USING T-SNE
	COMPARISON WITH OTHER PUBLISHED METHODS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	WEI WANG
	YIQIANG SHENG
	JINLIN WANG
	XUEWEN ZENG
	XIAOZHOU YE
	YONGZHONG HUANG
	MING ZHU


